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By the quenched lattice QCD simulation for two nucleons with finite scattering en-
ergy, validity of the derivative expansion of the general nucleon-nucleon potential U(r, r′) =
V (r,∇r)δ3(r−r′) is studied. The relative kinetic energy between two nucleons is introduced
through the anti-periodic boundary condition in the spatial directions. On a hypercubic lat-
tice with the lattice spacing a � 0.137 fm and the spatial extent Ls � 4.4 fm with the pion
mass mπ � 530 MeV, the local potentials for two different energies (E � 0 MeV and 45 MeV)
are compared and found to be identical within statistical errors, which validates the local
approximation of U(r, r) up to E = 45 MeV for the central and tensor potentials. Central
potentials in the spin-singlet channel for different orbital angular momentums (� = 0 and
� = 2) at E � 45 MeV are also found to be the same within the errors, which also supports
the local approximation.

Subject Index: 234

§1. Introduction

The nucleon-nucleon (NN) potential1)–3) is a fundamental quantity to study
various properties of atomic nuclei and nuclear matter. Recently, a first attempt
to calculate the NN potential from QCD was reported on the basis of the Nambu-
Bethe-Salpeter (NBS) wave function for the two nucleons on the lattice.4),5) Also,
the method has been extended to the baryon-baryon (BB) interactions with
strangeness,6)–8) the three-nucleon interaction9) and meson-baryon interactions.10),11)

Since the NN interaction is short ranged, the NN potential extracted from lattice
QCD simulations is exponentially insensitive to the spatial lattice extent Ls as long
as Ls � 1/mπ. Then one can calculate observables such as the scattering phase
shifts by employing the lattice NN potential and solving the Schrödinger equation
in the infinite volume.

In general, the lattice NN potential obtained from the NBS wave function is
energy-independent but non-local, U(r, r′). In practice, U is rewritten in terms of

∗) Address after April 1st, 2011: RIKEN Nishina Center, RIKEN, Wako 351-0198, Japan
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1226 K. Murano, N. Ishii, S. Aoki and T. Hatsuda

an infinite set of energy-independent local potentials V (LO)(r), V (NLO)(r), · · · , by
the derivative expansion. These local potentials are determined successively by mea-
suring the NBS wave functions for different scattering energies E below the inelastic
threshold Eth. A possible criterion for the validity of the derivative expansion at low
energies is the stability of the local potentials against the variation of the scattering
energy in the interval 0 ≤ E < Eth.∗)

The purpose of this paper is to check such stability through the lattice data
at E � 0 MeV and E � 45 MeV: these two cases are realized on the lattice by
taking the periodic and anti-periodic boundary conditions in the spatial directions.
We carry out quenched lattice QCD simulations with Ls � 4 fm and the pion mass
mπ � 530 MeV. We will show that the leading-order local potentials at the above two
different energies show no difference within statistical error, which validates the local
approximation up to E = 45 MeV for the central and tensor potentials.∗∗) Difference
of the spin-singlet central potentials between � = 0 and � = 2 is also studied, with
� being the orbital angular momentum. A preliminary account of these results is
given in Refs. 13) and 14).

This paper is organized as follows. In §2, we make a brief review on the energy-
independent non-local potential and its derivative expansion. An explicit construc-
tion of the leading order terms of the derivative expansion is also presented. In §3,
we explain a method to realize non-zero energy NN scattering on the lattice through
the spatial boundary conditions. In particular, we introduce a novel momentum wall
source operators which are suitable for the purpose of the present paper. In §4, we
present numerical results for the NBS wave functions and the associated leading
order potentials for different E and �. Section 5 is devoted to a summary and con-
cluding remarks. In Appendix A, we give a brief summary of the representation of
the cubic group used in this paper. In Appendix B, some details of constructing the
� = 2 source operator by using the cubic group representation are presented.

§2. Non-local NN potential and its derivative expansion

To define the NN potential in QCD, we consider the equal-time Nambu-Bethe-
Salpeter (NBS) wave function in the center of mass (CM) frame defined by

φαβ(r; k) ≡ 〈0|pα(x)nβ(y)|B = 2; k〉, (r ≡ x − y) (2.1)

where |B = 2; k〉 is a QCD eigenstate with baryon number two (B = 2), and
pα(x), nβ(y) are local composite nucleon operators with spinor indices α and β.
The asymptotic relative momentum k is related to the relativistic total energy W as
W = 2

√
m2

N + k2 with mN being the nucleon mass. In the following, we consider
the elastic region where W < Wth ≡ 2mN + mπ is satisfied with the pion mass mπ.

The asymptotic behavior of the NBS wave function for |r| > R (R being the typi-

∗) Note that Eth is an observable determined by the pion mass and is considerably smaller than

the scale of the lattice cutoff a−1.
∗∗) In Ising field theory, it is analytically shown that the energy-dependence is weak at low energy,

indicating that the non-locality of the potential is weak.12)
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Nucleon-Nucleon Potential and Its Non-Locality in Lattice QCD 1227

cal interaction range) is characterized by the scattering phase shift for hadrons.5),15)–19)

On the other hand, from the NBS wave function for |r| < R, we can define a k-
dependent local potential Uk(r) and derive an associated k-independent non-local
potential U(r, r′) with the use of the information of the NBS wave functions for
E < Eth: (∇2

r + k2
)

φ(r; k) ≡ 2μUk(r)φ(r; k) (2.2)

= 2μ

∫
d3r′ U(r, r′) φ(r′; k), (2.3)

where μ = mN/2 denotes the reduced mass of the NN system. Derivation of
Eq. (2.3) from Eq. (2.2) is given explicitly in Ref. 5). Note also that an equiva-
lence theorem between Uk(r) and U(r, r′) has been proved in a different manner
in Ref. 20). In practical applications, U(r, r′) has advantages over Uk(r); its k-
independence leads to the standard eigenvalue problem for the NBS wave func-
tion. Furthermore its non-locality can be treated by the derivative expansion,
U(r, r′) = V (r,∇r)δ3(r − r′), with

V (r,∇r) = V0(r) + Vσ(r)(σ1 · σ2) + VT(r)S12︸ ︷︷ ︸
LO

+VLS(r) L · S︸ ︷︷ ︸
NLO

+O(∇2), (2.4)

where S12 ≡ 3(σ1·r)(σ2·r)/r2−σ1·σ2, S ≡ (σ1 + σ2) /2 and L ≡ r×(−i∇r) denote
the tensor operator, the total spin operator and the orbital angular momentum
operator, respectively.21),22)

Since the total wave function has to be anti-symmetric under the exchange of two
nucleons, possible combinations of the total isospin I, the total spin S and the orbital
angular momentum � are restricted to four cases, (I, S, �)=(1,0,even), (0,1,even),
(1,1,odd) and (0,0,odd). Thus we may omit the isospin I indices in Eq. (2.4). Note
that the spin-singlet states (S = 0) and spin-triplet states (S = 1) do not mix with
each other, since the isospin I and the parity P = (−1)� are conserved for QCD
with degenerate 2-flavors. To specify two-nucleon scattering states, we follow the
standard notation, 2S+1�J , with J being the total angular momentum.

2.1. Spin-singlet potentials

Let us first consider the spin-singlet channel. Since contributions from S12 and
L · S terms are absent in this case, the Schrödinger equation reads

(∇2
r + k2

)
φ(r; k) = 2μ

[
V0(r) − 3Vσ(r) +

{∇2
r, Vp2(r)

}
+ VL2(r)L2 + O(∇4)

]
φ(r; k).

(2.5)
Terms involving 2n derivatives such as (L2)n and (∇2)n give N2nLO potentials.
(Note that N2n+1LO potentials are absent in the spin-singlet channel.) At the LO
level, the Schrödinger equation (2.5) reduces to

(∇2
r + k2

)
φ(r; k) = 2μV

(LO)
C,s (r)φ(r; k), (2.6)
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with V
(LO)
C,s (r) ≡ V0(r) − 3Vσ(r). Then the LO central potential in the spin-singlet

channel is given by

V
(LO)
C,s (r) ≡ E +

1
2μ

∇2
rφ(r; k)
φ(r; k)

, (2.7)

where E ≡ k2

2μ is the effective kinetic energy between two nucleons. The above LO
truncation works only when the right-hand side of Eq. (2.7) depends weakly on k
and �. This will be checked explicitly in §4 at low energies and at low angular
momentums through the comparisons, (� = 0, E � 0 MeV) vs (� = 0, E � 45 MeV)
and (� = 0, E � 45 MeV) vs (� = 2, E � 45 MeV).

If k and � dependence in the spin-singlet channel becomes visible as these values
increase, it is a sign of the NNLO terms in Eq. (2.5). Then the next step is to
determine NNLO potentials V

(NNLO)
C,s (r), V

(NNLO)
p2 (r) and V

(NNLO)
L2 (r) through the

NBS wave functions measured with three different combinations of k and �. Such a
procedure continues to higher orders as k and � further increase. A close analogy of
this process is the renormalization-scale (κ) dependence in the perturvative series of
quantum field theory; the artificial κ dependence of scale-independent quantities is
canceled order by order as we proceed to higher orders.

2.2. Spin-triplet potentials

For the spin-triplet channel, the Schrödinger equation reads(∇2
r + k2

)
φ(r; k) = 2μ

[
V0(r) + Vσ(r) + VT(r)S12 + VLS(r)L · S + O(∇2)

]
φ(r; k).

(2.8)
At the LO level, it reduces to(∇2

r + k2
)
φ(r; k) = 2μ

[
V

(LO)
C,t (r) + V

(LO)
T (r)S12

]
φ(r; k), (2.9)

where V
(LO)
C,t (r) ≡ V0(r) + Vσ(r).

To be specific, we restrict ourselves to the case with JP = 1+ NBS wave function
to which two partial waves contribute, i.e., 3S1 (S-wave [� = 0]) and 3D1 (D-wave
[� = 2]). As shown in Ref. 5), Eq. (2.9) consists of two independent equations( Pφ(r; k) PS12φ(r; k)

Qφ(r; k) QS12φ(r; k)

)(
V

(LO)
C,t (r) − k2/2μ

V
(LO)
T (r)

)
=

∇2
r

2μ

( Pφ(r; k)
Qφ(r; k)

)
, (2.10)

where P (Q) is a projection to the � = 0 (� = 2) state. The LO potentials, V
(LO)
C,t (r)

and V
(LO)
T (r), are obtained by solving this 2 × 2 matrix equation algebraically.

Spatial symmetry group of the hyper-cubic lattice is the cubic transformation
group SO(3, Z) instead of the rotation group SO(3, R). Here we employ the JP = T+

1

representation of the SO(3, Z) for the wave function in the spin-triplet channel.∗)

Since the spin-triplet belongs to the T1 representation, the JP = T+
1 state in general

∗) Here J is used to represent the quantum number of orbital⊗ spin even for the discrete group

SO(3, Z), and P is the parity under the spatial reflection.
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contains orbital state R which satisfies T+
1 ∈ R⊗T1. Table II in Appendix A.1 gives

R = A+
1 , E+, T+

2 and T+
1 . Among them we take the projection to the orbital A+

1

representation for P as

Pφ(r; k) ≡ 1
24

∑
R∈SO(3,Z)

φ(R−1[r]; k), (2.11)

where the summation is performed over the cubic group SO(3, Z) with 24 elements.
The orbital A1 representation is expected to be dominated by the S-wave up to
contamination of higher partial waves with � ≥ 4. We employ Q = 1 − P as a
projection to non-A+

1 orbital components composed of E+, T+
2 and T+

1 representa-
tions. Non-A+

1 orbital components are expected to be dominated by the D-wave up
to contamination of higher partial waves with � ≥ 4. Note that E+ and T+

2 contain
the � = 2 component, whereas T+

1 does not contain the � = 2 component.
If k and � dependence in the spin-triplet channel becomes visible as these values

increase, it is a sign of the NLO terms in Eq. (2.8). Then the next step is to
determine NLO potentials through the NBS wave functions measured with several
different combinations of k and �.

§3. Finite-energy NN scattering on the lattice

To extract the NBS wave function on the lattice, we start with the four-point
nucleon correlation function,

Gαβ(x − y,t − t0;Jpn) ≡ 1
L3

s

∑
r

〈0|T [pα(x + r, t)nβ(y + r, t)J (t0)]|0〉, (3.1)

� φαβ(x − y; k)〈B = 2; k|J (0)|0〉e−W (t−t0), t − t0 � 1, (3.2)

where the summation over r is performed to select the two nucleon system with
total spatial momentum zero, J (t0) denotes a two-nucleon source located at t = t0,
whose explicit form will be specified below. The relativistic energy and associated
asymptotic momentum of the “ground” state of the B = 2 system are denoted by
W and k, respectively. As for the sink operators, p(x) and n(x), we employ the
following local composite operators,

p(x) ≡ εabc

(
uT

a (x)Cγ5db(x)
)
uc(x), n(x) ≡ εabc

(
uT

a (x)Cγ5db(x)
)
dc(x), (3.3)

where a, b, c are color indices.
The NBS wave function at E � 0 MeV is generated under the periodic bound-

ary condition (PBC), which is imposed on the quark operators along the spatial
directions. With the PBC, the momentum of a single nucleon is discretized as
ki = 2πni/Ls with ni ∈ Z. Hence, the lowest lying state of the two nucleon system
in the CM frame roughly corresponds to the state where two nucleons are weakly
interacting with relative momentum of ki � 0 MeV. The effective kinetic energy of
such a state is E ≡ k2/mN � 0 MeV. The NBS wave function at E � 45 MeV is
generated under the anti-periodic boundary condition (APBC). Since the nucleon
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also obeys the APBC, the spatial momentum of a single nucleon is discretized as
ki = (2ni +1)π/Ls with ni ∈ Z. Hence, the lowest lying state of the two nucleon sys-
tem in the CM frame roughly corresponds to the state where two nucleons are weakly
interacting with relative momentum of ki � ±π/Ls. For the lowest lying state with
Ls � 4.4 fm, the spatial momentum of a nucleon amounts to |k| � √

3π/Ls � 245
MeV, which corresponds to E � 45 MeV in our setup with mN � 1.33 GeV.

As for the source operators of the two nucleon system, we employ

Jαβ(f) ≡ P̄α(f)N̄β(f), (3.4)

where P̄α(f) and N̄β(f) associated with a source function f(x) are given as

P̄ (f) ≡ εabc

(
Ūa(f)Cγ5D̄

T
b (f)

)
Ūc(f),

N̄(f) ≡ εabc

(
Ūa(f)Cγ5D̄

T
b (f)

)
D̄c(f). (3.5)

Here the source operators for u and d quarks are given by

Ū(f) ≡
∑

x

ū(x)f(x), D̄(f) ≡
∑

x

d̄(x)f(x). (3.6)

An element R of the cubic group SO(3,Z) rotates the quark field operator as

q̄(x) 
→ q̄(R−1x)Λ(R−1), (3.7)

where Λ denotes the 4-component spinor representation of O as Λ(eω) ≡ exp
(− i

4σijω
ij
)

with σμν ≡ i
2 [γμ, γν ]. This leads to the transformation property of Jαβ(f) as

Jαβ(f) 
→ Jα′β′(R−1 ◦ f)Λα′α(R−1)Λβ′β(R−1), (3.8)

where (R−1 ◦ f)(x) ≡ f(Rx).
To consider J = 0 and 1, it is convenient to introduce a source operator which

has definite J and M with J = 0 + S and M = 0 + Sz to construct NBS wave
functions in the 1S0 and 3S1 −3D1 channels:

J (J,M)(f) ≡ 1
24

∑
R∈SO(3,Z)

Jαβ(R−1 ◦ f) · P (S=J,Sz=M)
αβ , (3.9)

where P
(S,Sz)
αβ denotes the spin projection operator defined as P

(S=0,Sz=0)
αβ ≡ (σ2)αβ/

√
2,

P
(S=1,Sz=M)
αβ ≡ (σ2σM )αβ/

√
2 with M = ±1, 0, where we take only the upper com-

ponents of the Dirac indices for simplicity.
For the PBC, we employ a flat wall (f-wall) source,

f (f-wall)(r) = 1, (3.10)

which is invariant under the rotation R. Then, Eq. (3.9) reduces to

J (J,M)(f (f-wall)) = P̄α(f (f-wall))N̄β(f (f-wall)) · P (S=J,Sz=M)
αβ , (3.11)

which couples dominantly to the ground state (k = (0, 0, 0)π/Ls) in the PBC.
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For the APBC, we utilize a set of momentum wall sources f (m-wall) = {f (i)}i=0−3

with

f (0)(r) ≡ cos((+x + y + z)π/Ls),
f (1)(r) ≡ cos((−x + y + z)π/Ls),
f (2)(r) ≡ cos((−x − y + z)π/Ls),
f (3)(r) ≡ cos((+x − y + z)π/Ls), (3.12)

where the cosine function is chosen to create positive parity states.
The cubic group acts on these functions as permutation, which is characterized

by the cubic group representation, A+
1 ⊕ T+

2 . By taking the A+
1 part, Eq. (3.9)

becomes

J (J,M)(f (m-wall); A+
1 ) ≡ 1

4

3∑
j=0

P̄α(f (j))N̄β(f (j)) · P (S=J,Sz=M)
αβ , (3.13)

which couples dominantly to the ground state (k = (1, 1, 1)π/Ls) in the APBC.
Since this source operator is not translational invariant, it is practically important
to perform a summation over r at the sink side in Eq. (3.1) to pick up zero spatial
momentum states. Instead of Eq. (3.12), one may choose a simpler cosine-type
function

f(r) ≡ cos(πx/Ls) cos(πy/Ls) cos(πz/Ls), (3.14)

which gives a source operator coupled to the ground state (k = (1, 1, 1)π/Ls) in the
APBC. However, it receives a contamination from the coupling with the first excited
state (k = (3, 1, 1)π/Ls). In contrast, the source operator with Eq. (3.12) has an
overlap neither with the first excited state nor the second excited state, and receives
contamination only from the third excited state (k = (3, 3, 3)π/Ls). Therefore, signal
for the ground state is better for Eq. (3.12) than that for Eq. (3.14).

Since Eq. (3.12) contains T+
2 component, it can be also used to generate the

state in the 1D2 channel, which is employed to study the � dependence of V
(LO)
C,s (r).

A general projection formula for the source operator in the spin-singlet sector given
in Eq. (B.1) leads to

J (J=2,M)(f (m-wall); T+
2 ) =

1
4

3∑
j=0

eiMjπ/2P̄α(f (j))N̄β(f (j)) · P (S=0,Sz=0)
αβ (3.15)

for the T+
2 representation, where M takes 2 and ±1 (modulo 4). See Appendices

B and A.2 for more details. In the actual numerical calculation, we take linear
combinations of Eq. (3.15) to make them into real basis as

J J=2,xy ≡ J J=2,M=2,

J J=2,yz ≡ i√
2

(J J=2,M=−1 + J J=2,M=1
)
,

J J=2,zx ≡ 1√
2

(J J=2,M=−1 − J J=2,M=1
)
. (3.16)
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1232 K. Murano, N. Ishii, S. Aoki and T. Hatsuda

Fig. 1. (Left) The NBS wave function for the spin-singlet and the orbital A+
1 channel at E � 0

MeV with the PBC. (Right) The NBS wave function in the same channel but at E � 45 MeV

with the APBC. Both wave functions are normalized as φ(r = 0) = 1.

§4. Numerical results

4.1. Lattice setup

Employing the standard plaquette gauge action on a 323 × 48 lattice at β =
5.7, quenched gauge configurations are generated by the heat-bath algorithm with
the over-relaxation. We accumulate 4000 configurations separated by 200 sweeps.
The standard Wilson quark action is used to calculate quark propagators with the
hopping parameter κ = 0.1665. The Dirichlet boundary condition in the temporal
direction is imposed at t − t0 = ±24. The nucleon four-point correlation functions
are measured for both t− t0 > 0 and t− t0 < 0 to improve the statistics by using the
time-reversal and charge conjugation symmetries.5) Either PBC or APBC is taken
in the spatial direction: In the former case, we use four sources at t0 = 0, 8, 16, 24 to
improve the statistics. These calculations are performed on Blue Gene/L at KEK.

From the rho meson mass in the chiral limit, the lattice spacing is determined
to be a−1 = 1.44(2) GeV (a � 0.137 fm), which leads to Ls = 32a � 4.4 fm. Our
κ corresponds to the pion mass mπ � 0.53 GeV and the nucleon mass mN � 1.33
GeV.23) After examining the stability of the NN potentials against the variation of
t− t0, we chose the wave functions and potentials at t− t0 = 9 in all the plots shown
in this paper.

4.2. The NBS wave functions

Figure 1 (Left) and (Right) show three dimensional plots of the NBS wave func-
tions φ(x, y, z = 0) for the spin-singlet and the orbital A+

1 channel (� 1S0 channel) at
E � 0 MeV and at E � 45 MeV, respectively. We observe that they behave rather
differently: The wave function for the PBC is almost constant at long distances,
which indicates that the asymptotic momentum is nearly zero. On the other hand,
the wave function for the APBC decreases continuously to zero at long distances,
since the wave function in orbital A+

1 state must vanish on the boundary in APBC.
This can be seen, for example, by using a π rotation around the x-axis followed by
the spatial reflection as φ(x, y, z) = φ(x,−y,−z) = φ(−x, y, z) = −φ(Ls − x, y, z),
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Fig. 2. Same NBS wave functions as in Fig. 1 but as a function of r.

Fig. 3. (Left) The NBS wave function in the spin-triplet and the orbital A+
1 channel at E � 0 MeV

with the PBC. (Right) The same at E � 45 MeV with the APBC. Both wave functions are

normalized as φ(r = 0) = 1.

which leads to φ(Ls/2, y, z) = −φ(Ls/2, y, z) = 0.
In Fig. 2, the same wave functions as in Fig. 1 are plotted as a function of r.

Violation of rotational symmetry due to the square lattice can be seen explicitly
through the multi-valuedness of the wave function at large r for the APBC. Shown
in Fig. 3 is the similar comparison of NBS wave functions between the PBC and the
APBC in the spin-triplet and the orbital A+

1 channel (� 3S1 channel).
In Fig. 4 (Upper), we plot the NBS wave functions for the spin-triplet and the

orbital T+
2 channel (� 3D1 channel). They are highly multi-valued as functions of

r at all distances simply due to the angular dependence of the orbital T+
2 represen-

tation. To extract the radial part only, we divide the wave functions by Y2,m(θ, φ)
assuming that the angular dependence is dominated by the � = 2 component. The
results are shown in Fig. 4 (Lower): almost single-valued radial wave functions are
obtained for both PBC and APBC cases.

4.3. LO potentials for different energies

The leading order potentials are extracted from the NBS wave functions accord-
ing to Eqs. (2.7) and (2.10) for the spin-singlet and spin-triplet channels, respectively.
In order to obtain LO potentials, we need to determine the value of E = k2/(2μ)
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Fig. 4. (Upper-Left) The NBS wave function Reφ↓↓(r) for the spin-triplet and the orbital T+
2

channel at E � 0 MeV with the PBC. (Upper-Right) The same NBS wave function but at

E � 45 MeV with the APBC. (Lower-Left) The NBS wave function φ↓↓ divided by the spherical

harmonics Y21(θ, φ). (Lower-Right) Same as the left figure but at E � 45 MeV with the APBC.

Normalization of these wave functions is fixed uniquely once the normalization of the S-wave

part is fixed as given in Figs. 2 and 3.

Fig. 5. The spin-singlet central potential, V LO
C,s (r), (Left) at E � 0 MeV and (Right) at E � 45

MeV.

either from the large t behavior of the NN correlation function or the large r be-
havior of the NBS wave function.∗) It turns out that the values of E from both
determinations are roughly equal to their free values, i.e., E � 0 MeV for the PBC

∗) We note here that a new method to obtain the potentials by using the t-dependent Schrödinger

equation has been also proposed recently.24)
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Fig. 6. (color-online)(Left) The LO central potential V
(LO)
C,s (r) for the spin-singlet and the orbital

A+
1 channel as a function of r at E � 0 45 MeV (red solid circles) and at E � 0 MeV (blue open

circles). (Right) The LO central potential V
(LO)
C,s (r) for the spin-singlet channel as a function of

r at E � 45 MeV, determined from the orbital A+
1 representation (red open circles) and from

the T+
2 representation (cyan solid circles).

Fig. 7. (Left) The LO central potential V
(LO)
C,t (r) for the spin-triplet and the orbital 3S1 −3 D1

coupled channel as a function of r. (Right) The LO tensor potential V
(LO)
T (r) for the spin-

triplet and the orbital 3S1 −3D1 coupled channel as a function of r. Symbols are the same as in

Fig. 6.

and E � 45 MeV for the APBC, within statistical and systematic errors. Therefore,
we adopt these free values as characteristic E in extracting the LO central potentials.
Note that the tensor potential is free from the uncertainty of E as can be seen from
Eq. (2.10).

In Fig. 5, we plot the spin-singlet central potentials V LO
C,s (x, y, z = 0) obtained

from the corresponding NBS wave functions φ(x, y, z = 0) in Fig. 1. Although the
wave functions have different spatial structure for different energies, the potentials
are independent of E and localized in space.

To make more precise comparison, V
(LO)
C,s (r) is plotted as a function of r for

E � 0 MeV (blue open circle) and at E � 45 MeV (red closed circle) in Fig. 6 (Left).
Similar comparisons are also made for V

(LO)
C,t (r) and V

(LO)
T (r) in Fig. 7. In all these

cases, we find no E-dependence within statistical errors. We therefore conclude that
the LO potential is a good approximation for U(r, r′) in the energy range E = 0 –
45 MeV.
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It should be kept in mind that we employ a large pion mass mπ � 0.53 GeV,
which may be one of the reasons for the small energy dependence of the LO potentials.
It is therefore important to increase E or decrease mπ and check the point where
NLO contributions become significant.

4.4. LO potentials for different orbital angular momentum

As mentioned in §3, source functions in Eq. (3.12) for the APBC generate not
only the orbital A+

1 but also the orbital T+
2 components. Combining these sources

appropriately, one can construct the NBS wave function for the spin-singlet and the
orbital T+

2 channel (�1 D2 state). Therefore the LO central potential V
(LO)
C,s (r) can

be extracted also from this wave function.
In Fig. 6 (Right), V

(LO)
C,s (r) obtained from the orbital T+

2 channel is compared
with the same potential determined from the orbital A+

1 channel at E � 45 MeV.
Although statistical errors are large, we observe that the two determinations give
consistent result. Assuming that the orbital A+

1 and T+
2 representations are domi-

nated by � = 0 and � = 2 waves, respectively, we here conclude that the LO potential
in the derivative expansion is a good approximation of U(r, r′) for � ≤ 2 in the spin-
singlet and positive parity channel.

§5. Summary and conclusion

We have studied the validity of derivative expansion of the energy-independent
non-local NN potential U(r, r′) = V (r,∇r)δ3(r − r′), defined from the NBS wave
function on the lattice. For this purpose, we have carried out quenched lattice QCD
simulations for the NBS wave functions with the lattice spacing 0.14 fm, spatial
lattice size 4.4 fm and the pion mass mπ � 530 MeV. Relative kinetic energies
between two nucleons were controlled by employing the periodic and anti-periodic
boundary conditions for the quark fields in the spatial directions.

The leading-order potentials obtained at different energies (E � 0 MeV and 45
MeV) show no difference within statistical errors, which validates the local approx-
imation of the potential up to E = 45 MeV for the central and tensor potentials.
We have also compared the central potentials in the spin-singlet channel for differ-
ent orbital angular momentum (� = 0 and � = 2) at E � 45 MeV. The result also
supports the validity of the local approximation of the potential at this energy.

In the future it is important to apply the analysis in this report to the general
baryon-baryon potentials in full QCD for lighter quark masses (smaller inelastic
threshold Eth) and for smaller lattice spacing a to investigate the convergence of the
derivative expansion in realistic situations.
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Table I. Numbers of each representation of SO(3, Z) which appears in the angular momentum �

representation of SO(3, R). P = (−1)� represents an eigenvalue under parity transformation.
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1 (P) − 0 0 0 1 0

2 (D) + 0 0 1 0 1

3 (F) − 0 1 0 1 1
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5 (H) − 0 0 1 2 1

6 (I) + 1 1 1 1 2
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Appendix A
Spatial Rotation on the Lattice

A.1. Cubic group SO(3, Z)

In this appendix, we present a brief summary on the symmetry of two nucleon
system on the lattice. Further account on the representations of the cubic group can
be seen in Refs. 26) and 27). Note that the NBS wave functions in higher partial
waves on the lattice are first discussed by Lüscher.16)

A relation of irreducible representations between SO(3, Z) and SO(3, R) is given
in Table I for � ≤ 6. For two nucleon, the total spin S becomes 1/2 ⊗ 1/2 = 1 ⊕ 0,
which corresponds to T1(S = 1) and A1(S = 0) of the SO(3, Z). Therefore, the total
representation J for two nucleon system is determined by the product J = R1 ⊗R2,
where R1 = A1, A2, E, T1, T2 for the orbital “angular momentum” while R2 = A1, T1

for the total spin. In Table II, the product R1 ⊗ R2 is decomposed into the direct
sum of irreducible representations. For example, if the two nucleon state in the spin-
triplet (R2 = T1) belongs to the JP = T+

1 representation, the orbital representation
R1 should satisfy T+

1 ∈ (R1 ⊗ T1). From Table II, solutions to this condition are
given by R1 = A+

1 , E+, T+
1 and T+

2 .

A.2. The cyclic group C4

Elements of SO(3, Z) which correspond to the rotation around the z-axis form
a cyclic group C4 consisting of four elements

C4 ≡ {e, c4, (c4)2, (c4)3}, (A.1)

where e denotes the identity, and c4 denotes the rotation around the z-axis by 90
degrees. It has four one-dimensional irreducible representations, i.e., A, B, E1 and
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Table II. A decomposition for a product of two irreducible representations, R1⊗R2, into irreducible

representations in SO(3, Z). Note that R1 ⊗ R2 = R2 ⊗ R1 by definition.

A1 A2 E T1 T2

A1 A1 A2 E T1 T2

A2 A2 A1 E T2 T1

E E E A1 ⊕ A2 ⊕ E T1 ⊕ T2 T1 ⊕ T2

T1 T1 T2 T1 ⊕ T2 A1 ⊕ E ⊕ T1 ⊕ T2 A2 ⊕ E ⊕ T1 ⊕ T2

T2 T2 T1 T1 ⊕ T2 A2 ⊕ E ⊕ T1 ⊕ T2 A1 ⊕ E ⊕ T1 ⊕ T2

Table III. Representation matrices of irreducible representations of C4.

e c4 (c4)
2 (c4)

3

A 1 1 1 1

B 1 −1 1 −1

E1 1 i −1 −i

E2 1 −i −1 i

Table IV. Numbers of each representation of C4 which appear in each representation of SO(3, Z).

A B E1 E2

A1 1 0 0 0

A2 0 1 0 0

E 1 1 0 0

T1 1 0 1 1

T2 0 1 1 1

E2. They are related to the irreducible representations of SO(2, R) labeled by M =
0, 2, +1,−1 (modulo 4), respectively. The representation matrices are summarized
in Table III. A relation of irreducible representations between C4 and SO(3, Z) is
given in Table IV.

Appendix B
A Source Operator for the 1D2 State

A general projection formula for the source operator in the spin singlet sector is
given by

J S=0;Γ,M (f (0)) ≡ dΓ

24

∑
R∈SO(3,Z)

D
(Γ )∗
MM (R)Jαβ(R−1 ◦ f (0)) · P (S=0,Sz=0)

αβ , (B.1)

where Γ labels the cubic group representations (A1, A2, T1, T2, E), dΓ denotes the
dimension of the representation Γ , D(Γ )(R) denotes the representation matrix of the
representation Γ , and M is a label of the irreducible representations of C4, contained
in the irreducible representation Γ of SO(3,Z). (See Table IV.) This M corresponds
to the azimuthal quantum number up to modulo 4 due to the cubic symmetry.

To derive Eq. (3.15), we consider the subgroup H in SO(3,Z), which leaves
f (0)(r) invariant

H ≡ {R ∈ SO(3, Z)|R ◦ f (0) = f (0)}. (B.2)
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H is generated by c2, which corresponds to the rotation around m ≡ (1,−1, 0) by
180 degrees, and by c3, which corresponds to the rotation around n ≡ (1, 1, 1) by 120
degrees. H consists of six elements, i.e., H ≡ {e, c3, (c3)2, c2, c2c3, c2(c3)2}, where e
denotes the identity. We decompose SO(3,Z) by right cosets of H as SO(3, Z) =⋃

c∈C4
Hc, where Hc ≡ {hc|h ∈ H} denotes a right coset of H in G, which can be

labeled by elements of C4. We use the coset decomposition to arrange the summation
in Eq. (B.1) as

J S=0;Γ,M (f (0))

=
dΓ

24

∑
c∈C4

∑
h∈H

D
(Γ )∗
MM (hc)Jαβ((hc)−1 ◦ f (0)) · P (S=0,Sz=0)

αβ

=
∑
M ′

dΓ

6

∑
h∈H

D
(Γ )∗
MM ′(h) · 1

4

∑
c∈C4

D
(Γ )∗
M ′M (c)Jαβ(c−1 ◦ f (0)) · P (S=0,Sz=0)

αβ , (B.3)

where we used h−1◦f (0) = f (0). Equation (3.15) is arrived at by noting the following
three facts (i) D

(Γ )∗
M ′M (c) is diagonal, which reduces to a phase factor eiMjπ/2δM ′M , (ii)

f (j) = (c4)−j ◦ f (0), where c4 denotes the rotation around the z-axis by 90 degrees,
(iii) dΓ

6

∑
h∈H D

(Γ )∗
MM (h) = 1 for Γ = A1 and T2.
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20) W. Królikowski and J. Rzewuski, Nuovo Cim. 4 (1956), 1212.
21) S. Okubo and R. E. Marshak, Ann. of Phys. 4 (1958), 166.
22) R. Tamagaki and W. Watari, Prog. Theor. Phys. Suppl. No. 39 (1967), 23.
23) M. Fukugita, Y. Kuramashi, M. Okawa, H. Mino and A. Ukawa, Phys. Rev. D 52 (1995),

3003.
24) N. Ishii et al. (HAL QCD Collaboration), in preparation.
25) CPS++, http://qcdoc.phys.columbia.edu/cps.html (maintainer: Chulwoo Jung).

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/125/6/1225/1861416 by guest on 19 April 2024



1240 K. Murano, N. Ishii, S. Aoki and T. Hatsuda

26) E. P. Wigner, Group Theory and Its Application to the Quantum Mechanics of Atomic
Spectra, expanded and improved ed. (Academic Press, New York, 1971).

27) L. D. Landau and L. M. Lifshitz, Quantum Mechanics (Non-relativistic Theory), 3rd ed.
(Butterworth-Heinemann, New York, 1977).

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/125/6/1225/1861416 by guest on 19 April 2024


