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Gamma-Ray Burst without Baryonic and Magnetic Load?
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We show that, contrary to common belief, internal shocks can arise in an accelerating
radiation-dominated jet if it is confined even weakly to a converging opening angle be-
cause the acceleration declines. The radiation-dominated internal shock (RDIS) enables a
very efficient yet highly nonthermal emission by Fermi-like photon acceleration, keeping the
electron-positron (e±) pair photosphere and inertia up to a high Lorentz factor > 1000. In
gamma-ray bursts (GRBs), a weak confinement would persist beyond the progenitor star or
surrounding matter because of the fast cocoon accompanying the breakout jet. The sim-
plest model predicts few high-energy cosmic rays and neutrinos, and a correlation between
the early afterglow and the GeV-TeV prompt emission. The central engine allows a less
fine-tuned baryon load than previously thought, even including pure-leptonic unmagnetized
outflows.

Subject Index: 410, 413, 416, 480, 484

GRB and baryon load Gamma-Ray Bursts (GRBs) are the most luminous ob-
jects in the universe. It remains a big challenge to reveal how most of the energy
can be converted into gamma rays with highly nonthermal spectra.1),2)

The baryon load is a key parameter for the fireball dynamics and emission.
The original fireball model3),4) was pure leptonic with the photon-to-baryon ratio
η ≡ L/Ṁc2 = ∞. As the fireball expands, the e± pairs annihilate and almost
all the energy is released to thermal radiation: it is efficient but inconsistent with
nonthermal observations. This leads to the baryon-loaded model with η � 103, in
which the radiation energy is converted to the kinetic energy of matter,5) and then
back to the radiation by internal shocks within variable outflows.6)–8) By its very
nature, however, this standard picture faces an efficiency problem.9),10) The Lorentz
factor dispersion required for the efficient reconversion is too large to reproduce the
observed spectral correlations νpeak ∝ L1/2.11)–13) This brings forth the photosphere
model14)–19) that invokes a partial thermalization near the photosphere to stabilize
the peak energy νpeak at the thermal peak, while retaining the nonthermal spectrum.
The observed Band spectrum could be reproduced by Comptonization of the thermal
photons via dissipation such as shocks19)–21) and magnetic reconnections.14),22)

These matter-dominated models assume the baryon load in the range (see Fig. 1)

102 � η

(
≡ L

Ṁc2

)
� 103, (1)

to avoid the compactness problem1) (for 102 � η) and the predominant thermal
emission23) (for η � 103), where the baryon-poor fireball with η � 103 is considered
to emit thermal photons because no internal shocks occur in the radiation-dominated
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Fig. 1. We categorize GRB models on the basis of the baryon load. Popular models usually assume

the photon-to-baryon ratio η = L/Ṁc2 from 102 . η (to avoid the compactness problem) to

η . 103. We consider the radiation-dominated jet with η & 103, including the pure-leptonic

original fireball model.3), 4) Such jets were considered to cause no internal shocks before being

transparent at the Lorentz factor Γ ∼ 103 and radius r/r0 ∼ 103, and hence, emit (dominant)

thermal radiation unlike in observations.23) This picture is changed by the jet confinement.

fireball, which accelerates as Γ ∝ r with the preceding shell always faster than the
succeeding one. Therefore, the inferred baryon load is only limited within one order
of magnitude, in contrast to a huge variety of GRBs. We may identify it as the
“fine-tuning problem of the baryon load”. Although the baryon-rich fireballs could
be just unobservable with selection bias, there seems no compelling reason to believe
η � 103. Recent Fermi observations24)–26) have made the problem even worse19) by
detecting high-energy photons to limit the Lorentz factor Γ � 103, i.e., η � 103 in
some bursts (despite the controversies on the numerical factor27)–29)).

One possible solution to the fine-tuned baryon load problem is the Poynting-
dominated model.14),22),30)–33) Even without (electrons associated with) baryon, the
energy is released only nonthermally via magnetic reconnections. Many uncertainties
still remain, especially in the dissipation site. It may also be difficult to keep the jet
cold in the hot photon pool near the central engine.

The other possibility may be the externally induced dissipation by the oblique
shocks34)–36) or the entrainment of baryon19) during the acceleration. However, the
external dissipation only occurs at the causally connected periphery of the jet, and
the strong confinement (θ < Γ−1) is necessary for the full dissipation across the jet.

In this paper, we show that, contrary to popular belief, the radiation-dominated
jet can cause internal shocks if the geometry is confined even weakly (even θ > Γ−1)
by some external pressure or internal magnetic field. This could markedly expand
the available parameter space to 103 � η as outlined below.

Two shell model We envisage that the Lorentz factor Γ of an outflow fluctuates
by a factor of ΔΓ ∼ a few around its mean. This may be modeled by two shells
ejected from a radius r0 at times t1 and t2 = t1 + Δt (where Δt > 0) with different
initial Lorentz factors Γ1 and Γ2(> Γ1), respectively (allowing for the possibility of
Γi � 1 as in the jets breaking out of the progenitor star). The shell trajectory is

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/126/3/555/1855190 by guest on 20 M

arch 2024



September 2011 Letters 557

given by

dr

dt
= cβ = c

√
1 − 1

Γ 2
. (2)

For the conical (or spherical) radiation-dominated jet Γ ∝ r, we can easily integrate
Eq. (2) as r = {(r2

0/Γ 2
i ) + [c(t − ti) + r0βi]2}1/2, (i = 1, 2). Two shells collide at

r

r0
=

1
R

[
1 +

(
1

2Γ 2
1

+
1

2Γ 2
2

)
R2 +

(
1

4Γ 2
1

− 1
4Γ 2

2

)2

R4

]1/2

, (3)

if the following condition is satisfied,

R ≡ 2
β2

2 − β2
1

(
β2 − β1 − cΔt

r0

)
> 0. (4)

If the interval Δt exceeds a critical time, cΔt > (β2 − β1)r0, i.e., R < 0, even a
photon cannot catch up with the accelerating fore shell (see Fig. 2).

The catch-up condition (4) is not usually fulfilled by the physical processes
because the radial velocity dispersion spreads the shell width before the start r < r0

and the next shell is delayed by the causal time, Δt � r0/cβ1 for the non-relativistic
case and Δt � r0/2cΓ 2

1 [and, hence, R � −Γ 2
1 /(Γ 2

2 − Γ 2
1 )] for the relativistic case,

leading to no collision. This is the essential reason why we have not considered the
internal shock in the radiation-dominated jet, although a short timescale may be
produced by a small-scale magnetic reconnection or a jet opening angle of less than
∼ 1/Γ 2.

However, the Lorentz factor evolves differently from the conical one Γ ∝ r to

Γ ∝
(

r

r0

)λ

, (5)

if the jet is confined to a converging opening angle,

θ ∝ rλ−1, (λ < 1) (6)

by some external pressure or internal magnetic field. This is because the comoving
volume evolves differently from the conical one1) to V ′ ∼ πθ2r2ΓΔ ∝ r2λΓ , where
the lab-frame width Δ remains constant if it is smaller than the spreading width
∼ r/Γ 2. The adiabatic expansion of radiation (with an adiabatic index γa = 4/3)
decreases the comoving temperature as T ′ ∝ V 1−γa ∝ V ′−1/3 ∝ r−2λ/3Γ−1/3. A solid
boundary conserves the total energy ΓT ′4V ′ ∝ ΓT ′ = const, which yields Eq. (5).

For the confined jet λ < 1, the catch-up condition differs from Eq. (4). We can
analytically integrate the trajectory in Eq. (2) considering (hereafter) the relativistic
case Γ2 > Γ1 � 1 with an expansion β � 1 − Γ−2/2. Then, the shells collide at

r

r0
�
⎡
⎣1 − cΔt

1
2λ−1

(
1 − Γ 2

1

Γ 2
2

)
r0

2Γ 2
1

⎤
⎦

1
1−2λ

≡ R
1

1−2λ

λ , if Rλ > 0. (7)
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Fig. 2. A spacetime diagram for the retarded time t − r/c in units of the causal time r0/2cΓ 2
1 as

a function of the radius log(r/r0), using Γ � 1. A photon travels horizontally in this diagram.

A conical radiation-dominated jet Γ ∝ r (solid line) approaches a light path, so that any rapid

jet emitted after the causal time ∼ r0/2cΓ 2
1 cannot catch up with it. Meanwhile, a confined jet

accelerates more slowly Γ ∝ rλ (thick solid line) in a converging opening angle θ ∝ rλ−1 with

λ < 1, enabling internal shocks with rapid jets (arrows) over a wide radius range.

Note that Rλ = R for λ = 1 and Γ2 > Γ1 � 1 in Eqs. (4) and (7).
The qualitative properties change at λ = 1/2.
(i) Strong confinement case, λ ≤ 1/2: The collision always occurs (Rλ > 0) for

any interval Δt, simply because the causal region ∼ r/2Γ 2 ∝ r1−2λ monotonically
increases in the lab frame. This is almost the same as the usual internal shock
after the acceleration ceases.7),8) Meanwhile, since θ < Γ−1, the jet boundary is
also causally connected with the jet axis. This enables the recollimation or oblique
shocks across the jet. Therefore, the jet can be dissipative during the expansion with
shocks in the causal region. Note that the strong confinement (θΓ < 1) is employed
to accelerate the Poynting-dominated jet to the matter-dominated jet.32),33)

(ii) Weak confinement case, 1/2 < λ < 1: The catch-up condition Rλ > 0 in
Eq. (7) requires that the interval Δt is less than a critical time Δtcrit,

cΔt <
1

2λ − 1

(
1 − Γ 2

1

Γ 2
2

)
r0

2Γ 2
1

≡ cΔtcrit. (8)

This can be satisfied by the causal processes (i.e., with the next shell ejected after
the causal time Δt � r0/2cΓ 2

1 ), in contrast to the conical jet (λ = 1), because the
prefactor (2λ−1)−1(1−Γ 2

1 /Γ 2
2 ) can be larger than unity due to the slow acceleration

Γ ∝ rλ. The space-time diagram in Fig. 2 is useful to understand the following.
(A) The radiation-dominated jet can cause internal shocks even during the acceler-

ation if the jet is more collimated than the conical shape, λ < 1 in Eq. (5).
(B) The shock can occur at a large radius since an accelerating shell asymptotically

approaches a light path (see dashed lines in Fig. 2). The shock radius is large
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when the interval Δt gets close to the critical time Δtcrit where the time-fraction
vanishes Rλ = 1 − Δt/Δtcrit = 0 in Eqs. (7) and (8).

(C) The slow shell can be repeatedly shocked by the successive rapid shells, which
can be ejected with shorter intervals ∼ r0/2cΓ 2

2 than the slow shells ∼ r0/2cΓ 2
1 .

In the weak confinement, the causality is lost across the jet (θΓ > 1). Although the
angular structure of Γ would arise depending on the initial condition, the accelera-
tion is likely reduced because of denser streamlines (smaller V ′) than in the conical
case. If the confinement is strong initially (inside the star) and weak later (outside
the star), the oblique shock does not necessarily accompany the weak confinement
phase.

Jet confinement by cocoon The jet would be confined by the progenitor star (long
GRB) or the surrounding dense matter or wind37) (short GRB).36),38)–40) Note that
the merger of two neutron stars ejects baryons before the collapse to a black hole even
with an ordinary magnetic field strength.37) As the jet runs into the stellar envelope,
the shocked jet and envelope flow sideways (if θ < Γ−1

h ) and inflate a cocoon, whose
pressure confines the jet. We can roughly estimate the index λ in Eqs. (5) and (6)
by considering the pressure balance at
(I) the jet head: The longitudinal balance of the ram pressure between the jet

∼ Lj/πθ2r2c and the stellar matter ∼ ρ∗c2β2
h determines the jet head velocity

cβh ∼ c(Lj/πc3ρ∗r2)1/2θ−1.
(II) the cocoon-envelope boundary: The cocoon expands with a speed cβc by balanc-

ing the ram pressure of the ambient matter ∼ ρ∗c2β2
c and the cocoon pressure

∼ Ljt/(cβht)(cβct)2 which is the total energy deposited by the jet divided by the
volume of the cocoon, so that βc ∼ (Lj/c3ρ∗r2)1/4β

1/4
h ∼ (Lj/c3ρ∗r2)3/8θ−1/4

with r ∼ cβht.
(III) the jet-cocoon boundary: The cocoon pressure ∼ ρ∗c2β2

c confines the radiation-
dominated (hot) jet with the transverse pressure pj ∼ Lj/πθ2r2cΓ 2, leading to
θ ∼ (Lj/c3ρ∗r2)1/6Γ−4/3.

Substituting the envelope profile ρ∗ ∼ r−n, Γ ∝ rλ in Eq. (5), θ ∝ rλ−1 in Eq. (6),
and a constant luminosity Lj ∼ const, we can equate the radial dependence to find

λ ∼ 4 + n

14
.
(
θ ∝ r(n−10)/14 inside the star ρ∗ ∼ r−n

)
(9)

The ideal radiative envelope has an index n = 3 (i.e., λ ∼ 1/2), whereas more
realistic presupernova models such as 16TI41) have shallower slopes n ∼ 2 (i.e.,
more confinement λ ∼ 3/7). Because of the strong confinement λ ≤ 1/2, the jet is
basically dissipative before the jet breakout. Similar dissipation is observed in the
simulations.34),42),43) The Lorentz factor of the jet at the breakout is around

Γb ∼
(

r∗
rISCO

)λ

∼ 10−30, (10)

where r∗ ∼ 1010 cm is the stellar radius (breakout radius) and rISCO ∼ 107 cm is the
central engine size. The variability timescale is about ∼ r∗/cΓ 2

b , which is ∼ rISCO/c
for λ = 1/2, so that the central engine timescale may be marginally preserved.
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Fig. 3. Radiation-dominated internal shocks (RDISs) can occur if the jet is confined in θ ∝ rλ−1

with λ < 1, for example, by the fast cocoon pressure [Eq. (11)], because the jet acceleration

slows down Γ ∝ rλ [Eq. (5)]. The RDISs accelerate photons and create e±. The nonthermal

photons are generated from extended radii, where lower energy photons originate deeper with

more scatterings [Eqs. (15) and (16)] before emerging from the e± photosphere [Eq. (14)]. In

this paper, we do not account for the low-energy spectral slope.

Even after the jet breakout, the jet would be confined to some extent. A plausible
source of pressure is the fast cocoon that just escapes from the jet head sideways at
the breakout. The fast cocoon is thereby fast (ranging from Γ ∼ 1) up to the jet
Lorentz factor at the breakout ∼ Γb in Eq. (10), and confines the following jet with
a lag time δt over a long distance ∼ cδtΓ 2

b ∼ 1013(δt/1 s)(Γb/30)2 cm. Also, the
transverse pressure of the fast cocoon is initially comparable to that of the jet pj ,
and then declines slower pc ∝ T ′4 ∝ V ′−4/3 ∝ r−8/3 than pj ∼ Lj/πθ2r2cΓ 2 ∝ r−4λ

if the jet were conical (λ = 1), because the fast cocoon becomes matter-dominated∗)
with the coasting expansion V ′ ∼ 4πr2ΓΔ ∝ r2. For pc ∼ pj , the jet is confined,

λ ∼ 2
3
. (θ ∝ r−1/3 outside the star) (11)

The confinement gets weaker than inside the star (with index larger than the bound-
ary λ > 1/2) but still continues (in the weak regime 1/2 < λ < 1). Thus, the
dissipation proceeds via the internal shocks caused by the variability due to the cen-
tral engine or the jet-envelope interaction. The initial opening angle would be the
inverse of the Lorentz factor θ0 ∼ Γ−1

b ∼ 0.03–0.1 in Eq. (10) at the stellar surface
r0 ∼ r∗ ∼ 1010 cm, and the product Γθ ∝ r2λ−1 grows afterward, as required for the
afterglow observations of jet breaks.

∗) The fast cocoon may be initially radiation-dominated and expand to Γ ∼ γ′
pΓb ∼ Γ 2

b after

converting the radiation energy into the bulk motion, where γ′
p ∼ Γb is the random Lorentz factor

per proton at the shock, as in the collisionless bulk acceleration.19) Then, the Lorentz factor of the

fast cocoon may range from Γ ∼ 1 to ∼ Γ 2
b . This effect could alter λ in Eq. (11).
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e± photosphere and high Γ with internal shocks When the rapid jet catches
up with the slow one, an internal shock forms, which dissipates the relative kinetic
energy. The relative Lorentz factor at the collision is the same as the initial value,

Γ12 � 1
2

(
Γ2

Γ1
+

Γ1

Γ2

)
, (12)

since Γ ∝ rλ for both jets. For the radiation-dominated jet, the kinetic energy
is almost carried by photons, which is transferred by Compton scatterings of e±,
forming a radiation-mediated shock.44) A small fraction of photons are repeatedly
upscattered across the shock, extending a power-law spectrum to high energies like
the Fermi acceleration (Blandford-Payne mechanism).45),46) Even for a moderate
optical depth, τT ∼ a few, the Compton y-parameter y ∼ τT β2

12Γ
2
12 can exceed

unity for the relativistic shocks. After the shock passage, the turbulent motion
induced by, for example, Richtmyer-Meshkov instability, also provides the scattering
centers, continuing the photon acceleration.14),47) Then, an appreciable fraction of
the relative kinetic energy can go to high-energy photons and create e± pairs.

The e± pair creation can continue to a large radius since the collision radius
rapidly grows as the jets expand owing to radiation pressure [see Eqs. (7) and (8)
and Fig. 2]. The jet acceleration holds as long as the e± pairs trap the radiation.
The maximum Lorentz factor is limited by the condition that the system becomes
transparent τT ∼ n′±σT ct′dyn ∼ 1, where n′± = f±L/4πr2mec

3Γ 2 is the comoving
number density of e± pairs, t′dyn ∼ r/cΓ is the comoving dynamical time, L is
the isotropic total luminosity and f± is the energy fraction of e± pairs. Then, the
coasting Lorentz factor is

Γ± =

(
Γ

1/λ
0 f±LσT

4πmec3r0

) λ
3λ+1

� 2900
(

Γ0

30

)1/3 ( r0

1010 cm

)−2/9
(

f±L

1053 erg s−1

)2/9

, (13)

at the e± photosphere of radius

r± ∼ r0

(
Γ±
Γ0

)1/λ

∼ 1 × 1013 cm
(

Γ0

30

)−1 ( r0

1010 cm

)2/3
(

f±L

1053 erg s−1

)1/3

, (14)

where (and hereafter) we suppose a jet breaking out of the stellar surface, r0 ∼ r∗ ∼
1010 cm and Γ0 ∼ Γb ∼ 10–30 in Eq. (10), with λ = 2/3 in Eq. (11) in the last
equalities. The pair energy fraction f± is about the energy fraction emitted above
the pair creation threshold ∼ Γ±mec

2 ∼ GeV, and f± ∼ 1 is implied in Fermi bursts.
The high Lorentz factor Γ± > 103 is also consistent with the Fermi observations.

Nonthermal photospheric spectrum The radiation-dominated jet emits almost all
the energy from the e± photosphere, which is nonthermalized by internal shocks. The
spectrum would have a thermal peak with a high-energy power-law tail. We illustrate
the spectral shaping using a constant-luminosity model: equal-energy rapid jets are
ejected after a slow jet at intervals of the causal time Δtsh ∼ r0/2cΓ 2

2 (	 r0/2cΓ 2
1 )

(see Fig. 2). The internal shocks can repeat in the dynamical time of the slow jet
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and create sufficient e± pairs to sustain the opacity. Thus, the e± pair density is
mainly determined by the e± annihilation as n′± ∼ 1/σT cΔt′sh after a time Δt′sh
following a shock. The interval of shocks is redshifted in the comoving frame as
Δt′sh ∼ ΓΔtsh ∼ Γr0/2cΓ 2

2 . Then, the typical optical depth of the jet evolves as

τT ∼ n′
±σT ct′dyn ∼ t′dyn

Δt′sh
∼ r/cΓ

Γr0/2cΓ 2
2

∝ r

Γ 2
∝ r1−2λ ∼ r−1/3. (15)

Note that τ̃T ∝ ñ′±t′dyn ∝ V ′−1r/Γ ∝ r−4λ+1 ∝ r−5/3 (steeper) if e± were conserved.
Under the photosphere τT > 1, thermal photons carry the dominant energy

at a (nonrelativistic) comoving temperature hν ′
peak < mec

2 with a number density
n′

peak ∼ f−1
± n′±mec

2/hν ′
peak. In this cool bath, e± cools by ΔT ′

e/T ′
e ∼ −hν ′

peak/mec
2

in a single Compton scattering, and becomes thermal in a time less than the dy-
namical time, t′cool,e ∼ (n′

peakσT c)−1|T ′
e/ΔT ′

e| ∼ t′dynf±/τT < t′dyn. The nonthermal
photons with ν ′ > ν ′

peak also lose energy Δν ′/ν ′ ∼ (4kT ′
e − hν ′)/mec

2 ∼ −hν ′/mec
2

in a single scattering by the cooled e±. However, the cooling time exceeds the dy-
namical time, t′cool,γ ∼ (n′±σT c)−1|ν ′/Δν ′| > t′dyn, at hν ′ < mec

2/τT . Therefore, the
spectrum remains nonthermal below the observed frequency ∼ Γν ′ (∼ const),

ν ∼ Γmec
2

hτT
∝ r3λ−1 ∼ r1, (16)

even if the photons are generated below the photosphere r < r± with τT > 1. At
τT > 1, the photons are trapped since the diffusion time is tdiff ∼ τ2

T /n′±σT c ∼ τT tdyn.
The internal shock extends the spectrum to a flat power law, injecting a fair

fraction of the shock energy at the frequency in Eq. (16). In the constant-luminosity
model, the injected shock energy is proportional to the number of shocks ∼ t′dyn/Δt′sh,
so that the emergent spectrum at the photosphere is

νFν ∝ t′dyn

Δt′sh
∝ r1−2λ ∝ ν(1−2λ)/(3λ−1) ∼ ν−0.3, (17)

with Eqs. (15) and (16). Interestingly, this is consistent with the high-energy Band
spectrum of GRBs νFν ∝ ν−0.3±0.3.1),2) The nonthermal photons are generated from
radii extending over several orders, where the lower energy photons originate deeper
below the photosphere with more scatterings in Eqs. (15) and (16).

Our model naturally explains the observations that the nonthermal energy above
νpeak is comparable to the thermal energy because the radiation itself nonthermalizes
the radiation. In the constant-luminosity model, the slow jets (mainly for thermal
energy) and rapid jets (mainly for nonthermal energy) have comparable energies if
they are ejected for a similar duration of the causal time of the slow jets ∼ r0/2cΓ 2

1

(see Fig. 2).
The rapid jets could become transparent via e± annihilation before colliding

with the slow jet. The released photons expand conically and only a part of them
∼ (θ/θ0)2 ∝ r2λ−2 could shock the slow jet. The loss of shocked energy softens
the spectrum as νFν ∝ r1−2λ × r2λ−2 ∝ ν1/(1−3λ) ∼ ν−1 with Eqs. (16) and (17),
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which is still consistent with the observations. The angular structure of λ [below
Eq. (8)] could also cause diversity to the high-energy index. The released photons
could be absorbed by the rear jets with different streamlines, or by the surround-
ing (optically thick) fast cocoon, possibly developing the hollow cone-structured jet
with Γ ∼ Γb ∼ 10–30 for the shallow X-ray afterglow (see below). The decoupled
e± from the rapid jet could be caught up with by other rear jets and create further e±.

Implications
• GeV-TeV spectrum and delay – The photospheric spectrum may extend to νmax ∼
Γ±Γ 2

12mec
2 ∼ 10 GeV(Γ±/3000)(Γ12/3)2,44) where we expect the e± creation cut-

off and possibly the (blue-shifted and broadened) annihilation line,16),17) providing
closure relations48) for Fermi and CTA to verify the e± photosphere. We may also
expect a spectral break at ν ∼ Γ±Γ12mec

2 due to the Klein-Nishina effect.
The GeV onset delay observed in Fermi bursts24)–26) may be explained by the

leading jet that is not confined by the fast cocoon and, hence, cannot keep internal
shocks and e± to a high Lorentz factor. In this picture, the delay time is about
∼ r±/cΓ 2

b ∼ 1 s in Eqs. (10) and (14), as observed.
The (collisionless) internal shocks continue beyond the photosphere within e±

outflows after the radiation decoupling, and could produce the observed extra GeV
component, possibly up to TeV, by synchrotron or inverse Compton emission.19),49)

The luminosity can be appreciable up to ∼ f±L.
• Early afterglow – The prompt emission is radiatively efficient 1−f± � 50%, and the
remaining kinetic energy of e± powers the early afterglow. The e± energy fraction f±
can be read from the prompt spectrum above the pair creation threshold ∼ Γ±mec

2 ∼
GeV. Thus, we predict a correlation between the early afterglow and the GeV-TeV
prompt emission: a steep decay of X-ray afterglow9),10) accompanies a low GeV-
TeV energy fraction. Further Fermi-Swift co-observations would be helpful. The
shallow X-ray phase9),10) could be produced by the (matter-dominated) fast cocoon
with Γ ∼ 10–30 that receives energy via photons from e±-annihilated jets [below
Eq. (17)]. The reverse shock emission would be soft because of the increased number
of emitting leptons.
• Cosmic Rays – The RDISs would produce few ultra high-energy cosmic rays and
neutrinos,50) consistent with the IceCube upper limit.51) The fast cocoon energized
by photons from e±-annihilated jets might contribute to these emissions.
• Central engine – The RDIS model requires less fine tuning of baryon load than
previously thought, expanding the parameter space even to the original pure-leptonic
model.3),4) The baryon load could be prevented by the dipole field near a black hole,
which may be rather necessary for the Blandford-Znajek effect to launch a relativistic
jet despite nonaxisymmetric turbulence.52) The ejected Poynting-dominated jet is
strongly confined in the star or surrounding matter, possibly dissipating into the
radiation-dominated jet via turbulence.
• Unresolved problems – We leave the low-energy spectral index1),2) νFν ∝ ν and
the Amati and Yonetoku spectral relations11),12) for future discussion. Since ΓT ′ =
const, the peak energy reflects the initial fireball temperature.
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