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It is shown that gauge noncovariance character of the condition usually imposed on 
the divergence of a non-Abelian gauge field is inherited by S-matrix elements. The method 
for proving gauge. invariance of quantum electrodynamics is generalized to non-Abelian local 
gauge transformation groups. That is, the transformation group represented in the Heisenberg 
picture is translated into a group operating on operators and state vectors in the interaction 
picture, and then invariance of the Tomonaga-Schwir\.ger equation under the reduced group is 
examined. A .new criterion is also proposed to discuss whether the self-interaction of a 
non-Abelian gauge field can. generate a non-vanishing self-energy. 

§ 1. Introduction and summary 

Recently the domain of application of non-Abelian gauge theory1l has been 
widened to a large extent by introducing the Higgs mechanism;>~5> and the theory 
has made considerable progress in its technical side.al,n However, two very primi 
tive questions immanent in quantum theory of non-Abelian gauge· fields have ·not 
been solved, and are deliberately glossed over in some. technical approaches. The 
first questi~:m is whether the theory is really invariant under non-Abelian local 
gauge transformation group. Its origin is in the fact that the divergence of a 
gauge field is never a covariant expression. Provided the expression is regarded 
covariant extraordinarily, the gauge function becomes a functional of the gauge 
field. Moreover even in such a standpoint it is very difficult to insist that the 
theory is covariant under the group, ·as was discussed by one. of the authors in 
the radiation gauge formalism.8l Mathematically the covariant derivative of an 
arbitrary function, which is technically regarded as transforming as a general 
field, may be considered as an arbitrary function, but physically it is very hard 
for us to accept such a v1ew. The second problem is whether the self-interaction 
of a non-Abelian gauge field can generate a non-vanishing self-energy. There is 
no definite argument on this problem yet in our opinion. This is because it is 
very likely that invariance of gauge theories is not guaranteed by their invariance 
under non-Abelian local gauge transformation groups in the mathematical sense, 
and because in such systems space-time delta functions with vanishing arguments 
which are not dimensionless appear in quantum field theory.9l Here we should 
make notice that there are some attempts to introduce a mass term without violating 
local gauge invariance.10l.11l But in this article we are not discussing such a pos
sibility. 
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Quantum Theory of Non-Abelian Gauge Fields 879 

There are several kinds of approaches to formulate S-matrix theory of non
Abelian gauge fields. 12>-t6> It seems rather questionable, however, whether the 
arguments on covariance of S-matrix elements under non-Abelian local gauge trans
formation groups presented in some articles are enough, and their arguments are 
not so transparent as in quantum electrodynamics. The main purpose of the 
present article is to examine the first question explained above through the most 
elementary method used in quantum electrodynamics.m.18l That is, we shall trans

late a non-Abelian local gauge transformation group represented in the Heisenberg 
picture into a group operating on operators and state vectors in the interaction 

picture through the subsidiary condition in the latter picture, and then examine 
covariance of the Tomonaga-Schwinger equation under the reduced group. Our 
result shows that the Tomonaga-Schwinger equation is not invariant under the 

group in contrast to quantum electrodynamics. Therefore, gauge noncoyariance 
character of the condition usually imposed on the divergence of a non-Abelian 
gauge field is inherited by S-matrix elements. In the next section we shall settle 

operator relations in the Heisenberg picture for an isolated non-Abelian gauge field 
and a corresponding set of free vector fields. The operator Lagrange multiplier 
formalism19>.s> is taken to describe the gauge fixing term in the lagrangian density 

operator. Some people are considering formalisms in which the operator Lagrange 
multiplier is regarded as an independent field operator. 16>" 20> However, we shall 

not take such a standpoint as will be explained at the end of § 2. The argument 
in the Fermi gauge proceeds in a way almost parallel to the classical work by 

Tomonagam and Schwinger.18> The hamiltonian operator in the interaction picture 
is fixed in § 3.1, and then the subsidiary condition in the Heisenberg picture is 
translated into the one in the interaction picture (§ 3.2). In § 4.1 the reduced 

group in the interaction picture is determined and covariance of the Tomonaga
Schwinger equation under the group is examined. The hamiltonian operator in the 

interaction picture has a term which depends on a time-like unit normal vector. 
But it will be shown in § 4.2 that the normal dependent term is completely cancelled 
out in S-matrix if the subsidiary condition is put aside, as in the case of the 

pseudovector coupling of pion with nucleon.w The Landau gauge formalism is 
controversial.20> The trouble is in generalization of canonical commutation relations 

of a free vector field to a relativistic form. In § 2.2 we shall take the standpoint 
that the exact correspondence between canonical commutation relations in the Hei
senberg picture and the ones in the interaction picture (the ones for the free 

vector fields) must be taken into account seriously. Then the present problem can 
be discussed through both the Fermi and the Landau gauge formalisms in a 
unified way. In the interaction picture the characteristic features of these formal

isms appear only in the operator relations for field operators. In other words 
the Tomonaga-Schwinger equation and the subsidiary condition have the same forms 
in these formalisms, as will be seen in § 3. .Sometimes in the Landau gauge 
formalism canonical commutation relations of free vector fields are not respected. 
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880 T. Okabayashi and Y. Yoshihuku 

Then we are considering Heisenberg operators which cannot be connected with 
operators in the interaction picture. It is very hard to get a physical image to 
such an extraordinary situation. 

The second problem explained at the beginning is briefly discussed in § 5. 
The problem is presented as a question whether we can quantize an apparently 
massless non-Abelian gauge field as a, massive vector field, :which has three in
dependent space-time components, starting with a gauge invariant energy-momen
tum tensor density operator. There the noncovariant condition on the divergence 
of a gauge field can be renounced. 

§ 2. Operator relations in the Heisenberg picture 

2.1 In order to discuss the Landau and the Fermi gauge formalisms of quantum 
theory of a non-Abelian gauge field c/Jka(x) inclusivel'y,. we start with the lagran
gian density operator 

(2·1) 

This is a slight modification of ...f(x) given by Schwinger m the Landau gauge 
formalism. 19'' 3' Operator Gk! =a[k¢!J-if't¢k'· ¢1 is the covariant derivative of the 
gauge field, and operator G is defined by the Euler equations 

(2·2a and b) 

with flk = ak- if' t¢i<'. Parameter a is 0 and 1 for the Landau and the Fermi gauge, 
respectively. Hermitian matrix t"' is defined as (t"')p7 = -caPr through completely 
anti-symmetric structure constants CaPn and symbol 'tA' means t"' Aa. ·Internal sym:. 
metry indices will be omitted for economy of space, unless any confusion is expected. 
Moreover we have introduced notations A[kB!J = AT<B!- A 1Bk and A.B = (AB + 
BA) /2, where the matrix element with respect to internal symmetry indices should 
be taken before the symmetrization procedure. Our metric in··· Minkowski space 
is such that x 0 = -x0 = t and xa =xa. Letters a, b, c, etc., are used for space indi
ces, and indices k, l, m, etc., run from 0 to 3. Finally, volume and surface 
elements are expressed as d 4x= -dxkd(Jk and drJk=nkd(J, respectively, whe;re nk 
(n°>0) is a time-like unit normal vector to the surface element. 

Non-vanishing canonical commutation relations are 

(2 · 3a) 

and 

(2·3b) 

1 and all the other commutators among cpk, Gk! and G vanish,. especially [c/Jka(x), 
¢1p(y)] =0 for x 0 =y0• It should be noticed that operator relations (2•2) are 
consistent with these commutation relations, and that we have [Ga(x) ,a0Gp(y)] =0 
and [a0Ga(x), a0Gp(Y)] = -f'ta0G'aiJ(x-y). ·Local gauge transformation 
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Quantum Theory of Non:Abelian Gauge Fields 881 

!J'=exp(iG6,)!Jexp(-iG8,) is generated by G6,=-J d(Jkj8 ,_~< with 

ja-..k= -r'{G.(P'~<oJ...)-iJJ...(Fz.Gk 1 ) +oz(oJ...G~< 1 )}. (2·4) 

Hence we have oql = f-'r~<oJ..., oG~<1 = i 'toJ...'Gk1 and oG = i 'toJ...'G. Operator _f (x) 

is not invariant under the local gauge transformation unless oJ... is an operator 

satisfying J7 ko~<oJ... = 0. In an earlier article8J we discussed the symmetry character in 

the radiation gauge formalism usi~g operator gauge functions oJ.... Even in that 

case, however, the symmetry was proved to be violated iri the Heisenberg picture. 

Tl;lis time we do not impose . the in variance of _[ (x), and oJ... is a numerical gauge 

function. Then our .system is a self-interacting linear field, and we have 

(2·5) 

Operator G6, satisfies the relation -i[G8,,, G6,,] =G8, with oJ...= -i(oJ...'toJ..."), and 

gauge invariance of physical states can be translated into a subsidiary condition 

on state vectors 

G<+l(x)(J)=O for all space-time points, (2· 6) *l 

as was proposed by Schwinger.19J For operator G an· equation P'k.okG=O comes 

out from Eq. (2 · 2a), but we do not regard it as a field operator independent 

. from q} and Gk1• Finally displacement operators in Minkowski space are P 1 

= J d(JiPJkz with 

@fz = -G~<"'.Gzm + (J7 m·Gk"') .¢z +if}.ozG 

+g~<1 {tG"'nGmn- ((pm.omG+taa)}. (2·7) 

2.2. Before constructing .our interaction picture, we should set up relativistic com

mutation relations for free field bka (x), which corresponds to the field ¢ka (x) 

described in § 2.1. Lagrangian density operator _f1(x), energy-momentum tensor 

density operator @1·\, which will be used in displacement operators in Minkowski 

space P11 =J d(Jk(PY·\, the- Euler equations and non-vanishing canonical commutation 

relations among .. operators bk> Fk1 =iJCkblJ and F, which is defined by Eqs. (2•10a 

and b) , are given as follows: 

and 

_f1 (x) =-tFk1Fw-,-F.(okbk-taF), 

@1'k1 (x) = -Fkm.Fzm+omFk"'.bz+bk.ozF 

+g\{tF"'nFmn- (b"'.omF+taF2)}, 

o1Fk1=okF and okbk=aF, 

[baa(x), F 0bp(y)] = -iOapgabo(x-y) 

(2·9) 

(2·10a and b) 

(2·11a) 

*l The positive (negative) frequency part of any operator x(x) can be defined as x<xl (x) 

= (21ri)-'J ~x(x~r:n)dr:/r, where the contour C is extended from -co to +co, deformed below the 

singularity at r:=O."l 
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882 T. Okabayashi .and Y. Yoshihuku .. 

[b0a(x), Fs(Y)] = -ifJal1(x-y). (2·11h) 
Equations (2 ·lOa and b) arE' equivalent to 

Ob~c= (a-l)a~:F and OF=O. (2•12a and b) 
The initial value problem for Eq. (2·12b) can be solved to give 

F(x) = -.J dri'(y) {D(x-y)aiF(y) +v!D(x-y)F(y)} (2·13) 

in terms of function D(x), which is defined by OD(x) ===iO, D( -x) = -D(x) and 
aD(x, 0) = -CJ(x) with a=n"a~c. Then equal-time commutation relations ofF with 
F, b" and F"1 can be generalized to relativistic forms 

[Fa(.X), Fs(Y)] =0, 

[Fa(x), b~c8 (y)]=i'fJa8a~cD(x-y) 
and 

(2·14) 

(2·15a) 

(2·15b) 
Relativistic commutation relations of b~c with b1 and F"1 can be expressed as 

and 

with a=l-a. 
relations (2 ·10). 

[F!ma(x), h~cs(Y)] o::. iCJasfJk[mOiJD(x-y) 

It is easy to check consistency of Eq. (2·16) 
Function fD~c1(x) is defined by equations 

DfD~c1 (x) =a~ca!D(x), fD~c1 (x) =- fD1~c ( -x), 

fD~c1 (x, 0) =0 and a"fD~c1 (x) =a1D(x), 

(2·16a) 

(2·16b) 

with operator 

(2·17) 
and has properties oa fDao (x, 0) = af!J;.1 (x, 0) = 0. The third condition of Eq. (2 ·17) 
is necessary to reproduce canonical commutation relation [~a(x), b18 (y)] =0 for 
x 0 = y 0• In order to settle the interaction picture which is connected with the 
Heisenberg picture on some space-like surface, exact correspondence of canonical 
commutation relations in the two picture is essential. It is already known23> that 
Eqs. (2 ·17) can be satisfied by function 

(2·18a) 
with 

(2·18b) 

where first the p 0-integration should be performed and the meaning of (J' (p2) is 

CJ' (p2) =lim(a/atf)CJ(p2 + ti). (4·19) 
pl-t-0 

When we consider free field b~c in the Heisenberg pictu~e, we should impose 
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a subsidiary condition 

Fe+> (x)@=O for all space-time points 

on physical states as in § 2.1. Then Eq. (2 ·12a) means 

883 

(2·20) 

(2·21) 

Condition (2 • 20), however, will be modified in § 3.2, where bk is regarded as an 

operator in the interaction picture. The reason why we do not regard operator 

F (and then operator G) as an independent field is threefold: First commutation 

relation (2 ·14) can be hardly regarded as the one for a free field satisfying the 

Klein-Gordon equation. Secondly, it is very dangerous to read a particle inter

pretation off only through wave equations without referring to the structure of 

lagrangian density operator.24l (If we add the kinetic energy part for F to . .f.'(x) 

when a>O, fleld F should be represented. as an operator in a Hilbert space with 

negative metric.) Thirdly, the zeroth component of Eq. (2 ·lOa) is a constraint. 

That is, a°F is completely determined by F oa. Our standpoint is to consider F 
as an operator defined by Eqs. (2 ·10). 

For the free field we have only a global symmetry and current ?a= -i('tb1'. 

Fk1+'tbk'.F)a is conserved. For the first term Ska= -i('tb{.Fk1)a we have akska 

=i('tb{.a1F )a and ?.bk =s~<.bk. 

§ 3. Interaction picture 

3.1. Along with the line explained in an earlier article,25> we shall settle an 

interaction picture in which we impo~e relation bk(s) =¢k(s) at all points s on a 

standard space-like surface r,. (In the following rx means a space-like surface 

passing through point x, and we shall consider only parallel displacement of space

like flat surfaces rx, for simplicity.) Then we have 

bk (x) = V( rx, r,) ¢~< (x) V( rx, r,) - 1 (3·1) 

with V(rx,r,)=U1(rx,r.)U(rx,r.)-\ where U1 (r:r:, r,)=exp(i(rx-r.)P') with rx= 
-nkxk and P1 = -nkP'k and U(rx, r,) =exp(i(rx-r.)P) with P= -nkPk. Operator 

V( rx, r,) satisfies equations 

i-0-V(rx, r,) =H(rz) V(rz, r,) and V(r., r,) = 1 
()~ ·' 

(3·2) 

with hamiltonian H(rz) = U1 (rx, r,) (P-P') U1 (rx, r,) - 1• Defining state vectors by 

'IJ"(rx) = V(rz, r,}'IJ"(r,), we get the Tomonaga-Schwinger equation 

i__L'IJ" (rz) =H(rz) 'IJ" (rz). 
drz 

(3·3) 

Then we identify 'IJ" ( r,) with state vectors (Jj in the Heisenberg picture-. It IS 

easy to derive relations 
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Fkl (x) = V(rx, r,) Gkl (x) V(rx, r,) -I 

+if('tbk'·bl) (x) +n[kBlJ(x), 

okbk(x) = V(rx, r,)ok¢k(x)"V(r,, r,) -I+ (nB) (x) 

okF(x) = V(rx, r.)akG(x) V(r,, r,) -l 

(3 ·4a) 

(3·4b) 

+if{'tbl'. (Fkl-if'tbk'·bl-n[kB!J-oA +n!Bk)} (x) +ol (n[kBz1) (x) 

+if{'tb1/. (aF- (nB))} (.X) +inl[H(r,),(Fkz-n[kBlJ) (x)], (3·4c) 
where Bk(x) =i[H(r,), bk(x)] and, (nB) =nkBk. Equation (3·4c) is attained by 
using Eqs. (2·10) and (2·2a), and can be used even if a~O. When a=FO we can 
get simple relations 

and 

aF(x) =aV(r ... , r,)G(x) V(rx, r.) -I+ (nB) (x) 

aokF(x) =aV(rx, r,)akG(x)V(r.,;, r,)- 1 +8k(nB) (x) 

+ink[H(r,), (aF- (nB)) (x)] 

(3 · 5a) 

(3·5b) 

with the help of Eqs. (2 ·lOb) and (2 · 2b). However, in order to proceed in
clusively with our discussion as far as possible, we shall not use Eqs. (3 · 5b) to 
fix operators Bk(x) and H(r,). 

To determine operators Bk (x) and H( -r ... ) it is enough for us to fix them on 
r,. Operator H(r,) can be expressed as H(-r,) =H'1l (-r,) +H'"l (-r,) +H'8l (-r,) with 

and 

H<l) (-r.) = r dfJ(nkn1 +tgk1) { -2Pm. Cn[!Bm]+if'tbz'. bm) J,, 
+ n[kBm1• (n[zBm1 + 2if 'tbz'. bm) -P ('tbk! .bm). ('tbz' .bm)} ~ 

H<2l (-r,) = l.dfJ (2nkn 1 + gk1) {if(Fkm- if'tbk'. bm- n[kBmJ- ambk + nm Bk). ('tbz'.bm) 

+bz.(inm[H(r,), (Fkm_n[kBmJ) (s)] +fYm(n[kB?"-1))} 

H<3l(-r.) =a i.dfJ(aF-t(nB)).(nB), (3·6) 

in terms of operators in the interaction picture. Here it should be noticed that 
the a-dependent term in Eq. (3·4c) does not appear in H'"l (-r,) since (2nkn1 

+gk1) (b1.'tbk').(aF- (nB)) =0. Comparing Eq. (2:3a) with Eq. (2·11a) on r., 
we can presume that B 1 (s) commutes with bk(s), and then we can derive an 
equation for Bk (s) 
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Quantum Theory of Non-Abelian Gauge Fields 885 

+ (gm!+n~nn!) [oBma(s'), bkp(s)]} 

= (1-e)nk(nB),.(s) -2if(•t(nb)'.bk),.(s) (3·7) 

through the definition of Bka(s), where (nb) =nkbk and e=1 and 0 for a=f=O and 

a=O, respective!~. It is not difficult to see Eq. (3·7) has a solution 

(3·8) 

which has an important property (nB) = 0. Therefore, the e-term in Eq. (3 · 7) 

is effectively zero. The term H<3' (r-.) depends on a, and Eq. (3 · 5a) has been 

used to get the form (3 · 6). However, neither this term survive. Thus Bk (s) 

and H(r:,) do not depend explicitly on a. It is easy to check that solution (3·8) 

correctly connects equations of motion and canonical commutation relations in 

the Heisenberg and the .interaction pictures with each other. 

Substituting solution (3·8) into Eq. (3·6), we can express H(r:,) in the 

form H(r:,) =X(r:,) + [H(r:,), Y(r:,)] with Y(r:) =if<d6! (bk.F k!)and X(r:) =iff<d6· 

{A1 +3A2-if(3/2) CtAa+A4)r, where A1 = c·tbk'·b!).Fk!' A2= Ct(nb)'.b!).(nk· 
Fk1), Aa= (•tbk'·b!).(•tbk'.b1) and A4= Ct(nb)'.bk).(•t(nb)'.bk). Equation (3·6) 

can be solved by assuming a form IJ(r:) =iff<d6Ja1A1+a2A2+if(aaAa+a4A4)}, 
because we h~ve commutation relations [Y(r:,), A 1 (s)J= -3(A1 +2A2) (s), [Y(r:,), 

A 2 (s)] =0, [Y(r:,), A 3 (s)] = -4(Aa+A4) (s) and [Y(r:,), A4(s)] = -2A4(s). The 

solution is a 1=-1/2,a2 =0;a3 =1/4 and a4=1/2, and then 

- H(r:) = -tif l d6{Fk1• Ctbk'·b!) -if(nkn! +tgk1) Ctb/.bm). Ctbk'.bm)} (3·9) 

for any space-like surface r:. After having fixed the hamiltonian operator, we can 

get a relation between F(x) and G(x), although for the case with a=O F(x) 

and G(x) themselves are not explicitly determined through the Euler equations. 

First by Eq. (3 · 4c)- we have 

ok]?(x) = V(r: ... , r:,)BkG(x) V(r: ... , r:,) - 1 - ifnkn! ('tbm'.Ftm). (3 ·10) 

and then o1kF(x) = V(r: ... , r:,) 8\G(x) V(r: ... , r:,) -1, where o1k = (gk 1 +nkn!)o!. This re

lation suggests us a more fundamental relation 

F(x)= V(r:x, r:,)G(x) V(r:x, r:,) - 1 (3·11) 

and it is easy to see that Eq. (3 ·11) correctly reproduces Eq. (3 ·10). When 

a=f=O, the last relation is simply a. result of property (nB) =0. 

Finally it should be emphasized that operators Bk(x) and H(r:x) do not depend 

on parameter a. This is due to the third condition in Eq. (2 ·17), especially due 

to comm~tability of b0 (x) with ba(Y) on a space-like surface. 

3.2. First the subsidiary condition in the Heisenberg picture must. be translated 

into the one on state vectors in the interaction picture. When point x is on 

surface r:x, Eq. (2·6) simply means F<+>(x)'IJf(r:x) =0. This is, however, not enough 

since condition (2·6) also requires okG<+'(x)ID=O. This requirement can be 
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886 T. Okabayashi and Y. Yoshihuku 

expressed as 

!J<+> (x, r) ¥'" (r) =0 for all space-time points x, 

where Q(x, r) =Q1(x) +!J2 (x, r) with 

!J1 (x) =F(x) and !J2 (x, r) = -ff<d6k(y)D(x-y)sk(y). 

(3 ·12) 

(3 ·13) 

Operator sk was defined in § 2.2. The argument to get generalized form (3 ·12), 
where point x is generally not on surface r, is completely parallel to the one in 
quantum electrodynamics.lB) The key point is Eq. (2 ·13). It is not so difficult 
to check consistency among condition (3 ·12) for all space-time points 

(3·14) 

for any pair of space-time points x and y and consistency between Eqs. (3 ·12) and 
(3·3) 

{i :r ,gc+> (x, r)- [H(r), ,gc+> (x, r)] }P"(r) =0. (3 ·15) 

Moreover property 

(3 ·16) 
will also be used later. Here it should be noticed that operand ¥'" (r) is necessary 
in Eqs. (3 ·15) and (3 ·16) in contrast to the case of quantum electrodynamics. 
It is because we have-

[Q(x, r)a,Q(y, r)p] = -fV(r, r,) idG(z)D(x-z)'toG(z)'apV(r, ro)-1 (3·17) 

and 

i_!i_Q(x, r) I.~A<= [H(r), Q(x, r)] 
dr 

-fV(r, r.) idG(y)D(x-y) ('t¢l'.okG) (y) V(r, r.)-1 • (3·18a) 

In Eq. (3 ·18a) xAr means that point x is not on surface r. When point x is 
on surface r the left-hand side must be supplemented with another term 

_!i_Q1 (x) -f f dGk(y)oD(x-y)sk(y) = V(r, r,)oG(x) V(r, r,)-1 , (3·18b) dr J 
smce operator d/dr must be operated also on x and then d/dr=o. 

Finally we make a notice that the first term of H(r) can be expressed as 
(1/2)ff,dG?.bk in terms of the conserving current ? but the operator sk in Eq. · 
(3 ·13) cannot be replaced by Jk· 

§ 4. Local gauge transformation in interaction picture and Matthews' 
theorem 

4.1. First we consider the physical meaning of subsidiary condition (3 ·12) in 
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the severest form: Any observable quantities defined on surface r:, x(r:), should 
satisfy relations 

[x(r:),.!J(x,r:)]=O and [x(r:),a".!J(x,r:)]=O. (4·1) 

(Owing to property (3 ·16) we need not consider higher derivatives of Q (x, r:) .) 
Equation (4·1) can be unified. into the form 

[x c r:) , r c r:) J = o (4·2) 

by introducing a generating operator · 

with an arbitrary numerical function ..l.a(x). In Eq. (4·3) operator a".!J(x, r:) 
should be understood as a sum of two terms 

(4·4) 

Now any observable quantities are functional of operators bk> F "1 and F. Therefore, 
it is interesting to examine transformation laws x' (x) =exp(iT (r:,) )x (x) exp( -:-iT· 
( r:,)) of these operators. The result is 

and 

i[T(r:,), b"(x)] =.T1{0"..l.-if(g"1 +n"n1)'tb1'..l.} (x), 

i[T ( r:,), F"1 (x)] = i't..l.'F"1 (x) 

- i {'tb[1'a"J + n[" ('tb1J' ..l.- 't (nb )'a1J..l.)} (x) 

i[T(r::.-), F(x)] =0. 

(4·5a) 

(4·5b) 

(4·5c) 

It is interesting to see that operator G"1=F"1-if'tb"'.b1-n["B1J has a very 
simple property 

(4·6) 

The asymmetry with respect to the time-like and the space-like components of 
b" in Eq. ( 4 · 5a) and the too simple property of Eq. ( 4 · 5c) come from the fact that 
in .!J2 (x, r:) operator s" appears instead of conserving current?. In other words, 
provided we consider a modified operator T(r:). which is obtained from T(r:) by 
the substitution of s" with ?, we have commutation relations 

and 

i[T(r:,), b"(x)] =.T1 (r'"..l.) (x), 

i[T(r:,), Fk 1(x)] =i[T(r:,), Fk 1(x)], 

i[(T(r:,), ,F(x)] =i('t..l.'F) (x) 

(4·7) 
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Now, after the usual attitude in quantum electrodynamics, we shall alter con
dition ( 4 · 2) into in variance of matrix elements of observables. That is, we divide 
our transformation rule 'into two parts; 

and 

(4·8) . 

where 

and 

T,('r) =J1 ldO"k(x) {GkAa(x).Qt(x, r)a-Aa(x)ok.Qi(x, 'r)a}. (i=1, 2) (4·l0) 

In Eq. (4·10) !J1 (x, 'r) should be understood as !J1 (x). Transformation l11w 
(4·8) means 

(4·11) 

In order that wave equations and canonical commutation relations are invariant 
under this transformation, we must restrict gauge function A by condition 

(4·12) 

Finally we should examine in variance of Eq. (3 · 3) under transformation (4 · 8). 
Unfortunately, this equation is proved not to be invariant. The transformed equa
tion is 

(4·13) 

and violation is already observed in the first order of X(x): 

_ _!{_G('r) +i[T(r), H(r)] ==' f dO"(x) {- Xoksk-if((ns) .'t(nb)'X) 
dr . J . . 

(4·14) 

4.2. The Tomonaga-Schwinger equation (3·3), can be integrated to give S-matrix 

S=Texp[ -i sd4x.9C(x) J 
with .9C(x) =.9C1(x) +3C.(x) +A(x;n)·, where 

$C1(x) = -i.Jakb1.('tbk'.M, .9C.(x) =t(i.f) 2('tbk'.b1) ('tbk'.b1) 

and 

(4 ·15) 

(4·16) 
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The structure of our hamiltonian is very similar to the pseudovector coupling of 
pion with nucleon, and n-dependent term A(x; n) can be eliminated by introducing 
the T *-product notation 

In other words Matthews' theorem does hold for our system. For instance, 
we have T(.9Ci(x), .9C1 (y)) =H.9Ci(x), .1C1 (y)} +e(x-y)/2[.9Ci(x), .9CJ(y)], and 
c(x-y) [akbza(x),bmp(y)] =a·\{e(x""""y) [bza(x), bmp(y)J} and e(x-y) [akbza(x), 
Ombnp(Y)] =a~k(JY m {e(x-y) [bza(x), bm!p(y) ]} - 2ig0kg0mgzn1JaiJ4(x-y). Hence we 
ha.ve T(.9Ct (x), .9C2(y)) =T* (.9Ct(x), .9C2(Y)) and T(.9Ct (x), .9Ct (y)) =T* (.9C1 (x), 
.9Ct(Y)) -2W(x-y)A(x; n). · The factor -2i should be multiplied by another 
factor - i/2 coming from. the expansion of Eq. ( 4 ·15), and the first order contribu
tion from A(x; n) is cancelled .out.· Such an analysis can be extended to all 
orders. 

The absence of vector n in Eq .. (4·17), however, does not immediately mean 
that Scmatri:X: elements are n-independent. This is because subsidiary condition 
(3 ·12); which depends on vector n, is. not taken into account in integrating Eq. 
(3 · 3) to get Eq. ( 4 ·15). The most fundamental way to deal with the subsidiary 
condition is to solve Eq. (3 · 3) after shifting to the radiation gauge. For instance, 
in the Fermi gauge formalism it is enough for us to decompose the gauge field 
operator into bk =- nkaA + 8\A'+ !Bk and to eliminate variables A and A' (!B k) 
from Eq. (3 · 3) (from Eq. (3 ·12)) through a unitary transformation. (Operators 
A, A' and 9Jk are defined by properties nk!Bk=ak!Bk=D!Bk=O and DA=DA'=O). 
This transformation is not so simple in the present case as in quantum electro
dynamics, since operator sk is a function of the gauge field itself and is not con
served although we have [(ns)a(x), (ns)p(y)] = -IJ(x:-y)'t(ns)'ap when x 0 =y0• 

(The radiation gauge formalism was already discussed in the most compact form 
by starting with ·the Heisenberg picture described in the gauge.26>.s>) When S-

. matrix elements in the radiation gauge are translated back into the Landau or the 
Fermi gauge description, it is expected that the ghost in the path-integral formal
isni14> will come m. 

§ 5. Is it possible to build up a massive quanta formalism of 
apparently massless non-Abelian gauge fields ? 

It is a generally accepted opinion that non-Abelian gauge fields cannot be 
massive since there is no parameter with dimension of length in the gauge invariant 
lagrangian density. However, this argument is not enough. First the self-interac
tion of ·a non-Abelian gauge field is non-linear, and then the interaction itself 
and higher order effects essentially involve delta functions coming from the order 
of operators, which is not dimensionless. (See the argument .on quantum field 
theory of non-linear realization of a group on its sub-group.9>) Secondly, it 
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890 T. Okabayashi and Y. Yoshihuku 

is very questionable that quantum theory of non-Abelian gauge field is really 
invariant, as was discussed in the preceding section and in an earlier article.8> 

Thus, as one of reliable criterions, we may ask whether we can quantize an 
apparently massless non-Abelian gauge field as a . massive vector field which 
has three independent space-time components starting with gauge invariant energy
momentum tensor density operator. Tile classical constraint 17 a Goa= 0 diminishes 
the number of independent components of vectqr field by one; and then we 
can thraw additional condition fh¢l =0, which is an origin of the trouble in 
discussing covariance of non-Abelian gauge field theory. Here we should m~ke 
notice that we shall evade the canonical quantization method and use the method 
based on characteristics of displacement operators in Minkowski space.2n.s> This 
is because we are discussing the possibility itself of the quantization of the kind 
explained above. 

Along the line described above, first we consider the most primitive energy
momentum tensor density operator 

(5·1) 

where parameter {3 should be determined through condition i8o¢a =[ P0, <Pal This 
operator is defined uniquely by the conditions that T\ is a second-rank Lorentz 
tensor in the sense of classical field theory, and that it is invariant under our 
local gauge transformation group in the mathematical sense. Moreover the operator 
must be hermitian, and involve covariant derivative Gu at most in bilinear forms. 
Displacement operators Pk =- f dxT0k can be expressed as 

and 

Po= s dx{ (1- i-{3) ( (17 b•GOb). <Po+ cob. Oo¢b +if t[[G0ba, ¢o,e]' 't¢b' a,8]) - tf3 (Gaby}. 

(5·2) 

Requirements i8a¢b= [Pa, ¢b] and i8aG0b= [Pa, G0b] give pairs of two commutation 
relations 

and 

[¢ba(x), oap(y)] = -ioapgbao(x-y), 

[<Pba(x), Jdy((l7a.G0a).¢c)(y)]=o 

[Gob a(x)' oap(y)] =0 

(5 · 3a) 

(5·3b) 

(5 · 4a) 

(5·4b) 

respectively. Equations (5·3b) and (5·4b) mean that operator fdy((l7a0a).¢c) is 
a c-number since we are considering the set of op~rators rPa and G0a to be complete. 
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Quantum Theory of Non-Abelian Gauge Fields 

Moreover this fact implies that relation 

P'aGoa=O 

891 

(5·5) 

should hold as. an operator relation. This is because operator ¢cp in the above 
expression is arbitrary and we have no c-number with an internal symmetry index. 

, (In addition to this, it is easy to see fh(P'aG0a) =0.) Now it is self-evident that 
operator relation (5·5) is inconsistent with Eq. (5·3a) and then expression (5·1) 
does not fit in with our problem. This kind of trouble does not occur in the radi
ation gauge formalism. 8' In deriving Eqs. (5 · 3) and (5 · 4), equal-time commutation 
relation [ ¢aa (x), ¢bP (y) J = 0 is enough. Provided we regard ¢0 as an independent 
component, ¢0 should commute also with ¢" and Goa and then we have oa¢0 =0. 
It is interesting to examine conditions which must be satisfied by the Lorentz 
covariant quantum field theories of this kind, 

(5·6) 

and 

where 'C'ab should have properties 'C'ab(x,y)=-rba(y,x) and fdxrab(x,y)=fdx· 
(xarbc(x, y) -xb'C'ac(x, y)) =0. In the present case Eq. (5 · 6) does hold and we 
have 'C'ab(x,y) =io(x-y) Cf7c.G0c).Gab· Therefore, Eq. (5·5) must be an operator 
relation in order that 'C'ab should have the required properties. 

One may imagine that the trouble explained above can be resolved by modify
ing the expression of T 0" into T0" = T" + (f7 a· Ga) .¢" at the expense of covariance 
of T0" with respect to our 'group, and by introducing a subsidiary condition (P'a. 
G0a) c+'(J)=O. However, even this alternative does not give a consistent massive 
quanta formalism. In order to realize the relation io0¢a = [F0 , ¢a], we must assume 
[¢o(x), ¢a(Y)] =0 and then we have ioa¢o(x) =[Fa, ¢o(x)] =fdy[¢o(x), G0b"(y)]. 
oa¢ba(y). It would be impossible that the last integral reproduces the left-hand side. 
Finally, this time we have no trouble about Eq. (5·7) since 'C'ab=O, but we cannot 
have satisfactory result for relation (5·6). Operator @i" given in Eq. (2·7) 1s a 
modification of T 1" which gives a self-consistent scheme and will be unique. 
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Note added: 

After completion of this work, Mr. K. Shizuya called our attention to the article written 
by T, Goto and R. Utiyama [Prog: Theor. Phys. Suppl. Nos. 37 & 38 (1966), 323], where 
the interaction picture for the non-Abelian gauge field theory was studied in the Fermi gauge. 
The discussion presented here is more exhaustive and . critical than the earlier study. 
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