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Development of the gravothermal catastrophe is followed numerically for self-gravitating
gas system enclosed by an adiabatic wall, which is isothermal in the initial state. Itisfound
that the final fate of the catastrophe is in two ways depending on the initial perturbations.
When the initial perturbation produces a temperature distribution decreasing outward, the
contraction proceeds in the central region and the central density increases unlimitedly, as
the heat flows outward. When the initial temperature distribution is increasing outward, on
the other hand, the central region expands as the heat flows into the central region. Then
the density contrast is reduced and finally the system reaches another isothermal configuration
with the same energy but with a lower density contrast and a higher entropy. This final
configuration is gravothermally stable and may be called a thermal system.

In the former case of the unlimited contraction, the final density profile is determined
essentially by the density and temperature dependence of the heat conductivity. In the case
of a system under the force of the inverse square law, the final density distribution is well
approximated by a power law so that the mass contained in the condensed core is relatively
small. A possibility of formation of a black hole in stellar systems is also discussed.

§ 1. Introduction

We shall discuss self-gravitating gas systems contained within a spherical
adiabatic wall. When the temperature distribution is isothermal, the system is in
thermal equilibrium in the sense that the variation of the total entropy of the
system vanishes, ie., 05S=0. However, this system is gravothermally unstable,
ie., 0°5>0, if the density contrast between the central density o, and the density
just inside the wall p, is greater than a certain critical value, i.e., D=0,/0:>> Dyt
=709."~? This instability is called the gravothermal catastrophe.

The gravothermal catastrophe develops as follows: As a result of fluctuation,
heat is transported from an inner shell to an outer shell for example. The pres-
sure in the inner shell decreases and this shell suffers from contraction because the
system is self-gravitating. The increase of temperature by the adiabatic compres-
sion overcomes the decrease of temperature by the initial transport of heat. Then,
the temperature gradient appears which helps transporting heat further. Because
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of this instability, the central region of the system continues to contract as heat
is transported outwards.

As far as the gas system is concerned, the existence of the gravothermal
catastrophe has now been clearly shown within the scope of the linearized theo-
ries.”~ In particular, its physical significance was discussed in great detail by
Hachisu and Sugimoto,” which will be referred to as HS. In the present paper,
we shall extend such studies into the non-linear regime of finite amplitude and
seek what is the final fate of the catastrophe.

Though the gas system may behave differently from almost collision free stellar
system, both of them may have common characteristics as a self-gravitating system.
Since the gas system is easy to handle as compared with the stellar system, it will
help clear understanding of physics involved in the catastrophe. Because the gra-
vothermal catastrophe of finite amplitude is closely related with the gravitational
contraction of an individual star, it will be treated in the same framework as the
theory of stellar structure, for which we have already much better understanding.

In the next section we compute numerically the gravothermal catastrophe of
the gas system up to a stage when the central density grows 10® times its initial
value. In §3 we shall compute a couple of cases to see the effect of different
choices of the coefficient of the heat transport. The mass of the centrally con-
densed core, which is formed as a result of the catastrophe, is found to be deter-
mined essentially by the functional form of the heat transport. In the final sub-
section a possibility for the formation of a black hole in the centrally condensed
core of the stellar system will be discussed.

§ 2. Development of catasirophe in gas systems

2.1. Basic equations

In the present paper, we shall use the same notations as in HS. Equations
appearing in HS will be denoted as Eq. (HS-3), for example. The basic equations
for the present problem are the same as those for stellar structure in gravitational
contraction. The equations of hydrostatic equilibrium, Eq. (FS-2) have to be sup-
plemented by equations of the heat flow and of the energy conservation, i.e.,

20T /0r=—L,/47r", (1)
OL,/0r= —A4zr0T (0s/0t) x, , &)

where L, denotes the heat flux through the sphere of radius 7, and ¢ is the time.
We assume that the heat conductivity 1 is expressed as

=t fine) (catmpim) ®

For a while we choose =0 and f=5/2, which correspond to the heat conduc-
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tivity of particles under the force of the inverse square law.

We shall use the non-dimensional variables for the Lagrangian mass coordinate
¢, the radius z, the pressure p and the temperature 0 as defined by Eq. (HS-6),
the density ¢ as defined by Eq. (HS-8), and the specific entropy ¢ as defined by
Eq. (HS-9). Further, we define the non-dimensional heat flow and time as

S=L.(GM*/Rt;) ", 4

T=t/ty, ty= kM

= kM 5
4 Rm )

respectively. Then, the hydrostatic equilibria are described by Eq. (HS-7) and
the thermal equations are rewritten as

00/0x = —f/2*¢p*0° , (6)
of/0¢=—000/0<. )

In addition to Eq. (HS-10), we have two further boundary conditions,

/=0 at ¢=0 and ¢=1. (8
2.2, Initial models and procedures
3

The isothermal gas spheres are charac- ' l
terized only by one parameter, the density
contrast D),  Their structures are con-
veniently expressed in Fig. 1, where the 2t N
homology invariants are defined by

\
U=01n M,/0 Inr=2)/¢, (9)
V=—0InP/dInr=¢¢/xp. (10) 'r T

We may choose any point along the U-V
curve as the outer boundary of the system,
which will be denoted by the subscript 1. 0 3
Then, the value of the density contrast is
determined as indicated in Fie. 1 Fig. 1. U-V curve of the isothermal sphere.

; ¢ s The thin straight line passes through

The total (thermal plus gravitational) the equi-energy points. Attached are
energy of the isothermal gas sphere is the values of the density contrast in

. natural logarithm.
computed easily from Eq. (HS:-2) as
M* 3
Epy= —CM _1_<__ U1>. (11)
R V,\2

When the mass and the radius of the system are given, there are multiple solutions
which have the same total energy. As shown in Fig. 1, the outer boundaries
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of such solutions lie along a straight line which passes through the point (U, V)
=(3/2,0).

Choosing a value of the density contrast, we obtain an initial isothermal model.
Then, we impose initial (r=0) perturbation in entropy with the amplitude of
|00 | max=0.08, for which the linearized theory is still accurate enough. (If we
started with a smaller amplitude, it would take additional time for the perturbation
to grow up to our initial amplitude. The non-dimensional growth time is about 50.)
Its dependence on the mass coordinate ¢ was taken from HS, i.e., from the eigen-
function of the fundamental mode which maximizes the variation in 0°S (see, e.g.,
Figs. 9 and 10 in HS). For this initial perturbation, we may choose two alterna-
tives of its sign; one with 00,<0 (case A) and the other with 8¢,>0 (case B),
where the subscript ¢ refers to the value at the center. Then, the progress of the
catastrophe was followed numerically by means of a Henyey-type program of stellar
evolution.

2.3. Numerical results

When the initial density contrast is greater than Dy, the catastrophe com-
mences as discussed in HS. Though we computed several cases of different initial
conditions, we shall discuss only one case of the initial contrast of D,=8100,
since essential features are the same for every D, greater than D.. The changes
in the density and the temperature profiles are shown in Figs. 2(a) and 2(b),
respectively, both for the cases A and B of the initial perturbations.

We shall discuss the case A in the first place. As seen in Fig. 2(b), the

minimum of the temperature lies around
T T T T T T T x2=0.04, ie., ¢$==0.06. The heat flows
toward this point from both sides. As

the heat flows out of the central region,
the core contracts gravitationally as seen
in Fig. 2(a). The contraction of Lagran-
gian shells is shown in Fig. 3. As
seen both in Figs. 2(a) and 3, it results
in a strong central condensation develop-
ing a strong core-halo structure. For
our amplitude of the initial perturbation,

(¢

log (£/f o)

o

the time scale of contraction is about
100 ¢, where #, is of the order of the
Kelvin time scale for the initial stage
[see Eq. (5)]. The change in the in-

3 I . -14 l _.2 T ternal structure is seen also in the U-V
log x plane of Fig. 4. The U-V curve grows to

Fig. 2(a). make a big loop above that of the iso-

(Figure caption is printed on the next page.) thermal core, which implies a strong cen-
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N

log (T/T,)

log x
Fig. 2(b).

Fig. 2. Density (Fig. 2(a)) and temperature (Fig. 2(b)) profiles shown against the non-dimen-
sional radial coordinate. In the ordinates the density is normalized by the central density
in the initial stage p¢,0 and the temperature by the initial (isothermal) temperature 7.
The thick curve labelled with 0 is the initial model which is common to both cases A
and B. Attached are the stage numbers Al through A5 for the evolution in the case A,
and B1 through B2 for the case B. The non-dimensional times of evolution are v=0.0(0),
13041 (A1), 137.15(A2), 138.72 (A3), 139.12(A4) and 139.21(A5), and 101.16(B1) and

44557(B2).
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Fig.3. Time variation of the radial distances of | Fig.4. Changes in U-V curves for the cases A
Lagrangian shells. The left ends of the and B. The thick solid curve represents the
dashed lines correspond to the initial iso- isothermal configuration. The U-V curve
thermal configuration.  Attached are the for the initial stage extends up to the point
mass coordinates ¢ of the Lagrangian shells. Wo. The U-V curve for the stage B2

practically overlaps it, but extends up to
the point W.. The dotted curves show the
change in the point of the outer boundary
of the system.
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tral condensation and a temperature gradient decreasing outward in the central region.
The total entropy of the system S continues to increase at the rate of

ds J‘” 0s J” L, 0/1\1
= =) dM,= L (—|=dM,. 12
dt 0 <0t>ﬂrr o 47t 6’r<T> 0 (12)

Though Egs. (1) and (2) were used to
obtain the extreme right-hand side of
Eq. (12), it may be written down directly
42 according to the thermodynamics of ir-
reversible process, since entropy is being
produced by the heat conduction as an

irreversible process. In the case A, the

»

total entropy of the system continues to
increase as shown in Fig. 5, and the
system remains to be a gravothermal
system in the sense that the density con-
trast remains greater than D..

Py
o

S (in units of k{T)

In the next place, we shall discuss

| . the case B of the initial perturbation.
0 100 T 200 The result of computation is already

Fig.5. Changes in the total entropy of the shown in Figs. 2(a), 2(b) and 4. In this
system for the cases A and B. case, the temperature is decreasing inward

in the central region. As the heat flows

into the central region, the core expands against the self-gravity. Then the tem-

perature in the central region decreases further, because the tensor specific heat
thereof is negative as discussed in HS. As the central region expands, the density
contrast D is reduced as seen in Fig. 2(a). Therefore, the system becomes less
gravothermally unstable.

Near the stage Bl, the central temperature turns to increase, which implies
that the tensor specific heat turns positive. Afterwards, the system approaches
another isothermal configuration as seen in Figs. 2(b) and 4. This configuration
corresponds to the U-V curve in Fig. 4 which ends at the equi-energy point W,.
Its total energy is the same as the initial model but its density contrast is smaller
than Dgy. It is gravothermally stable and was called a thermal system in HS.
During the transition from the initial gravothermal system to the final thermal
system, the total entropy of the system increases at the rate of Eq. (12), and
finally leveles off to its local maximum value (§°S<0) as seen in Fig. 5.

§ 3. Discussion

3.1. Density profile produced by the catastrophe

We shall compare our results with other treatment of the stellar dynamics.
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As for the gravitational N body problem, available computations cover the con-

9~ when it is seen

traction only by a factor of about 100 in the central density,
with a coarse grain containing at least three particles (i.e., excluding the case of
only one binary). On the other hand, Larson® computed up to a stage of the
central density 10° times the initial value by his fluid dynamical approach. He made
the Fokker-Planck approximation of the Boltzmann equation to treat the almost
collision free system, in which the moments of the velocity distribution were taken
up to fourth order. Larson’s approach is intermediate between ours and the gravi-
tational N body problem, since the distribution function is described in u-space
but the mechanism of energy transport is essentially different from our diffusion
approximation.®

The density profile, which is produced as a result of the catastrophe, is shown
in Fig. 1 of Larson’s paper.® Simulation of the N body problem by means of the
Monte Carlo method® gave a result similar to Larson’s in its essential feature.
Here we shall compare our density profile in Fig. 2(a) with Larson’s.® It is
found that both of them are in excellent agreement, which are well approximated

by
pOCT,—Zwl R (13)

except for the very central region.

The density profile as appeared in Eq. (13), the power index in particular is
interpreted as follows. Let us assume that the density distribution is expressed by
the power law,

poeT™ (14)
From Eq. (HS-2) and the equation of state we obtain
Mocr®™, Tocy®™, (15)
From Eqgs. (1) ~(3), (14) and (15), we obtain
L0y A (16)

for the local time scale of heat transport. This implies that the heat transport is
more rapid in the inner shell for the case of (a,f8) =(0,5/2). As seen in Fig.
3, the local time scale of a given Lagrangian shell decreases more and more as
the contraction proceeds. Therefore, the central core contracts more and more
rapidly with the relatively outer halo left behind, which results in the smaller
and smaller core mass.

As imagined from Eq. (16), the final density profile will depend upon the
power indices (a,8) of the conductivity. In order to see its dependence, we
computed a couple of artificial cases with different sets of (a, ). It is found that
the density profile is determined mainly by the value of « though it is difficult to
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T T T T give a clear-cut description. For mo-

derate values of 3, positive « yields
the density profile well approximated
by Eq. (14) with the index y between
2.0 and 2.5.

On the other hand, negative and
vanishing value of « yields a reatively
large core. Figure 6 shows the case
-4 \ . \ , of (a,8) =(0, —1), where the power

-4 -2 0] law of Eq. (14) is no longer a good
log x

c2

log (Pe/Pec,o)

approximation. In this case, the time

Fig. 6. The same as Fig.2(a) but for the case  scale of heat transport is longer in the
of (o, B)=(0, —1). The non-dimensional inner shell.
time of evolution is 0(C0), 240(C1) and
720 (C2). 3.2. Gravitational energy
The total gravitational energy of
the system is expressed as

b
2=0(R,0), w(rb,ra)z—j GM. ;. . 1
Ta r
In Fig. 7, the non-dimensional gravitational energies 2/2, are shown against the
central density, where £,(<{0) is the initial gravitational energy. For the case of
(a, B) =(0,5/2), its absolute value increases first and then turns to decrease.
As we did in the preceding subsection, we shall approximate the density

profile by Eq. (14) for the region of #>7,. Then, Eq. (17) gives

>—Y ()% — r5%). (18)

3
—w 7q) OC——
(7s,7a) 5—2y

For v<5/2, the total gravitational energy is determined mainly by the halo in the

T

=1 B=-1
a=1/2 d=0 del

5/2 )

o, 4

2 B=1.5/2.4
0 2 q 0 2 4 0 2 4q 6
qu (Pc/Pc,o)

Fig.7. Changes in the gravitational energy with the progress of the catastrophe. Cases
for different sets of (@, B) are shown as indicated in the Figure.
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limit of infinitely high central density, or in other words 7,—0 as seen in Fig.
2(a). Thus in our case of Eq. (13) the gravitational energy is not released
indefinitely, though the central density increases indefinitely. The reason is also
seen in Fig. 3: A Lagrangian shell, which has been contracting, turns into expan-
sion at a certain stage. In such cases the density profile of the power law is
realized.

On the contrary, the gravitational energy is released indefinitely when a and 3
are small, as seen in Fig. 7. According to the theory of internal constitution of
the stars, the gravitational contraction of a star is understood also in terms of the
gravothermal catastrophe.” In this case the law of the heat conductivity is differ-
ent from one considered above. Thus, a relatively large core is formed and the

gravitational energy is determined mainly by the core.

3.3. Formation of a black hole

For a Lagrangian shell inside the system, the ratio of its local gravitational
radius 7, to its local radius is given by

re_26M; 20M §o[ 3 i ¥pim], (19)
—Y

r ctr Rt =z 3—y

where the density is assumed to be constant in the region of r<{r.. When vy is
greater than 2 as in our case, there is a possibility of the formation of a black
hole. As seen in Fig. 3, a Lagrangian shell contracts in the first place and then
turns to expand. We define the contracting part as the core, which will be denoted
by the subscript core. Figure 8 shows ($/) core against the non-dimensional mass
of the core (heore which is decreasing in time. If ($/%)core exceeds RF/2GM, a
black hole of mass M@ is regarded to be formed as a result of the catastrophe.
These results are applied to typical objects as listed in Table I, though there
remains some doubt against its validity in the case of collisionless stellar systems.

In most systems the mass of the black hole is too small to be considered as
created by the gravothermal catastrophe, because the core mass is too small in the
case of (a, ) =(0,5/2), ie., in the case of the system under the force of the

Table I. Formation of a black hole.®

| Reo | M/Me | R*/2GM | Mg/Mo | t(r) | telyo)
globular cluster 10 10° . 10° L1 0 10%* 10
elliptical galaxy ‘ 2104 110t 2-10° 10 | 10t 10%-°
compact galaxy ‘ 10° 10| 10° 10° : 10M%° 10
semi-stellar nucleus of QSO | 1 10 |10 300 | 10%® 10*°

# Here, R is the initial radius of the stellar system, M. is the mass of the core when its radius
has shrunk down to its local gravitational radius, # is the time scale of the dynamical friction,”
and 7 is the time scale of the direct star-star collision. Parameters of the heat conductivity are

assumed to be (a, 8)=1(0, 5/2).
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log ($/X)core

1
Q0 5 0

109 Yeore

Fig. 8. Ratio of the non-dimensional mass ¢
and the radius x at the edge of the con-
tracting core. The non-dimensional core
mass decreases as the catastrophe pro-
ceeds. The solid curve is for the case
of (a, B)=(0, 5/2) and the dashed curve
is for (0, —1).

inverse square law. In very compact and
massive systems as represented by a com-
pact galaxy and a semi-stellar nucleus of
quasi-stellar object, however, the mass of
the black hole may be marginally large.
In the formation of a black hole various
processes may be involved which have
not been considered in the present paper.
Among them are direct star-star collisions
which disrupt the stars. However, the
most important is the mechanism of heat
transport in a real stellar system, which
determines the mass of the core as ex-
amplified in Fig. 8 by the artificial case
of (o, 5) = (0, —1). In this sense detailed
studies on the transport mechanism in

almost collision free stellar systems are

most desirable to clarify their difference, if any, from the gas system.
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