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A gauge invariant action is constructed for the closed string compactified on a Z2-orbifold. Two 
3-string vertices which describe two types of interaction, i.e., with and without twisted strings are 
obtained by the Neumann function method. The O(sf) gauge invariance of the action requires to 
modify the 3-string vertices by multiplying co cycle factors. A physical interpretation of the co cycle 
is given. 

§ 1. Introduction 

We construct a string field theory for the closed string compactified on a Z2-
orbifold_ This simplest case clarifies some of the general features characteristic of 
the string field theory compactified on the orbifold. l

) 

Previously, Hata, Kugo, Ogawa and the present authors have constructed a string 
field theory compactified on a torus.2

)· In order to obtain the 3-string interaction 
vertex, they used an approach using the Neumann function (Neumann function 
method).3),4) However on the resultant vertex, we found the violation of the naive 
connection conditions of the corresponding internal bosonic coordinates Xi(6). 
Owing to the presence of this disconnectedness, the gauge invariance of the action at 
the 0(g2) level requires us to multiply the 3-string vertex by a two-cocycle5

)-7) factor. 
A similar situation occurs in the present case for the closed string compactified on 

a Zz-Ol:bifold. In this case, we have two sectors of string states, i.e., the untwisted 
sector and the twisted sector. I) Therefore we have two types of 3-string vertices Vu 
and Vt which describe an interaction between three untwisted strings and that 
between an untwisted string and two twisted strings, respectively. We will see that 
the former interaction is realized in terms of the vertex for the torus compactified case 
mentioned above_ For the latter type of interaction, we construct a vertex Vt by the 
Neumann function method and we find again the disconnectedness for the internal 
bosonic coordinates. This fact forces us again to multiply the vertex Vt which 
describes an interaction with the twisted strings by a cocycle factor. This factor is 
then interpreted from the physical point of view. It is shown to be related to the 
. special feature of the interaction between two sectors: A twisted string at a fixed 
point jumps to another fixed point by the interaction with an untwisted string.B

) 

Our main result in this paper is the gauge invariant action (11- 2) with the vertices 
(6-1) and (6'-2) (d. (4-7) and (5-12». The physical interpretation of the cocycle in 
(6-2) is described in § 8. 

For an explicit construction of the 3-string vertex Vu and Vt, we take the 
following strategy. We first consider, on a torus, the closed strings and the open 

*) Present address: Department of Applied Mathematics and Theoretical Physics, University of Cam
bridge, Silver St., Cambridge CB3 9EW UK. 
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954 K. Itah and H. Kunitama 

strings with a particular boundary condition related to the Zz-action; then we obtain 
the vertices of string field theory on the Zz-orbifold by restricting the states to the 
Zz-invariant states. 

The remaining part of this paper is organized as follows. In § 2,we review the 
internal space structure of the torus compactified closed string which corresponds to 
the untwisted sector. We introduce string fields on the Zz-orbifold in § 3 and give an 
expression for the vertex which describes an interaction within the untwisted sector 
in § 4.· A 3-string vertex describing an interaction with the twisted sector is con
structed in § 5. We list the identities which are necessary for the proof of gauge 
invariance of the action in § 6. Then we proceed to the proof of them. The BRS 
invariance of the vertex with the twisted sector is shown in § 7. In § 8, we explain 
why we have to modify the vertex with the twisted strings, construct the missing 
(cocycle) factor and give a physical interpretation of it. We describe some prop
erties of this modified vertex in § 9. The Jacobi identity is discussed with the 
modified vertex in § 10. We give the gauge invariant action in § 11. Section 12 is 
devoted to the discussion. Some appendices are added. Appendix A supplements 
§ 2. A Green function on a complex plane, which is related to the 3-string vertex with 
the twisted strings, is constructed in Appendix B. The singularities of the internal 
coordinates at an interaction point are evaluated in Appendix C. Finally we prove 
the connection conditions for the internal bosonic coordinates in Appendix D. 

§ 2. Internal space structures of torus compactified string 

We consider a closed string compactified on Zz-orbifold. Before describing our 
model, let us first consider strings on a D-dimensional torus TD *) whose external and 
internal coordinates are denoted as XP(o-) (J.t=0, 1, ... , d -1) and Xl(o-) (I =1,2, ... , D), 
respectively. Here 0- runs over an interval [-7r, 7r]. 

The D dimensional torus TD is defined by the following identification of points on 
the D dimensional Euclidean space RD , 

D 

Y=Y+7r~ niEI • 
1=1 

(2·1) 

The {El} is a set of basis vectors of a corresponding lattice n, i.e., TD=RD/n. We 
write the basis of the dual lattice TD as tEl}, 

(2·2) 

On any torus T D , we can define a natural Zz-action 

VyETD , y-+ - y. (2·3) 

Dividing TD by the action (2·3), we obtain a Zz-orbifold which we shall consider. As 
is well known, we have two types of closed strings on the Zz-orbifold, i.e.,· the 
untwisted and the twisted strings. On the torus TD, the former is a closed string and 
the latter is an open string with a boundary condition 

*) Following Narain9
) et a!., we shall consider a torus with a symmetric (GIJ ) and an anti-symmetric 

tensor (BIJ ) condensations (see the following discussion). 
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Covariant String Field Theory on Z2-0rbi/old 955 

X/(TC) = - Xl( -TC), (2·4) 

where the index t indicates that Xl(6) is in the twisted sector. 
In the remaing part of this section, we shall consider the internal coordinates of 

an untwisted string XuI (6), which are expanded into oscillator modes as 

[a I(e) a J(e')]=ns- s-IJs-ee' n , m Un+m~OU U , 

~c, c'=±) (2·5) 

The zero mode x = {Xl} is identified as (2 ·1) and, correspondingly the winding number 
w={w I

} should take the values, 

(2·6) 

owing to the boundary condition XuI(TC)=X/( -TC) up to a translation by a lattice 
.vector. Further, in order to operate consistently on the torus TD , the momentum pI 
must take the values, 

(2·7) 

(see Eq. (A ·17». 
As is shown by Narain et aL,9) the compactification of the internal space described 

by {X/(6)} to the torus TD is equivalent to a compactification of the space {XJ+(6), 
XJ-(6)} to the Lorentzian even self-duallattice.10

) Here XJ±(6) are the left and the 
right moving mode decomposition of the original X/(6), 

(c, c'= ±) (2·8) 

Note that we are taking the conventionS) that 2p/ are the translation operators of X±I. 

Comparing (2·5) and (2·8), we have the relations 

(2·9) 

The 2D dimensional momentum p=(p+I, _p_I) is on the lattice rD,D spanned by the 
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956 K. Itoh and H. Kunitomo 

basis vector eii=l, 2, "', 2D) 

(Pi; integer) 

The inner product on f D,D is defined with the Lorentzian metric, 

p' q= "2. (p+lq+I _ p_Iq_ I) . 
I 

The ei is related to the basis vector Ei of fD asH) 

- _( K K) ei- ei+, ei-

=1 (t(c+ B)~(E')K, +C C - B)l](E,)K) , 

((EI)K, -(EI)K). 

(i=I~D) 

(i=I+D>D) 

(2'10) 

(2'11) 

The Cl](Bl]) is a constant symmetric (anti-symmetric) tensor defined on the torus TD.9
) 

By using the relation (2 ·11) the integers pi can be identified as 

i=I~D , 
i=I+D>D, (2'12) 

where the nI and mI are winding numbers and momenta given in (2' 6) and (2' 7). 
Equations (2 '11) and (2 '12) are derived in Appendix A. 

§ 3. String field on Z2-orbifold 

Before considering the string fields on the orbifold, we introduce the osciliator 
expressions of string coordinates. 

The external coordinates X!l(a) (J.l=0, 1, "', d-1) (aE[ -TC, TCD, ghost and anti
ghost coordinates c(a) and c(a) respectively are expanded as follows:*),12),13) 

x!l(a)=-l-[x!l +-.i "2.1..( an!l(+) ein<f + an!l(-) e-in<f)] , 
. .j7r 2 n*O n 

(±) __ o_+-.i_o_ 
Co - oco - 2 OTCco (3'1) 

with prime denoting %a, where P!l(a), TCc(a) and TCc(a) are the momentum variables 
-iO/oX!l(a), -i%c(a) and -i%c(a), respectively. The oscillator modes an*) , 

*) We use the metric IJ""=diag (-1,1, "'1). 
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Covariant String Field Theory on Z2-0rbi/old 957 

en(e>, en(e) (c= ±) satisfy the properties 

[a pte) a U(e')]=n~ TJpU~EE' n , m Un+m,O U , 

{e (e) e- (e')}_ ~ ~EE' n , m -Un+m,OU , 

e
(e)=e (e)t 
-n n ! (3'2) 

For the internal coordinates X1(a), we must consider the two sectors corresponding 
to the boundary conditions. One is the untwisted sector in which X/(a) satisfy the 
periodic boundary condition and have the same oscillator expressions as the torus 
compactified,string (2' 5). The other is the twisted sector which is characteristic of . 
the orbifoldcompactified string. In the latter sector, the internal coordinate satisfy 
the anti-periodic boundary condition 

Xl(7r) = - Xl( -7r) (3'3) 

and are expanded as 

[aI$e) _J~e')] - n' ~ ~IJ ~EE' n ,Lem - Un'+m',OU U , (3'4) 

where n' and m' take the half-integer value (Z +t) owing to the boundary condition 
(3'3). Equation (3'3) also restricts the zero mode Xt={xl} to be on the fixed points 
under the Z2-action 

(3'5) 

The twisted strings reside on the fixed pointsl) and do not have the center of mass 
momentum in the internal space. 

For later use, we introduce the BRS chargel4) of the orbifold compactified string. 
The functional form of the BRS charge has the same form as the usual closed string's 
one,l2).4) 

QB±= I{ 1: da Cia)[ - Ap±(a)A±p(a)-A±I(a)A±I(a)+2i dC;;a)c±(a) ] 

(3'6) 

except that the internal variables A/(a) are expanded as (2'8) and (3'4) for the 
untwisted and the twisted sector respectively. The oscillator expression of the BRS 
charge in each sector is 
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958 K. Itok and H. Kunitomo 

(3'7) 

{

I 00 

- ~ : amI (±) a;'~±,l. : for 
L Int(a)(±) _ 2 m=-oo 

n -
. 1 00 • I (±) I (±) • 2 m~oo' am+(l/2)an-m-(1/2). for 

a=u, 

a=t, 

00 

L n
FP

(±)= ~ (n+m): C~:J:!mCm(±):, (3'8) 
m=-oo 

where the index a=u or t indicates the untwisted or the twisted sectors and Lnext, 
Ln1nt and LnFP are the Virasoro generators of external, internal and FP-ghost modes 
respectively. The nilpotency of QBU(QBt) holds under the conditions d+D=26 and 
au(O)=1 (at(0)=I-(D/16». 

3.1. Untwisted sector 

In order to represent the string field in the untwisted sector, we use the Fock 
representation for the oscillators constructed on the vacuum 

(n~l) (3:9) 

and the momentum repr~sentation for the zero-modes pfJ., Co and 7rco. For the internal 
momentum zero-modes p±I, we take the ket representation by using the following 
momentum eigenstates, 

(3'10) 

where p±I is the zero-mode operator. With these representations, the untwisted 
string field can be written by the ket vector as 

la>u(pfJ., Co, 7rco; a»= - col¢u(pfJ.; a»+I¢u(pfJ.; a» 

(3'11) 

where a is the string length parameter.15),12) The component fields I¢u>, I¢u>, IXu> and 
I T/u> can be further expanded into the usual local component fields, e.g., 

(3'12) 

The physical modes of the string are contained in the bosonic component I ¢u>. The 
net ghost numbers NFP of I a>u>, I ¢u>, I ¢u>, Ixu> and I T/u> are - 1, 0, -1, 1 and 0 re
spectively. When we consider the gauge-invariant action, I a>u> is further restricted to 
the sector with internal ghost number nFP=O, which is defined to be the number of 

. I 

excited ghost modes c~'i2 (n~l) minus that of excited anti-ghost c~'i2 (n~0).13) 

The string field on the Z2-orbifold must additionally satisfy two constraints. One 
is the well-known constraint on the closed string fieldI2

),4) 

or (3'13) 
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Covariant String Field Theory on Zz-Orbi/old 959 

expressing the invariance under the rigid 6-translation, where 

L± (u) = L o ext(±) + Loint(U)(±) + LlP(±) -1 . (3·14) 

The other constraint restricts the states to those allowed on the Zz-orbifold.ll In 
order to give an explicit form of this constraint, we consider the Zz-action on the 
oscillator modes which follows from Eqs. (2·3) and (2·5): 

Let us introduce operators Rand Ou which realize the above operation, i.e., 

(3·15) 

A concrete expression of Ou is given as 

(3·16) 

With these operators, the projection operator to the Zz-invariant states is written as 

(3·17) 

and the second constraint is now expressed in the form 

(3 ·18) 

Here we note that this projection operator (3 ·17) is commutative to the BRS charge 
QB(U) given by Eq. (3·7): 

(3·19) 

This guarantees the closure of Zz-invariant space under the operation of QB(U). We 
further require the reality condition on 1 (]Ju>:4) 

z< (]Ju(2) 1 = f dl <Ru(l, 2)11 (]Ju(1» , 

<Ru(I, 2)1 = (211-)d+1 0(Pl + pZ)o(al + az)o(i'rcO(l) - i'rcO(Z))o( co(1L co(Z)) 

+ Cn (±)(l) C n (±)(Z) - C n (±)(l) Cn (±)(Z)) } , 
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960 K. Itoh and H. Kunitomo 

u (P2) = e -(7ri/4)p,' = e -(7ri/4HP2+2_P2_2) • (3·20) 

The rand dr are a set of zero mode variables and its integration measure of the roth 
string, i.e., 

r =(p J1. C- (r) '"" O(r) a) r, 0 ,~LC , r , 

(d -f dPr d- (r)d O(r) dar p r- I (271-)d Co trc 27r· 

The quantity <Ru(l, 2)1 converts the string coordinates as follows: 

<Ru(l, 2)I(Zu(lL Zu(2»=0 , 

Zu=(XJ1.(6), X~±(6), C(6), C(6); a) , 

Zu=( XJ1.( -6), X~±( -6)± If p±I, -c( - 6), c( -6); -a). 

3.2. Twisted sector 

(3·21) 

(3·22) 

As in the untwisted string case, we can represent the twisted string field by using 
the Fock representation for the oscillator modes and the momentum representation 
for the zero-modes pJ1., Co and 7rco. The oscillator vacuum is defined by 

(a J1.(±) aI(±) c (±) c- (±»Io>=o n ,n-(l/2), n , n • (n~l) (3·23) 

The twisted string field can be written as 

l(])t(pJ1., Co, 7rco; nf, a»=- col¢t(pJ1.; nf, a»+I¢t(pJ1.; nf, a» 

+ co7rcoIXt(pJ1.; nf, a»+i7rcol7Jt(pJ1.; nf, a», (3·24) 

where nf==:{nI} is related to Xt via Eq. (3·5). In (3·24), we have used the following 
2D -dimensional vector representation for the degree of freedom of the fixed points 
around which the string is twisted. We express this 2D -dimensional vector as a direct 
product of D two-dimensional vectors 

(3·25) 

D 

Here nI =0 or 1 corresponds to the upper or lower component of the loth two
dimensional vector. Again the physical modes of the string are contained in the I¢t>
component with NFP=O. When we consider the gauge-invariant action, 1 (])t> is re
stricted to the internal ghost number nFP=O sector. 

For a twisted string, the projection operator into the Z2-invariant sector is written 
as 

(3·26) 

with 
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Covariant String Field Theory on Z2-0rbi/old 

O - . ..,.,..,., 1 I(±) I(±) 
t -exp Z7r "'-' "'-' --1-a-(n-(l!2»an-(1/2). 

I,± n;;'l n--
2 

The operator Ot acts as desired 

A corresponding constraint on the string field 1 ([it> is 

.p /21 ([it> = 1 ([it> • 

961 

(3-27) 

(3-28) 

(3-29) 

After restricting ([it to the Z2-invariant states, 1 ([it> describes the closed string on the 
Z2-orbifold and it should satisfy yet another constraint 

or 

(3-30) 

where.P are defined in (3-14) with the replacement of L±(U) by L±(t). 

In addition, we require the reality condition 1 ([it> as 

+ __ 1_aI(±)(1)aI (±)(2) + C (±)(l) C- (±)(2) - C- (±)(l)C (±)(2»)} 1 n-(l/2) n-(l!2) n n n n , 

n--
2 

(3-31) 

where 8n ",f,n(2)f denotes the Kronecker delta for nf={nI
}. The rand dr are a set of 

zero mode variables and its integration measure of the roth string, i.~., 

r =(p fJ. C- (r) '1r O(r) a) r, 0 ,He , r , 

(d -f dpr d- (r)d O(r) dar p r- (27r)d Co 7rc 27r· 

The <Rt(l, 2)1 satisfies an equation similar to Eq. (3-22): 

<Rt(l, 2)I(Zt(lL Zt(2»=0, 

Zt=(XfJ.(6), Xl(6), C(6), C(6); a), 

Zt=(XfJ.( -6), Xl( -6), -c( -6), c( -6); -a). 

§ 4_ Three string vertex of untwisted strings 

(3-32) 

(3-33) 

The 3-untwisted string vertex can be obtained by multiplying the Z2-invariant 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/79/4/953/1862158 by guest on 24 April 2024



962 K. [toh and H. Kunitomo 

projection operator into the 3-string vertex 1 vtorus(1, 2, 3» in the torus compactified 
string field theor.y. The explicit expression of 1 vtorus(l, 2, 3» is2

) 

1 Vo(l, 2, 3»=1 Voext-FP(l, 2, 3»1 VJ~t(l, 2, 3» , 

=exp[Eext-FP(l, 2, 3)+ E 1nt(1, 2, 3)]10>123 (fext-FP(l, 2, 3)0'Int(1, 2, 3), 

3 00 1 
E 1nt(1, 2, 3) = ~ ~ ~ R:;'/n-a~h±){T) a~<';)(S) , 

± T,s=ln,m=O 2 

(4·1) 

The coefficients R:;:. are the Fourier components of the Neumann function (Neumann 
coefficients) for the open-string diagram in Fig. 1. The G«(h) is the ghost factor at the 
interaction point 

(r=1,2 or 3) (4 ·2) 

The factor C(P1, P2) is a two-cocycle factor,5)-7) which is an essential ingredient for the 
field theory of torus compactified closed string.2

) The c satisfies the following 
properties: 

a) c(p, q)c(P+ q, r)=c(p, q+ r)c(q, r), 

b) c(p, q)=( - )P'qc(q, p) . (4·3) 

For a concrete expression of c(p, q), we take2
) 

(4·4) 

where {e;} are the basis vectors of TD,D. Although the solution to (4·3) is unique only 
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u o , 0 

2 3 

o 3 o o 2 

2 3 
o o o 

(a) (b) (c) 
Fig, 1. The open-string diagrams (or the half-portions of closed-string diagrams with 0";; O'T";; 7l-) to 

which the Neumann coefficients in the 3-string vertex (4,1) corresponds for cases (a) lad+la21 
=1ll31, (b) la21+1ll31=lall and (c) 1ll31+lall=la21. 

Up to the trivial cocycle, this phase factor is determined by the hermiticity and cyclic 
symmetry of the total vertex (4·1). The connection condition of the internal coor
dinate on the vertex I wnt(l, 2, 3,»2) is 

X±I(1)(61)- X/(S)(6s)= ± If P!H, 

(4·5) 

for the case of aI, a2 > 0, as < O. Here 6r are defined as 

() 6 () 6-Jralsgn(6) ( )= 6+ Jrassgn(6) 61 6 =-, 62 6· , 6s 6 . 
~" ~ ~ 

(4·6) 

The 3-untwisted string vertex in the orbifold compactified string field theory is 
now given by 

I Vu(l, 2, 3»=.Pf~sl V toruS(l, 2, 3» 

(4·7) 

where 

(4·8) 

However, we can neglect an arbitrary one of the three projection operators since the 
vertex I vtorus(l, 2, 3» is invariant under a simultaneous operation of Z2-action ROu on 
all the three strings, which is easily seen from Eq. (4·1). 

§ 5. 3-string vertex with twisted strings 

In § 4, we have introduced the 3-string vertex which describes an interaction 
between untwisted strings. On the Z2-orbifold, there is another type of int~raction 
with the twisted strings. As we have done for the former interaction, let us first 
consider, on TD, the interaction between a closed string and two open strings with the 
boundary condition (3·3), which is shown in Fig. 2 with string 1 as the closed string. 
After constructing a vertex correspondIng to this interaction we obtain a 3-string 
vertex on the Z2-orbifold by multiplying it by the projection operators .p /2(1)'p /2(2) 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/79/4/953/1862158 by guest on 24 April 2024



964 K. Itoh and H. Kunitomo 

x fP /2(3) defined in Eqs. (3 ·17) and (3·26). We construct the 3-string vertex on TD 
following the method used in Refs. 3) and 4). In Fig. 3 we have shown a 3-string 
light-cone diagram on the complex p-plane for the case of aI, a2>O and a3<O. For 
later convenience, we introduce another complex plane, i.e., z-plane depicted in Fig. 
4 which is related to the p-plane via the Mandelstam mapping 

(5·1) 

We parametrize each string region on the p-plane by a complex coordinate 

(5·2) 

where aT is an intrinsic coordinate of the r-th string defined modulo 27r and a/T) is 
the value of a T at the interaction point. Here ro and Ii are defined as 

(5·3) 

for Zo satisfying 

o 
o 

o 
(a) (b) (c) 

Fig. 2. Interactions on TD of a closed string and two open strings with the boundary condition (3'3) 
for cases (a) lad+la21=la31, (b) la21+1a:.1=lad and (c) 1a:.1+lall=la21. String 1 is chosen to be the 
closed string. 

rr 

~ ________________ ~_rr 

0 
rr , , , , 

: To o 

-rr 
0 

-rr 

~ __________________ rr 

Fig. 3. A 3-string diagram on the p-plane for aI, (lg 

>0 and a:.<0. The bold line indicates that 
strings 2 and 3 satisfy the boundary condition 
(3-3). 

at 
• 

Fig. 4. The z-plane which is related to the p-plane 
in Fig. 3 via a Mandelstam mapping (5-1). 
The bold line indicates that strings 2 and 3 
satisfy the boundary condition (3'3). 
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Covariant String Field Theory on Zz-Orbi/old 965 

d 
dz p(z)lz=zo=O . (5'4) 

The coordinate a r parametrizes the r-th string as indicated in Fig. 3; origins of the 
first and the third strings coincide, and end points of open strings correspond to a r 
= ± Jr. This convention of the intrinsic a-coordinates is different from that used in 
(4'6) for the third string. However this is convenient to write the vertex for the 
interaction with the twisted strings. 

We first find a Green function T(p, [5) on the p-plane (p=r+ia) which satisfies 

with the boundary condition implied by (3·3) 

T( -)1.- ={ T(p', [5)I6'''=-lr 
p, P 6'r- lr T( , -)1 - p ,p 6'r,=-lr, 

(r=l) 

(r=2 or 3) 

(5'5) 

(5'6) 

where ar and p are related by (5'2). The p and p' are on the r-th string strip with 
~r=~r'. A solution to Eq. (5'5) with (5'6) is 

T(p, [5)=lnIJZ -ffl-lnIJZ +ffl. (5'7) 

Here z is related to p through the Mandelstam mapping (5 '1). Note that we have a 
root cut along (-00,0) corresponding to (5'6). In order to construct the vertex we 
need the coefficients, which are obtained from (5· 7) when we expand it in terms of the 
Sr defined in (5'2). Let us first decompose T(p, P) into two parts, which are analytic 
with respect to (p, [5) and its complex conjugate. 

T(p, [5)= ~ [:rep, [5)+ :r*(p, [5)] , 

:r( -) (JZ -ff) p, p =In JZ +ff . (5'8) 

The :r (p, [5) is expanded as follows, 

:rep, [5)= - 8rI8rs[f)(~I- tl)( L: len,(f,-.,)_ Sl) 
nl>O nl 

+ L: T;:msenr'r+msfs+ iJr[8rz8s1 + 8rz8s3 + 8rl8d , 
nr,ms;;:::O 

(5'9) 

where p al1d [5 are on the r-th and the s-th strings strip on the light-cone diagram. 
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966 K. ftoh and H. Kunitomo 

From the boundary condition (5'6) nl(n2, n3) are integers (half-integers). Equation 
(5'9) gives us the definition of T;;ms whose integral representations are derived in 
Appendix B. With the coefficients T;;ms defined in (5'9), we can write a vertex for 
the internal coordinates Xl«(J) as follows: 

e-(DI8)ro«lla2)+(lla3» Pfi31 V18t(1, 2, 3» , 

(5·10) 

We have multiplied e i1r (L+(t)(3l_ L _(t)(3»Sgn(0'3), since we would like to keep the same conven
tion of choosing the origin of strings in two vertices (4'7) and (5'10). The factor 
e-(DI8)ro«lla2)+(lla3» appears corresponding to the difference of the intercepts in two 
sectors and would be necessary for the Jacobi identity (see § 10). It is also necessary 
to reproduce an appropriate vertex operator when we let the string length a of a 
twisted string go to zero.16

) From the invariance of E t (l, 2, 3) under the simultaneous 
Z2-action we may omit anyone of the three projection operators in (5'10) as in the 3-
untwisted string vertex case. We should mention here that the T;;ms are real quan
tities which are invariant under projective transformations on the z-plane (see 
Appendix B for details). Originally we need a vertex ort the p-plane so that it should 
be inert under the projective transformation on the z-plane. Since T;;ms are real, 
E t (l, 2, 3) in (5'10) is symmetric under an exchange of the left-moving and the 
right-moving modes. 

Let us define vertices I V18 t(1, 2, 3» in which the r-th string is in the untwisted 
sector, 

(5'11) 

The full vertex is now obtained as 

(5'12) 

. where r(Pr; n{+l, n{+2) is some 2D x 2D matrix corresponding to the fact that the 
twisted string has the degrees of freedom of the fixed points explained in § 3. This 
factor r cannot be determined by the Neumann function method and will be discussed 
in § 8. 

On eEt(l23) in (5'10) we can prove the following connection condition for XI( 8) and 
A I ( 8). For definiteness we choose here aI, a2 > 0 and a3 < 0 and the firs~ string as the 
untwisted string, 
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{ 

XuI(I)( (1) = X/<3)( (3) , 

X/(2)(62)=X/(3)(63)-;; wI(l), 

967 

(5'13) 

(5'14) 

(5'15) 

and X/(T)(6T)(r=2, 3) are the internal coordinates for twisted strings with the zero 
mode x/ omitted. The quantity WI(I) is the winding number of the first string. From 
(5 '15) we see that the ordinary intrinsic coordinate 6T is related to 6 T as 6T = 6 T 
- 7rsgn( 6 T )aT3 and internal coordinates X/(3)( (3) are expressed as 

X- 1(3)( )- ilt(L+It)(Sl_L_It)(3l)Sgn(<i'3)X- I(3)( -) -ilt(L+It)(3l_L_It)(3l)sgn(<i'3) 
t 63 - e t 63 e . (5'16) 

These non-trivial relations are due to the presence of root cut in the internal coor
dinate X/(6) of the twisted strings. In terms of XI(T)(6) and A I (T)(6) we obtain the 
same connection conditions as (5'13) and (5'14) with a replacement of 6 by 6 since 
the 6-translation operator does not change the disconnectedness. Note here that the 
connection condition for XI(6) is quite different from that for the external coordinate 
XI'(6), for which the vertex is a naive a-functional. The situation is similar to the 
case for the torus compactified closed string. The vertex in that case includes the 
two-cocycle factor, which is introduced to satisfy the 0(g2) relations, i.e., the Jacobi 
identity and the commutativity. In the orbifold case, we should take a particular 
form of r(PT; n{+I, n{+2) in (5 ·12) in order for the 0(g2) identities to hold. 

§ 6. Identities for gauge invariance 

We write the vertices (4' 7) and (5 '12) in the following general form: 

I Va(l, 2, 3»=PI23[ ala2 fl./(al, a2, a3)G(6I),rcl Voext-FP(l, 2, 3» 
a3 

with a=u or t and 

x Pfi31 VJ3t(1, 2, 3»Ci1, 2, 3)] 

(a=u) 
(a=t) 

(6'1) 

(6'2) 

Here we understand the r-th string is in the untwisted sector. We now define 
* -product for all possible combinations of sectors to which string fields (/) and 1Jf 

belong, 
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968 K. Itoh and H. Kunitomo 

I( (lJ* l[f)(3» = ctPCIJ! f d1d2< (lJ(1)1< l[f(2)11 VaC1, 2, 3» . (6'3) 

On the basis of the definitions of the vertices and the * -products, we can write 
down the identities which will be shown, in § 11, to guarantee the gauge invariance of 
the action as well as the closure of the gauge algebra, 

Qi=O, (nil potency) 

(distributive law) 

«(lJ * l[f) * A + ( - )ltP1(11J!1+IA D( l[f * A) * (lJ + ( - )IA 1(ltP1+IIJ!D(A * (lJ) * l[f = 0 , 

(6·4) 

(6·5) 

(Jacobi identity) (6·6) 

(lJ * l[f = ( - )1+ltPlllJ!ll[f * (lJ , (commutativity) (6·7) 

where I (lJ1 is 0 or 1 if (lJ is Grassmann-even or odd respectively. The BRS charge QB 
= QBu or Qi and * -products are taken for all the possible combinations of strings in 
the untwisted and the twisted sector. In appearance, these identities are in the same 
forms as those for the non-compactified closed string.4

) The identities (6'4)~(6'7) 
within the untwisted sector result from similar identities for the torus compactified 
case2

) if we recall the following facts: As for (6'5), it is sufficient to note that QBu is 
the same as that in the torus compactified case and commutes with Pl2 (see (3·19»; 
the Jacobi identity (6'6) is nothing but the one for the torus case with the external 
states restricted to Z2 invariant sector since the PZ2 for the intermediate string may 
be omitted (ct. §§ 4 and 5). We emphasize that the identities (6·6) and (6'7) hold only 
with the two-cocycle factor on the vertex. 

§ 7. BRS invariance of twisted vertex 

We will prove (6'5) with the twisted vertex in (6'1). Equation (6'5) is 
equivalently written as 

[QBU(l)-t Qi(2) + QBt (3)]1 Vt (l, 2, 3»=0. (7·1) 

We should note, here, that the vertex (5 ·12) can be rewritten into the form, 

" al"a2 [ 1 3 trc O(T) trc O(s) ] I Vt(l, 2, 3»=PI23-- -2 ~ CTst----at a3 T,s,t=l aT as 

x Pf~3r(pT; n{+1, n{+2)1 Vt+(l+, 2+, 3+»1 Vt-(L, 2-, 3-» , 

I Vt±(l±, 2±, 3±»=,lLt(al, a2, a3)JJ[aTC±(T)(o-/T»1 Vto±(1±, 2±, 3±». (7'2) 

(r=1,2 or 3) 

The part I Vto±(l±, 2±, 3±» in (7· 2) is o-functionals which represent the connection 
conditions for the left- and the right-moving part of the external, internal Bosonic 
coordinates and the FP ghost coordinates. 

I Vto±(l±, 2±, 3±» = I Vo,£t-FP(l±, 2±, 3±»1 VI8t(1±, 2±, 3±» , 
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Covariant String Field Theory on Z2-0rbi/old 969 

where E± ext-FP(l±, 2±, 3±) (I V181(1±, 2±, 3±») are the left-moving (upper sign) and the 
right-moving (lower sign) parts .of the external and FP ghost part of Eext-FP(l, 2, 3) in 
(4·1) (the internal part vertex 1 V18t(1, 2, 3» in (5·10». The a-dependent normaliza
tion factor J1.t(al, a2, a3) is not determined by the requirement (7 ·1) but should be fixed 
so that the Jacobi identity (6·6) to hold.3

) When we take D=O, 1 Vt±(l±, 2±, 3±» are 
reduced to the open string vertices for the left- and right-moving modes. Recall that 
the 3-string vertex for the ordinary closed string is essentially a product of two open 
string vertices for the left- and right-moving modes.12

),4) If we take into the considera
tion that the quantities in front of 1 Vt+>1 Vt-> in (7·2) commute with the BRS charge 
QBu or QBt

, Eq: (7 ·1) holds if the following relations are satisfied, 

(7·4) 

where we use the fact that the BRS charge is also decomposed into the left- and 
right-moving parts as given in (3·6). 

In order to prove Eq. (7·4) we use the method developed in Ref. 3). On the 
p-plane in Fig. 3, we define operator-valued functions 

I 
I 
I 

====~Ipo 
I 
I 
I 
[ 

I 
I 
I 
I 
I 

=====1!P; 

Fig. 5. The original contour Cp of the integration 
(7'6) representing 2!~~IQB(T) on the p·plane. 

===:::::8 P: 

Fig. 6. The contour Cp can be deformed to 
infinitesimal circles enclosing the interaction 
points po and po*. 

(7 ·5a) 

for both external and internal coor
dinates and 

Cip)=arC±(r)(+isr) , 

C±(p)=ar -2c±!r)(+ iSr) 

(7·5b) 

(7·5c) 

with Sr=,;r+ i6r, when p is on the r-th 
string region. With these functions the 
sum of the BRS charge may be rewritten 
as a contour integration along CP shown 
in Fig. 5, 

Fig. 7. The contour Cz of the integration (7' 8) on 
the z-plane which corresponds to the reduced 
contour in Fig. 6. 
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In deriving Eq. (7·6) we used the ~ translational invariance of QB. The horizontal 
part of the contour does not contribute owing to the cancellation between Imp> 0 and 
Imp<O parts. The contour Cp on the p-plane can be reduced to small circles around 
thJ interaction points Po and po* depicted in Fig. 6, which is then mapped to a circle 
around the interaction point Zo on the z-plane shown in Fig. 7 through the Mandelstam 
mapping 

s 
p(z)= ~ arln(z-Zr). 

r=1 
(7·7) 

[The A/(p)A±I(p) in theBRS charge QB± is analytic, although A±I(p) has a root cut 
shown in Figs. 5 and 7.] 

The LHS of (7·4) is now rewritten as 

- i ~ J1.t(a1, a2, as) X ip dpC±(P)[ -(A±I'(p))2_(A±I(p))2 

+2 dC;;~P) C±(p) ]C±(po)1 Vto±(l±, 2±, 3±»= - i ~ J1.t(a1, a2, as) 

X iz dZ( d~~) r1 

C±(z) [ -(A±I'(Z))2_(A/(z))2+2 dC;;;z) C±(z)] 

x CiZo)1 Vto±(l±, 2±, 3±» , (7·S) 

where new functions on the z-plane are defined as 

As observed in Ref. 3), A±I'(p), (d/dp)C±(p) and C±(p) are singular around the interac
tion point when we let them operate on the vertex. The factor (dz/dp) remedies that 
this singularity and the resulting operator valued functions on the z-plane are regular 
functions. This is also the case for the internal bosonic coordinates A~±(p) or Af±(p) 
whose singularity is evaluated in Appendix C. 

We calculate the contour integration of (7·S). Pole-singula~ities in the integrand 
in (7·S) come from (dp(z)/dz)-1 or all the possible contractions of A±(z), C±(z) and 
C±(z).S) The factor (dp(z)/dz)-1 has "a simple pole 

( dp(z) )-1 = _l_l_+~+(-.£_.J:L)(z_ Zo)+ .. _ 
dz a z- Zo a2 a2 as , (7·10) 

where 

(7 ·11) 
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The caluculation of (7·8) is the same as that for the open bosonic case except for 
the contribution from the internal bosonic coordinates. Therefore we concentrate on 
the part coming from them, i.e., 

(7·12) 

and discuss whether it gives an extra contribution compared to the external Bosonic 
coordinates in the open ~osonic case. Here the contraction is defined for an arbitrary 
operator (J as follows, 

r---l 

(J I(P) (J 2(P)= e( t - ~)<ol (J I(P) (J lp)IO)c± (J (~- t)<ol (J 2(P) (J l(p)IO)c 

(7·13) 

where suffix c denotes ~he connected part and the lower sign on the RHS should be 
taken when both of (J 1 and (J 2 are fermionic. As for the bosonic coordinates we 
obtain 

I f 

A±I'(z)A±lI(z) 1 1 I'll 

1C (z- z)2 7J , (7·14) 

I 

A/(z)A±J(z) 1 1 alf [ 1 z+ z ] 
1C (z- Z)2 2 (ZZ)1!2 , (7·15) 

where the upper equality is given in Ref. 3) and the lower one is obtained from the 
definition (7 ·13). 

=l( dp )-l( dp )-l[ 1 z+ z ] 1 alf 

1C dz dz 2 (zz)I/2 (z- Z)2 . (7·16) 

Thus we have (7·15) using (7·9). 
Since there is a singular function A'(Z)A1(z) in (7 ·12), we have to regularize it 

keeping the analyticity of the integrand of the BRS charge. The following regular
ization has the desired property. On the p-plane we separate two A/(p)'s of QB± into 
A±I(p(Z» and A±I(p(Z'» where p(z) and p(z,) are related as 

p(z')=p(z)-aa, 

~ ar a=",-, 
. r=l (Zo- Zr)3 (7·17) 

with a real constant a. Remember that a is also a real constant for our choice (Zl, 
Z2, Z3)=(I, 0, -(0) in (5·1) of the Koba-Nielsen variables. This regularization 
always keeps A±I(p(Z» and A/(p(z'» on points with the same value of (f and thus 
retain the analyticity of BRS-charge integrand. The above argument also justifies 
the cancellation of the contributions from the horizontal parts in Fig. 5. 
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972 K. Itoh and H. Kunitomo 

After this particular regularization*) we have a contribution from the internal 
coordinates as 

(7'18) 

instead of (7'12). We evaluate the pole residues and then take the limit of 0---+0. In 
order to see the extra contribution to (7' 8) due to the difference (7 '15) from (7 '14), we 
expand the factor 

1 z+z' 
2 (zz'YI2 

in terms of 

E=Z-Zo 

and o. By using an expansion 

a simple calculation gives us the following result: 

1 z+z' 
2 (ZZ')1!2 

(7'19) 

(7' 20) 

(7'21) 

[The functions fiE) are given in Appendix C in Ref. 3).] From an expansion (see 
(3'47a) in Ref. 3», 

( 
dp(z') )-1 1 

dz' (Z-Z')2 
(7'22) 

we may expect the extra contribution coming from the second term in (7'21). 
However it leads to a vanishing contribution owing to C±2(Zo)=0. Note here thatthe 
0(0) terms have pole singularities. Nevertheless they will vanish when we take the 
limit 0---+0. 

In conclusion, the BRS invariance proof of the vertex with the twisted oscillator 
modes is reduced to that in the ordinary closed string case.4

) Therefore the vertex 
(6'1) is BRS invariant under the condition of d + D=26. 

§ 8. Cocycle factor 

In this section, we will obtain a condition on r in (6'2) in order for the Jacobi 
identity to hold, in which strings in the twisted sector are included as the external 
strings. Further we construct the r in such a manner that we can make a physical 
interpretation corresponding to the string interaction. 

We may draw P, Q and R configurations shown in Fig. 8 with f)p, aQ and EkE [ - Jr, 
Jr] and the time interval T set equal to zero corresponding to three terms in (6'6) (let 

*) If we take the normal ordering as an alternative regularizati~n, we obtain the correct intercept as well 
as the critical dimension. l7

) 
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Covariant String Field Theory on Zz-Orbi/old 973 

us call them P, Q and R terms). For the Jacobi identity to hold, at least, .pairs of 
string diagrams in P and Q, Q and R, or Rand P configurations should coincide when 
T-t0.4) As an example, consider P configuration with t}p=0 andQ configuration with 
BQ= Jr. Let us find the connection conditions on them for the case that strings 1 and 
2 are in the untwisted sector, and strings 3 and 4 are in the twisted sector (see Fig. 9). 
If we disregard the cocyc1e factors, we obtain an identical connection condition for 
both configurations, 

X I(I)(61)=XI(4)(64) , 

XI(2)(62)=XI(4)(64)+ I{ WI(l) , 

X I(3)(63)=XI(4)(64)+ I{ (WI(l)+WI(2» , (8'1) 

by using Eqs. (4'5) and (5'13) [in § 10 we will derive Eq. (8'1)]. Therefore, in order 
for the P(t}p=O) and Q(BQ=Jr) configurations to coincide the r should satisfy the 
condition: 

(8'2) 

'In the remaining part of this section we construct the r which satisfies (8' 2). We 
will first recall how to obtain the two-cocyc1e E(p, q) on the Lorentzian even self-dual 
lattice n,D with the metric (A '18).7) We assume that there is a set of matrices Y e i 
corresponding to e i which satisfy 

For an arbitrary vector P=2J~£IPiei on rD,D, we define yp as 

Yp=(Ye)PI(Ye)P2 ... 

and then a two-cocyc1e e(p, q) by 

YpYq= e(p, q)Yp+q. 

(8·3) 

(8·4) 

(8'5) 

One can easily check that this factor actually satisfies the condition (4'3) on the 
two-cocyc1e factor. Howevere(p, q) differs from E(p, q) in (4'4) by an amount of 

T T T 

p Q R 
Fig. 8. The closed string diagrams which represent the three configurations corresponding to the first 

(P), second (Q) and third (R) terms in the Jacobi identity (6'6), respectively, for the case ai, a2, a., 

>0. The numbers 1,2, and 3 correspond to the string fields @, 1Jf and A. 
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3 3 t 
8 7 

2 u 2 u t 
6 5 

1 u U 1 U 

P Q 
Fig. 9. The P(8e=O) and Q(8Q =n-) configurations which should cancel with each other in the Jacobi 

identity (10·1). The strings 1 and 2 are in the untwisted sector and 3 and 4 are in the twisted 
sector. 

trivial phase factors, 

e(p=2}.piei, q=2}.Qiei)=exp i1C2}.PiQjei· ej, 
i i i>j· 

(8·6) 

(8·7) 

where trivial phase U(p) is the one appeared in the hermiticity condition on the 
untwisted string field (3·20), i.e., 

U(P)=e-{7riI4)P2
• (8·8) 

With (8·7) we can rewrite (8·5) as 

(8·9) 

This relation is quite similar to (8·2). Actually, we will give the r in terms of a 
concrete representation of y p as described below. From the metric (A ·18) and (8·3), 
we see that Yei(i~D) anticommutes with Yei+D and commutes with all the others. As 
a solution to (8·3), we may choose 

i v 
Yei=I<8>···<8> 61 <8>···<8>1, 

(8·10) 

for i~D. Here 61 and 63 are Pauli matrices. Therefore from (2·12) and (8·4) we 
have an expression of Y p for a general momentum p ~ 2}. iPi e i 

(8·11) 

Since strings 7 and 8 are the same string, the RHS cif (8·2) may be regarded as a product 
of matrices. Thus the relation (8·9) can be identified with Eq. (8·2) if we consider 
that 

(8·12) 

Here subscripts 2 and 3 of 2[Y Plh indicate the spaces on which the matrix acts. 
In order to explain the physical meaning of r, let us reconsider the interaction 
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Covariant String Field Theory on Zz-Orbi/old 975 

with the twisted strings. In such an interaction, the twisted string changes or does 
not change its location according to the winding number of the untwisted string.8

) In 
an interaction of strings 1 (untwisted string), 2 and 3 (twisted strings), we have a 
relation 

Xt(Z)=Xt(3)+.E.W(I) 

2 
(S·13) 

up to a vector on the lattice rD, i.e., 7r2:.f=lhE1 (h; integers). Here the w(I) is the 
winding number of the string 1 

(S·14) 

This type of an interaction may be described by (0"1)n'0···0(0"1)nD in r if we consider 
that r acts on the space spanned by the fixed points (3·25). One can easily check this 
operator actually realizes the relation (S·13); in other words, (0"1) n10···0(0"1)nD is a 
matrix representation of a a-function on (3·25) 2:.vErD a(Xt(Z)+Xt(3)+(7r/2)w(1)+ v). 
The remaining factor could be written on a string field 

(S·15) 

(S·16) 

where 

(S·17) 

We have used Eq.'(A·17) in deriving (S·16). 
Next we discuss the properties of r in (S·12) and the vertex (6·1) with this r. 

Under the transposition 

=e(i1CIZ)jil·wl [y ] 
3 PI2 

(S·lS) 

where Ii is defined in (A·7), w=(nl, n2, ... , nD) and the last equality is due to 
Eq. (A ·17). Equation (S ·lS) implies the commutativity (6·7) extended to the case with (/J 

or/and 1Jf in the twisted sector. In order to see this, let us consider the case of 
al>O (the untwisted string) and a2, a3<O. The connection conditions on the vertices 
I Vi8 t(1, 2, 3» and e i1C(L+(U)(ll_L-'Ul"'1 V18 t(l, 3, 2» . are 

(S·19a) 
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976 K. Itah and H. Kunitomo 

{ 

)(/(2)«(12) 
XUI(l)(O'l) = on eill"(L+(U)(ll_L_(U)(ll)1 V18t(l, 3, 2», 

)(/(3)(0'3)+ Iii WI(l) 

2 

(8'19b) 

which are obtained by applying the method in Appendix D (d. (5'13». From 
Eq. (8'18) the difference of r(Pl; nl, nl) and r(Pl; nl, nl) is 

(8'20) 

which actually converts (8 '19a) into (8 . 19b). Therefore the vertex Pfi31 V18t(l, 2, 3) > 
x r(l, 2, 3) is invariant under the exchange of twisted strings. Since 

1 Voext-FP(l, 2, 3»= II eill"(L+(rl_L-'rl)1 voext-FP(2, 1, 3» , 
, T=l-3 

(8·21) 

we have a relation4) 

1 Vt(l, 2, 3»= -I Vt(2, 1, 3» , (8'22) 

where anyone of the strings 1,2 and 3 is in the untwisted sector. From Eqs. (6·3) and 
(8'22), it is easy to obtain the commutativity (6'7). 

§ 9. Properties of vertices 

Let us describe two other properties of the vertices (6'1). We have the her
miticity of the vertex, 

fdl' d2' d3'<Ru(I', 1)I<Rt(2', 2)I<Rt(3', 3)11 Vt(1', 2', 3'» 

=-<Vt(l, 2, 3)1=<Vt(2, 1, 3)1. (9'1) 

This is easily proved by using the following properties: On <Ru(r', r)1 and <Rt(r', r)1 
defined in (3'20) and (3'31) we have the relations 

<R(I, 2)I(Jl~P+Jl~h,)=0, 

{ap (±) _J(±) r(±) r-(±) 
n' ,Un' , n', n', 

Jlw= 
pP, p±I, a, 

(n' =1=0) 

(n'=O) 

where n'EZ or Z + 1/2, and 

<R(I,2)1(/Te°(1), co(1), Xt(l»=<R(I, 2)1(/TeO(2), CO(2), Xt(2» 

and 

r(Pl; nl, nl)U2(Pl)=r*(Pl; nl, nl). 

As in the ordinary closed string,4) we have a cyclic symmetry, 

/TeO(3)1 Vael, 2, 3»=/TeO(l)1 Va(2, 3, 1»=/TeO(2)1 Va(3, 1, 2». 

(9'2) 

(9·3) 

(9'4) 

(9'5) 

These properties of the vertices imply the following important relations. First from 
Eqs. (3'20), (3·21), (6'3), (8'22) and (9'1), we have 
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Covariant String Field Theory on Z2-0rbi/old 

«( (/) * lJT)(3)1=( - )1+1<1>11 1[11 C<I>C1[I jd3'(R(3', 3)11( (/) * lJT)(3'» 

= C<I>C1[I j d3' (R(3', 3)11( lJT * (/))(3'» . 

Second the cyclic symmetry (9'5) implies that 

[(/)lJTA]=( - )I<I>I(11[I1+IAIl[ lJTA(/)]=( - )IAI(I<I>I+I 1[1 Il [A (/)lJT] , 

. where trilinear form [(/)lJTA)3) is defined by 

[(/)lJTA] = (/)·(lJT * A), 

(/). lJT= j d1d27rc 0(1)(R(2, 1)11 (/)(1»1 lJT(2) > 

=( _ )I<I>111[IIlJT· (/) 

with an arbitrary combination of sectors to which (/), lJT and A belong. 

§ 10. Jacobi identity 

977 

- (9·6) 

(9·7) 

(9'8) 

In this section, we discuss the Jacobi identity (6'6) with the twisted strings. As 
for the case only with the untwisted strings, it holds trivially2) (d. § 6). 

Let us write the Jacobi identity (6'6) in the form 

I( (/)(1) * (/)(2)) * (/)(3» + ( _ )l1I(121+131l1( (/)(2) * (/)(3)) * (/)(1» 

+( _ )131(11I+121l1( (/)(3) * (/)(1)) * (/)(2»=0, (10'1) 

where Irl=I(/)(T)I. Using Eq. (9'6), we can rewrite, e.g., the first term in (10'1) as 

1(( (/)(1) * (/)(2)) * (/)(3))(4»=cl c2c3jd1d2d3«(/)(1)(1)1«(/)(2)(2)1«(/)(3)(3)1 

x jd5d6(R(5, 6)11 ViI, 2, 6»1 Vb(5, 3, 4»., (10'2) 

Substituting the expression of the vertices (6'1), we have4
) 

1(( (/)(1) * (/)(2)) * (/)(3))(4» 

where 

1.d(1, 2; 3, 4; fJr.; a, b»=/-la2(al, a2, a6)/-lb2(a5, as, Cf4) 

x jd5d6(R(5, 6)le i (8P±",)(L+'S'-L-'5I)1 voext-FP(l, 2, 6»1 voext-FP(5, 3, 4» 

x I VJ3t(1, 2, 6»1 Vl3t(5, 3, 4»Ca(1, 2, 6)Cb(5, 3,4) , 

(10'3) 
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978 K. Itah and H. Kunitama 

(10'4) 

The sign of ± Jr in e
i
(8

p
±lt)(L+(5l_L_<Sl) should be chosen so that both 6s and 66 fall into 

[-Jr,Jr]. 
It is easy to write the other terms of Eq. (10 '1) in the same expression by suitable 

. replacements of indices. Let us compare the P configuration «(jp=0) and the Q 
configuration (8Q = Jr) as an example. The cancellation of the corresponding terms 
occurs if the following conditions are satisfied: 

i) aslL1(l, 2; 3, 4; (7p=0; a, b» 

= a II e ilt(L+<rl_ L _<rl)Sgn(O"r)IL1(2 3' 1 4' (), = Jr' a' b'» 
7 r=1;4 ' , , ,Q " , (10'5) 

(10'6) 

In the present case, the equality ii) holds without any problem.4
) In order to show 

equality i) we have to prove the coincidence of the connection conditions and the 
normalization of the vacuum term.4

) . 

We first consider the connection conditions. Configurations with the twisted 
strings are classified into the following cases: 1) Two strings are in the untwisted 
sector and the others are in the twisted sector; 2) all the strings are in the twisted 
sector. It is easily found that there are two combinations of vertices in case 1): 1A) 
(a, b)=(u, t) and (a', b')=(t, t); 1B) (a, b)=(t, t) and (a', b')=(t, t), while there is 
only one combination in case 2): (a, b)=(t, t) and (a', b')=(t, t). In the following, we 
explicitly show that the connection conditions coincide for cases 2) and 1A) with 
strings 1 and 2 in the untwisted sector. The connection conditions in 1B) may be 
treated similarly to case 2) since case 1B) has essentially the same vertex combination 
as 2). 

For case 1A) we may easily check (8'1), ignoring the cocycles, on the concrete 
expressions of the 4-string vertices in (10' 5) and further the conditions on the cocycles 
(8'2). Therefore, by construction, the equality (10'5) holds up to the normalization 
factor. In deriving (8'1) for Q configuration we have used, as the internal part of the 
4-string vertex, IV 18t(2, 3, 8»r(P2; nl, nsf)1 V 18t (1, 7, 4»r(Pl; nl, n4f). This is 
obtained from the one derived by simple replacement of indices in (10'4) by using the 
equality I V18t(1, 4, 7»r(Pl; n/, nl)=1 V18t(1, 7, 4»r(Pl; nl, n/). 

Let us consider case 2) shown in Fig. 10. We first discuss the connection condi
tion on the vertices (10' 5) with the co cycles omitted. On the LHS of Eq. (10' 5) 
(P configuration), we have 

XI(1)(61)=X1(4)(64) , 

XI(2)(62)=X1(4)(64)+ I{ wI(S) , (P) 

(10·7) 

Recalling that the factor e±in:(L+(Tl_U
rl

) does not change the amount of disconnectedness 

·, 
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Covariant String Field Theory on Z2-0rbi/old 979 

in Eqs. (4·5) and. (5·13), we obtain the connection condition on the RHS of (10·5) 
(Q configuration) 

X 1 (1)( 0"1) = XI(4) ( 0"4) + I{ WI (7)., 

X 1(2)(0"2)=X1 (4)(0"4) , . 

X 1(3)(0"3)=X1(4)(0"4)+ I{ WI (7) • 

Next we compare the r factor in Eq. (10·5) 

(Q) 

r(P6; n/, nl)r(ps; nl, nl)=1[Yp ,h 3[Yp ,]4U(PS)U(P6) 

cc 1[(y e?sl(y e)ns2 
••• (y eysDh 3[( Y e?Sl(y e)ns2 

••• (y eysD]4 

(10·8) 

(10·9a) 

(10·9b) 

where we used Eqs. (8·8), (8·15) and (8·16). The second term on the RHS of (8·16) 
is omitted since it commutes with the internal Bosonic coordinates. The parts of r 
written in terms of YeiU~D) express a-functions, e.g"~VErDa(x/1)+Xt(2)+(Jl/2)w(6) 
+ v) (d. (8·13» and the tensor products of them in (10·9a) and (10·9b) turns out to be 
the same total a-function ~VETDa(x/1)+x/2)+x/3)+Xt(4)+ v) after the summation 
over w of the intermediate strings. With (10·9a) and (10·9b), Eqs. (10·7) and (10·8) 
are modified to the following connection conditions: 

X 1(l)(0"1)=X1 (4)(0"4)+ I{ WI (6)+ Ji.X/(2)+ Ji.X/(4) , 

XI(2)(0"2)=XI(4)(0"4)+ ~XP2)+ Ji.X/(4) , 

XI(3)(0"3)=X1 (4)(0"4)+ I{ wI(S) , 

(P) 

3 t 
';¢==~ 8 7 

2 t u 

p Q 

(10·10) 

Fig. 10. The P(o,,=O) and Q(BQ=7l') configurations which should cancel with each other in the Jacobi 
identity (10,1). Here all the external strings are in the twi;ted sector. 
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980 K. Itoh and H. Kunitomo 

(Q) 

·(10·n) 

The signs of xl and WI are irrelevant since we consider the coordinates on the torus. 
The above connection conditions are actually identical when we rewrite the winding 
numbers in terms of the fixed point coordinates by using (8·13). Therefore we have 
proved that for case 2) the connection conditions are common on both sides of (10·5). 

Although we have considered the connection conditions for 1A) and 2) with 8p =0 
and 8Q= Jr, it is easily understood that the same argument applies for all other 
configurations as well. 

In order to prove the Jacobi identity, it remains only to check the normalization 
of the vacuum terms in (10·5). When all strings are within the untwisted sector, the 
generalized Cremmer-Gervais identity18).4) justifies the equality of the normalization 
on both sides of (10·5) when d + D = 26. Unfortunately it seems difficult to obtain 
similar identities fot: the general case with the twisted strings. Nevertheless we 

. expect that the equality of the normalization implies d + D = 26. 

§ 11. Gauge invariant action 

In the previous sections, we have shown that the ingredients of our field theory 
(the BRS operator QBu and QBt, * -product and dot-product) have the following 
properties: 

(nilpotency) 

(distributive law) 

«(fJ * 1[f) * A +( - )14l10ll'l+IAJ)( 1[f * A) * (fJ+( - )lAI04lI+ l lI'J)(A * (fJ) * 1[f=0, 

(Jacobi identity) 

(fJ * 1[f = ( - )1+I4lllll'l1[f * (fJ , (commutativity) 

(fJ. 1[f = ( - )l4lllll'l1[f • (fJ , 

(fJ. ( 1[f * A) = ( - )14l10 ll'l+IA J) 1[f. (A * (fJ) = ( - )IA 1(14l1+llI'J) A • «(fJ * 1[f), 

(cyclic symmetry) 

(partial derivativity) 

(n·1a) 

(n·1b) 

(n·1c) 

(H·1d) 

(n·1e) 

(11·1f) 

(n·1g) 

where (n·1a) ~ (n·1c) hold only in d + D = 2614
).4) (and correct intercepts in the BRS 

operators; au(O)=l in QBu and at(O)=l- D/16 in QBt). With these identities, we can 
easily see that the action 
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Covariant String Field Theory on Z2-0rbi/old 

is invariant under the following two types of gauge transformations: 

{
O(AU)<J)U=QBUAu+29<J)u * Au, 

o(At) <J)t = 2g<J)t * Au , 

{
O(Au) <J)u = 2g<J)t * At , 
o(At) <J)t = QBtAt + 2g<J)u * At , 

981 

(11-2) 

(11-3) 

where parameter functionals Au and At satisfy the constraints: p Z2 IAu(t»=IAu(t» and 
PIAu(t»=IAu(t». The former is the usual gauge transformation as in the torus 
case2) (with an appropriately broken gauge group). The latter, characteristic of 
the orbifold case, mixes the untwisted and the twisted fields. 

We can also show the group structure of gauge transformations (11- 3) by using 
the identities (11-1) 

[o(Aa(l», o(A b(2»]=o(2gAa(1) * A b (2» (a, b=u or t). (11-4) 

§ 12_ Discussion 

We have constructed the string field theory for closed string compactified on the 
Z2-orbifold. We obtain two 3-string vertices which correspond to two types of 
interactions. The vertex only with the untwisted strings is essentially the same one 
which describes the interaction of the closed strings compactified on a torus.2) It 
should contain the two-cocycle factor in order to satisfy the 0(g2) requirement for the 
gauge invariance of the action, especially the Jacobi identity. By the Neumann 
function method we construct the vertex which describes the interaction between two 
sectors and have shown the BRS invariance of the vertex. From the 0(g2) require
ment, however, the vertex obtained from the Neumann function method should be 
modified with being multiplied by the cocycle factor. This factor is then naturally 
understood in relation to the characteristic feature of the interaction; the twisted 
string changes the location of its center of mass corresponding to the winding number 
of the untwisted string. In the context of the operator formalism, the necessity of the 
cocycle has been also observed.19

) 

The gauge-fixed and BRS invariant action 5 is obtained in a similar manner to 
the ordinary closed string case; in the action (11- 2) we only retain the ¢ component 
of <J)u and <J)t with discarding the restriction on the internal ghost number of ¢, 

(12-1) 

The BRS transformation g B¢U and g B¢t is also obtained as follows: 
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982 K. Itoh and H. Kunitomo 

8BrPa= fdcooBq)al",=x=~=o, 

OBq)U=QBuq)U+g(q)u * q)u+ q)t * q)t), 

OBq)t = Qiq)t + 2gq)u * q)t . (12·2) 

The a-independence of the on-shell physical amplitudes can be also discussed to the 
same level as in the ordinary closed string.l6

} Therefore we may obtain, from the 
string vertex Vt, an operator formalism vertex which describes the emission of the 
string states in the untwisted or the twisted sector. If we take the a-+O limit for the 
untwisted string, we obtain an untwisted emission vertex, 

V(6; p+, P_)=:e2I7!i(P+IIX+I(rJ'}+P_ 1IXj(rJ'» :eip,·x, L: o(x/2}+Xt(3}+ 7[2 w(l}+ v) 
VErD 

(12·3) 

(see Eqs. (8·13), (8·15) and (8·16». This is the vertex constructed by Hamidi and 
Vafa8) multiplied by a non-trivial cocycle factor. l9

} As described in § 8, we naturally 
obtain a concrete expression for the non-trivial cocycle factor from the requirement 
of gauge invariance. The twisted string emission vertex for the model with a fixed 
point is constructed by Kazama and Suzuki.20

} The relation of this vertex to the path 
integral is also, discussed.2

l} By taking an appropriate limit in which one of thea 
parameters of the twisted string goes to zero, we have found that, as for the non-zero 
oscillator part, our vertex (6 ·1) reduces to the one given by Kazama and Suzuki. The 
difference between two vertices is the cocycle factor and zero mode bilinear part in 
the exponent, 

r( . f f) X 2-0/2}[(P 1I}2+(Wl/Cl)}2] Pl, n2 , n3 . (12·4) 

The former appears since we have considered the model with several fixed points. 
The latter is the damping factor which was obtained by an argument on duality.8} 
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Appendix A 
-- Derivation of Eqs. (2·10) and (2·11)--

Following Narain et al.,9} we consider the first quantization of a string described 
by the coordinates X1(r,6) (1=1,2, ···,D) in the constant symmetric and anti
symmetric background fields GIJ and B IJ . The action is 

1= ~ f dr 1: d6[ GlfrJapOaXIOPXf + BIJtapOaXIOPXf] . (A·l) 

The X,(r, 6) parametrizes the string in reference to the oblique coordinate system, in 

, 
, 
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Covariant String Field Theory on Z2-0rbi/old 983 

which the metric is 

Gl]=E1·E, . (A·2) 

The X/(6) is related to the X1(r, 6) as 

(A·3) 

In (A ·1) 7]ap=diag(l, -1) and taP is an antisymmetric tensor with t01 =1. The con
stant background fields Gl] and Bl] only affect the quantization of zero modes. We 
write an ansatz for zero-modes 

(A·4) 

where the n1 is related to the winding number w by (2·6). Inserting (A ·4) into (A ·1), 
we obtain 

( . . 1 . 
/= Jdr[xGx-4nGn-xBn] , (A·5) 

where X=(X1, X2, ... , XD) and n=(n1, n2, ... , nD) are D-dimensional vectors; G==(Gl]) 
and B == (Bl]) are D x D matrices. The conjugate momentum 

- . a 2G.-!. B P =-z-= x- n ax (A·6) 

is a set of even integers 

p=2m, (A·7) 

since it should generate a translation on the lattice rD 

(A·8) 

From Eqs. (A·4), (A·6) and (A·7) we have 

= k[ X1+ ~ {L1-(r+6)+LI+(r-6)}] , (A·9) 

L - 1 +.-!.- 1 +G-1( + 1 B ) +-Z-n x-Z-n m Z- n , 

(A ·10) 
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Going back to the orthogonal coordinate XuI(a), we have a relation (see Eqs. (2,8) 
and (4\.,3» 

X~ia)= k[ x/+ ~ p/a+(non-zero modes)] 

= kJ~l(EJY[ Xf±+ ~ Lf±a+(non-zero modes)]. (A'l1) 

Therefore 

(A'12) 

From Eqs. (A ·10) and (A'12), an (Lorentzian) inner product of arbitrary momenta p 

and p' is 

which implies that p is on the Lorentzian even lattice rD,D and can be written in terms 
of the basis vectors ei=( e-f+, e-f-) (i=1, 2, "', 2D) of rD,D 

2D 

p=L}.Piei. 
i=l 

(Pi: integer) (A· 13) 

From (A'12) and (A'13), we have 

(A'l4) 

Since the Pi (i=1, 2, "'2D) are integers, the 'RHS should give n I or m I which are 
integers included in L± through (A·10). From this observation, we have a relation 
between {EI } and {ei}11) 

and a relation of {p;} to nI and mI 

(for i-::;,D) , 

(for i>D). 

(for i=I -::;'D) 

(for i=I + D> D) 

Using (A'7), (A'10), (A'12) and (2,6), we have 

From (A'15) we can see that the lattice rD,D is even and self-dual: 

gij=ei.ej=(~: ~:), 

(A'15) 

(A'16) 

(A· 17) 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/79/4/953/1862158 by guest on 24 April 2024



Covariant String Field Theory on Z2-0rbi/old 985 

det gij=1 , (A ·18) 

where On and In are D x D null and unit matrix respectively. Equation (A ·18) implies 
that 

_ {ei+n ei= 
ei-n, ' 

(for i-:::;'D) , 
(for i>D). 

Equation (A·15) and (A·19) lead to Eq. (2·11). 

Appendix B 
-,- Green Function on p-Plane--

(A ·19) 

In this appendix, we discuss a Green function on the 3-string diagram in Fig. 3 
which corresponds to the interaction on the Z2-orbifold with two twisted strings. 

A general Mandelstam mapping which transform a 3 closed string diagram 
(p-plane) onto the whole complex z-plane is 

3 

p(z)= ~ arln(z-Zr). 
r=1 

(B·l) 

Here ar are string length parameter satisfying ~~=lar=O and Zr are Koba-Nielsen 
variables onto which the external r-th strings are transformed. In general the KN 
variables are complex valued and different choices of them are related to one another 
by the projective transformation on the z-plane 

Az+B 
z~ Cz+D . (AD-BC=I) (B·2) 

We need a Green function which satisfies (5·5) with the boundary condition (5·6). 
W e co~struct it by solving the Laplace equation on the z-plane with a proper bound
ary condition and transform it into a Green function on the p-plane by (E·l). The 
Mandelstam mapping (B ·1) gives an interval (Z3, Z2) on the z-plane corresponding to 
the bold line on the p~plane in Fig. 3. As a boundary condition on the z-plahe, we 
require the same condition as (5·6) on both sides of the line. Therefore the Green 
function on the z-plane is 

T(z,z)=lnl( z= Z2 )1/2 _( ~ - Z2 )1!21_lnl( z- Z2 )1/2 +( ~ - Z2 )1/21. (B.3) 
z Z3 z - Z3 z- Z3 Z - Z3 

The Green function on the p-plane is simply 

T(p, [5)= T(z(p), z(P))= ~{:T(p, [5)+ :T*(p, [5)}, (B·4) 

where 

:T(p, [5)=ln[( z- Z2 )1/2 _( ~ - Z2 )1/2J -In[( z- Z2 )1/2 +( ~ - Z2 )1/2J 
Z - Z3 Z - Z3 Z - Z3 Z - Z3 
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+ ....., Trs nr!:r+msfs . (~ ~ + ~ ~ + ~ ~ ) "-' nrmse - ZTC UrI Us3 Ur2Usl Ur2Us3. (B'5) 
nr,ms~O 

In the above, we have expanded :r (p, (5), defined by the 1st line, in terms of S defined 
in (5' 2). The last equality gives definition of the Fourier coefficients T;;ms. Here we 
understand that p and 15 belong to the r-th and s-th string regions, and nt is integer 
(half-integer) for t=l (t=2, 3) corresponding to the untwisted (twisted) string. The 
last term in the expansion (B'5) is necessary for the consistency when Z-" Zr and z 
-" Zs. It is easy to see that the function :r (p, (5) is invariant under the projective 
transformation (B· 2) and Sr is also invariant under (B· 2) by its definition. Therefore 
the Fourier coefficients T;;ms defined in (B'5) are projective invariant quantities. 
Using this invariance, we may fix (Zl, Z2, Z3) to (1, 0, 00) and then the Green function 
is reduced to 

T(p, (5)=lnlv'Z -HI-lnlv'Z +HI, (B'6) 

where p and z are related via the Mandelstam mapping (5'1). 
The integral representation of T;;ms can be derived in the same manner as that 

in Ref. 3). 

TO~l= -2ln2+~, 
a1 

3 

ro= L: arlnlarl , r=l 

T r1 - 'T'lr -li dz 1 -nr!:r(Z) 
nrO- .£ Onr- 2 . C( ) e , nr Zr 1CZ 'liZ z-l 

(B'7) 

(B·8) 

(B·9) . 

In (B'7)~(B'9), we have fixed (Zl, Z2, Z3)=(1, 0, 00) and use the Mandelstam mapping 
(5'1). We see that T;;ms is symmetric under a simultaneous exchange of (r, s) and 
(nr, ms). 

Equation (B' 7) is derived from Eq. (B· 5) by first letting z -" Zl = 1 (which implies 
l r -" - 00 ) and then taking the limit Z-" Zl = 1 (';r -" - 00). It is necessary to substitute 
the following expression for Sr=l obtained from the definition (5·2) : 

(B· 10) 

In order to derive Eq. (B'8) we differentiate (B'5) with respect to Sr keeping 
';r> ls, 
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o _ oz ( 2 )1/2 1 
OSr r;[(p, p)= OSr ~ z- 2 

+ ~ nrT,i:msenr~r+msfs . , (B·11) 
nr,ms~O 

In the limit that 2 ~ Z1 = 1, we have 

OZ 1 
OSr JZ(z-l) 

8rs8r1 + ~nrT,i,!oenr~r 
nr~O 

(B·12) 

where 

(B·13) 

The 1st equality of Eq. (B· 8) is obtained from (B ·12) by' multiplying Wr -nr-l on both 
sides and integrating it around a point Wr=O. The integration representation for 
Tol,ir is obtained in a similar manner to the above derivation and found to be expressed 
in the same integration as that for T,i,!o. 

For the derivation of (B· 9), we differentiate (B ·11) with respect to fs, 

1 OZ 02 z+ 2 ( 1 )112 
2 OSr ofs (z- 2)2 z2 

=8rs ~ nrenr(fr-~r)+ ~ nrmsT,i:msenr~r+msfs. 
nr~O nr,ms;;:::O 

(B·14) 

When we multiply Wr -nr-1 X ws -ms-1 and integrate it. around the origins, we obtain 
(B·9). 

We will show that the coefficients T,i:ms are real quantities. From (5·2) 

with 

1 =lnw+-[a1ln(1-w)- ro] 
a3 

1 w=-. 
z 

(B·15) 

(B·16) 
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The root cut in (B'8) and (B'9) disappears when we substitute (B'15) into these 
equations. It is rather easy to see from the substituted equations that the coeffiCients 
are actually real. Note that this reality is due to our convention of 63 in (5'2). 

Appendix C 
-- Singularity of Au(6) or At(6)--

We evaluate the singularity of the internal Bosonic coordinates when they act on 
the vertex. Let us write the internal coordinate as 

(C'l) 

where nr takes integer (half-integer) values if the r-th string is in the untwisted 
(twisted) sector. An operator valued function on the p-plane in (7' 5a) is 

(C'2) 

when p is on the r-th plane. We let this operator act on I V18t(1, 2, 3» in (5'10) and 
write the result solely in terms of creation operator 

(C'3) 

The coefficients on the RHS are singular around the interaction point as is evident 
from the expression 

8rse-ms~r + ~ nrT;;:msenr~r 
nr:?cO 

=~( dp )-1_1 f dz. ( d~) 1"2_ e-msfs . 
as dz fZ Jzs 2m dz z- z 

(C'4) 

This singularity is remedied in the expression for Ai:(z) due to the factor dp/dz. In 
order to derive (C'4), we multiply ws-ms-1(ws=e~s) to (B'11) and integrate it around 
the origin of ws. 

Appendix D 
-- Connection Conditions (5 '13) and (5,14)--

The internal coordinates of a twisted and an untwisted string are expanded as 
(2·8) and (3'4). We let them operate on eEt

(l,2,
3l I0> defined in (5'10) and rewrite them 

in terms of creation operators; for an untwisted string (string 1) 

(D'l) 

for twisted strings (strings 2 or 3) 
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(D·2) 

For definiteness, we will consider the case of aI, az>O and a3<O in which we have an 
identity 

(r=l or 2) (D·3) 

with p3=pr on the p-plane. From Eq. (B·5) we have 

<;I (p, P)1.r=o 

+ ~ Trs inrifr+msfs . (~ ~ +~ ~ +~ Jl.) 
£....J nrmse - Z7[ UrlUs3 UrZUsl UrZUs3 

nrtmS~O 

- ~ nSfs{ ~ [ .- ~ ~ +(1 Jl. ) 1 -inrifr] -- £....J e Urs -Z(JrUrIUnsO -UnrO-e 
ns:;"O nr 

(D·4) 

From the above equation, it is easy to derive the connection conditions (5·13) for the 
internal coordinates 

J { X/{I)( (1)= Xl(3)( (3) , 

X/<Z)(6z)=Xl{3)(63)-;; WI{I) , (D·5) 

where Xl( 6) is the internal coordinate with the zero mode Xt omitted. 
In the same way we can prove (5 ·14). On the vertex we have 

Iii A/{r)( 6 r) = ~ a!.<,il{S)(8rse+imsifr + ~ nrTri:mse±inrifr) , 
ms~O nr>O 

(D·6) 
s . 

where A±I{r)(6r) corresponds to either the untwisted string (r=l) or the twisted 
string (r=2 or 3). This should be compared to the equality 

(D·7) 

From the expression 

(D·8) 

one can easily derive Eq. (5 ·14). 
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