Prog. Theor. Phys. Vol. 80, No. 5, November 1988, Progress Letters

Integrals of a Lotka-Volterra System of Infinite Species

Yoshiaki ITOH
The Institute of Statistical Mathematics, Minami-Azabu, Tokyo 106

(Received July 15, 1988)

Abstract

A Lotka-Volterra system of infinite species is introduced. Each of the infinite species is represented by a point on a unit circle. The probability density on the circle is given by the solution of the Lotka-Volterra system. Infinite number of conserved quantities are given for the system.

Here we introduce a continuous version of the previous result ${ }^{1)}$ on a LotkaVolterra system of $2 s+1$ variables which has $s+1$ conserved quantities. A LotkaVolterra system of n variables

$$
\frac{d}{d t} P_{i}=P_{i}\left(P_{i-1}-P_{i+1}\right)
$$

with $P_{i+n}=P_{i}$ for each integer i, has soliton solutions. ${ }^{2) \sim 6)}$ Toda lattice ${ }^{7)}$ is well known because of its soliton solutions. Toda lattice of $2 m$ variables has m conserved quantities. ${ }^{8) \sim 10)}$ In the discrete version of our system ${ }^{1), 11) \sim 16)}$ each of $2 s+1$ species interacts with the other $2 s$ species as

$$
\begin{equation*}
\frac{d}{d t} P_{i}=P_{i}\left(\sum_{j=1}^{s} P_{i-j}-\sum_{j=1}^{s} P_{i+j}\right) \tag{1}
\end{equation*}
$$

with $P_{i+2 s+1}=P_{i}$ for each integer i. The $s \dot{+} 1$ conserved quantities for Eq. (1) are given in the previous paper by a combinatorial proof. The conserved quantities for the case $s=2$ are

$$
\begin{aligned}
& P_{1}+P_{2}+P_{3}+P_{4}+P_{5}=I_{0}, \\
& P_{1} P_{2} P_{4}+P_{2} P_{3} P_{5}+P_{3} P_{4} P_{1}+P_{4} P_{5} P_{2}+P_{5} P_{1} P_{3}=I_{1}
\end{aligned}
$$

and

$$
P_{1} P_{2} P_{3} P_{4} P_{5}=I_{2} .
$$

Consider the continuous version of Eq. (1),

$$
\begin{equation*}
\frac{d}{d t} P(x, t)=P(x, t)\left(\int_{x-\pi}^{x} P(y, t) d y-\int_{x}^{x+\pi} P(y, t) d y\right) \tag{2}
\end{equation*}
$$

with $P(x, t)=P(x+2 \pi, t)$ for each x.
The conserved quantities are very naturally introduced to this equation. Consider two points on a unit circle P and Q whose coordinates are $(\cos x, \sin x)$ and $(\cos y, \sin y)$, respectively. If the counterclockwise way from P to Q on the circle is shorter than the clockwise way, we write $x<y$. Otherwise, we write $x>y$.

Let $x_{1}, x_{2}, \cdots, x_{2 r+1}$ satisfy the conditions $0 \leqq x_{i}<2 \pi, x_{i+1}, x_{i+2}, \cdots, x_{i+r}<x_{i+r+1}$, for $i=1,2, \cdots, 2 r+1$. We denote the above conditions on $x_{i}, i=1,2, \cdots, 2 r+1$, by E_{r}.

Consider the integral

$$
I_{r}=\int_{E_{r}} \cdots \int P\left(x_{1}, t\right) P\left(x_{2}, t\right) \cdots P\left(x_{2 r+1}, t\right) d x_{1} d x_{2} \cdots d x_{2 r+1}
$$

Theorem
Let $P(x, t)$ be the solution to Eq. (2). I_{r} is the conserved quantities for $r=0,1,2, \cdots$.
Proof
We have

$$
\begin{aligned}
& \frac{d}{d t} I_{r} \\
& \quad=(2 r+1)\left(\int_{y<x_{2 r+1}} \cdots \int P\left(x_{1}, t\right) P\left(x_{2}, t\right) \cdots P\left(x_{2 r+1}, t\right) P(y, t) d x_{1} d x_{2} \cdots d x_{2 r+1} d y\right. \\
& \left.\quad-\int_{x_{2 r+1}^{E r}<y} \cdots \int P\left(x_{1}, t\right) P\left(x_{2}, t\right) \cdots P\left(x_{2 r+1}, t\right) P(y, t) d x_{1} d x_{2} \cdots d x_{2 r+1} d y\right) .
\end{aligned}
$$

Let us put

$$
\begin{aligned}
& I_{r, 2}=\int_{\substack{x_{2 r} E_{r} \\
y<x_{r}+\pi<y}} \cdot \cdots \int P\left(x_{1}, t\right) P\left(x_{2}, t\right) \cdots \dot{P}\left(x_{2 r+1}, t\right) P(y, t) d x_{1} d x_{2} \cdots d x_{2 r+1} d y,
\end{aligned}
$$

and

$$
I_{r, 4}=\int_{\substack{x_{r}+r_{r<} \\ y<x<2 r+1+\pi}} \cdots \int P\left(x_{1}, t\right) P\left(x_{2}, t\right) \cdots P\left(x_{2 r+1}, t\right) P(y, t) d x_{1} d x_{2} \cdots d x_{2 r+1} d y
$$

We have

$$
\frac{d}{d t} I_{r}=(2 r+1)\left(I_{r, 1}+I_{r, 2}-I_{r, 3}-I_{r, 4}\right)
$$

The transposition of the variables $x_{2 r+1}$ and y changes a system of conditions E_{r}, $x_{r}+\pi<y, y<x_{2 r+1}$ and $x_{2 r+1}<x_{r+1}+\pi$ to a system of conditions $E_{r}, x_{r}+\pi<x_{2 r+1}$, $x_{2 r+1}<y$ and $y<x_{r+1}+\pi$, which will show $I_{r, 1}=I_{r, 3}$. A cyclic change of variables shows $I_{r, 2}=I_{r, 4}$. Hence we have

$$
I_{r, 1}=I_{r, 3}
$$

and

$$
I_{r, 2}=I_{r, 4}
$$

The author is grateful to Professor Tetsuji Miwa, who suggested him an idea for the proof of the theorem. The research was partly supported by Grant-in-Aid 61540171 of the Ministry of Education, Science and Culture of Japan.

1) Y. Itoh, Prog. Theor. Phys. 78 (1987), 507.
2) J. Moser, Adv. in Math. 16 (1975), 197.
3) R. Hirota and J. Satsuma, Prog. Theor. Phys. Suppl. No. 59 (1976), 64.
4) M. Wadati, Prog. Theor. Phys. Suppl. No. 59 (1976), 36.
5) M. Toda, Theory of Nonlinear Lattices (Springer, Berlin, 1981).
6) K. Narita, J. Phys. Soc. Jpn. 51 (1982), 1682.
7) M. Toda, J. Phys. Soc. Jpn. 22 (1967), 431.
8) M. Henon, Phys. Rev. B9 (1974), 1921.
9) H. Flaschka, Phys. Rev. B9 (1974), 1924.
10) K. Sawada and T. Kotera, Prog. Theor. Phys. Suppl. No. 59 (1976), 101.
11) Y. Itoh, Ann. Inst. Statist. Math. 25 (1973), 635.
12) Y. Itoh, Proc. Japan Acad. 51 (1975), 374.
13) Y. Itoh, Seminar on Probability 44 (1977), 141 (in Japanese).
14) Y. Itoh, J. Appl. Prob. 16 (1979), 36.
15) Y. Itoh and S. Ueda, Proc. Inst. Statist. Math. 28 (1981), 55 (in Japanese with English summary).
16) Y. Itoh, Proc. Inst. Statist. Math. 35 (1987), 73 (in Japanese with English summary).
