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On the basis of the concept of spontaneous breakdown of the rotation symmetry in the deformed 
Hartree-Fock-Bogoliubov minimum as the origin of the nuclear collective rotation, the self-consistent 
collective coordinate (See) method is applied to disclosing occurrence mechanism of the coHective 
rotation. Through the intermediary of the see method, a manifest relationship between Marshalek 
and Weneser's full quantum theory of rotational .motion and the conventional cranking model 
approach is given. 

In order to reveal how the so-called rotation-vibration coupling effects are coherently organized 
so as to construct a global optimum subspace of collective rotation, a set of basic equations of the 
see method is solved for the low-spin ground-state rotational bands of Er isotopes. Systematic 
features of microscopic structure of rotation-vibration couplings are investigated in detail. 

§ 1. Introduction 

In accordance with rapidly expanding experimental observations on nuclear 
collective phenomena, in the past decades it has become an inevitable theoretical 
subject to develop a microscopic theory of nuclear collective dynamics which enables 
us to describe global aspects of collectivity, e. g., occurrence, persistency, 
transfiguration, dissipation and termination of collective modes of motion. 

Since the nucleus is an isolated finite many-body quantum system in which the 
self-consistent mean field is realized, the collective modes of motion (associated with 
time evolution of the mean field) are of large amplitude and highly involved with 
non-collective (intrinsic) modes of motion in a strong self-consistent way_ Thus, the 
first task toward the microscopic theory of nuclear collective dynamics is to define an 
optimum "global" collective subspace and "global" collective variables specifying the 
subspace. The self-consistent collective coordinate (See) method1

),2) has been 
proposed for this purpose_ When once the optimum collective subspace is properly 
determined by the see method, the intrinsic modes of motion can be precisely defined 
in a compatible way with the see method_3

) Thus, the whole nuclear dynamics is 
optimally described in terms of the collective and intrinsic modes of motion.4

) The 
transfiguration and dissipation of the collective modes are then described as results 
due to couplings with the intrinsic modes_4

),5) The abOve scenario for the nuclear 
collective dynamics has been so far formulated, step by step (as INS-TSUKUBA joint 
research project on a large-amplitude collective motion), by examining its applicabil­
ity in each step with the employment of simple numerically-solvable models. 

This is the first one of a series of papers with the purpose of applying the new 
microscopic theory in describing various phenomena associated with the nuclear 
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collective rotation. Since the nuclear collective rotation is one of the most typical 
modes of large·amplitude collective motion, various methods to describe the rotational 
motion have been so far developed successfully,6),7) and experimental investigations on 
high-spin states are now in rapid developments. For these reasons, it seems desirable 
to describe the collective rotational phenomena by means of the new microscopic 
theory and compare its results with those of the conventional methods: This may 
provide us with another examination of the usefulness and applicability of the theory 
and may inform us of important clues to further development of it. 

The focus in this first paper is on the problem of occurrence of the collective 
rotation as a typical large-amplitude collective mode. Let us suppose that a 
rotational-invariant nuclear Hamiltonian with an effective inter-nucleon interaction 
for an even-even nucleus is given, in which rotational spectra appear very regularly. 
In this case, one usually starts by supposing that the nucleus has a well-defined 
intrinsic deformed shape, which may be obtained by a stationary solution of. the 
Hartree-Fock (-Bogoliubov) approximation. The concept of the intrinsic deforma­
tion leads us to a localization of orientation of the system, which inevitably needs the 
concept of spontaneous breakdown of the rotation symmetry. Thus, the very occur­
rence of collective rotational degrees of freedom may be said to originate in restoring 
the broken rotation symmetry. 

The earliest method8
) for restoring the broken rotation symmetry was proposed 

by the random-phase approximation (RP A), which describes small oscillations about 
the deformed Hartree-Fock (-Bogoliubov) stationary solution by definition. In this 
method, a zero-energy mode appears for each broken symmetry in analogy with the 
Goldstone theorem. Thus, the rotations are regarded as the Goldstone bosons as­
sociated with the broken rotation symmetry. Up to this stage, however, we encoun­
ter the following related difficulty: The simultaneous eigenfunctions of the 
Hamiltonian and the angular momentum operator within the RP A turn out to be 
unnormalizable and they form a continuum instead of the discrete set appropriate to 
angular momentum eigenfunctions.9

) The difficulty arises, of course, from the fact 
that the RPA is valid only in a small neighborhood of the Hartree-Fock (-Bogoliubov) 
minimum. It is, therefore, crucial to go one step further to understand mechanism of 
transmutation of the "vibrational" Goldstone modes into the "rotational" modes. In 
the present case, the transmutation has to be induced with mixing of the residual 
interaction which has been neglected under the RP A (and generally involves the 
Goldstone bosons in a complicated way), by properly taking account of the rotation 
symmetry of the total Hamiltonian. 

The first successful method to understand the mechanism of transmutation of the 
"vibrational" Goldstone mode into the "rotational" mode has been proposed by 
Marshalek and Weneser.9

)-Il) In the Marshalek-Weneser (MW) method the general­
ized Holstein-Primakoff boson mapping12

),13) of fermion pairs (i.e., particle-hole pairs 
or quasiparticle pairs) is employed, and the rotational invariant Hamiltonian (of the 
even-even nucleus) is expressed in terms of the bosons (i.e., canonically conjugate 
coordinates and momenta) based on the deformed equilibrium shape. In this map­
ping the fermion-pairs can be expanded by the boson operators in such a way that the 
correct commutation relations for the fermion pairs are satisfied in each order of the 
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expansion. The expansion is characterized by a perturbation parameter Q-I/2 where 
Q ~ <2j + D represents the number of levels available to the active particles, and the 
diagonalized form of the lowest order Hamiltonian (of order Q2) is simply the RPA 
Hamiltonian. Since the MW method performs the transmutation of the Goldstone 
mode into the rotational mode by explicitly depending on this perturbation order, its 
excellent ingredients are often concealed by cumbersome perturbation arguments. 
This fact also makes it uneasy to give a straightforward link between the MW method 
and the constrained cranking-model approach which is practically used to describe 
the large-amplitude rotational motion. 

The main purpose of this paper is to clarify the basic ingredients of the MW 
method in a transparent way and to demonstrate the transmutation mechanism of the 
Goldstone mode into the large-amplitude "rotational" one, by employing the sec 
method. The quantum theory of sec method is formulated in order to define the 
optimum global collective subspace and the global collective variables specifying it, 
in such a way that the global operators can be connected with the "local" RP A 
operators in the small-amplitude region. When the sec method is applied to the 
collective rotational motion, therefore, the method itself manifests the transmutation 
mechanism of the "local" Goldstone mode into the "global" rotational motion. In 
§ 2, we show the transmutation mechanism in terms ofthe sec method, with the use 
of a two-dimensional system of particles adopted in the MW papers9

),IO) for didactic 
simplicity. The essential ingredients of the MW method become then transparent. 
It is known2

),3) that a classical image of the global collective boson operators employed 
in the quantum theory of sec method simply corresponds to the collective variables 
in the semi-classical theory of sec method formulated within the time-dependent 
Hartree-Fock (-Bogoliubov) theory. Through the intermediary of this fact in the 
sec method, in § 3, we demonstrate the manifest relationship between the MW 
method and the conventional cranking model approach. In order to visualize the 
occurrence mechanism of the low-spin ground-state rotational band by the sec 
method, in § 4 we solve the basic equations of the sec method for Er isotopes with the 
use of the pairing-plus-quadrupole-force model and analyze how the so-called 
rotation-vibration coupling effects are coherently organized so as to construct the 
optimum rotational subspace. Concluding r~marks are given in § 5. 

§ 2. Description of collective rotation by means of see method 

2.1. Quantum description of collective rotation in boson representation 

Following to the MW paper,9) let us suppose for the sake of simplicity that a 
two-dimensional system consisting of even fermions is given with a rotational invar­
iant Hamiltonian fj with an effective (smooth) inter-particle force. We further 
suppose that the Hartree-Fock minimization gives a stationary solution with an 
intrinsic deformation which leads us to the concept of spontaneous breakdown of the 
rotation symmetry. In the finite quantal system under consideration, the br~ken 
symmetry has to be restored by proper inclusion of the residual interaction which has 
been neglected under the Hartree-Fock approximation. Thus, microscopic structure 
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of the collective rotation is essentially related to the problem of how to treat the 
residual interaction so as to restore the broken symmetry. The first order inclusion 
of the residual interaction is known to be treated by means of the RPA, and the 
collective rotation in this case manifests itself as a Goldstone (boson) mode. 
Although it was shown by Thouless and Valatin8

) that the moment of inertia thus 
obtained turned out to be the same in the leading order as had been obtained from the 
cranking model, there remained the difficulties9

) associated with the fact that the 
rotational mode is not of the "vibrational" one such as the Goldstone mode. In order 
to clarify the occurrence mechanism of the rotational motion, we therefore have to go 
one step further to display the mechanism of transmutation of the vibrational 
Goldstone mode into the large-amplitude rotational mode. 

Essential advantage of the MW method for this problem is to employ the general­
ized Holstein-Primakoff boson mapping of the fermion pairs and to explicitly demon­
strate a possibility of describing the rotational invariant Hamiltonian in terms of 
canonically conjugate coordinates and momenta (i.e., bosons) based on the deformed 
equilibrium shape.*) According to the generalized Holstein-Primakoff boson map­
ping, the fermion-pair operators**) {cJ Ci, c1 Ca, cJ Cp, CiC}} are represented in 
terms ofbosons {BJi, BpJ (satisfying [Bai, B)j]=oapO.:; and [Bai , BpJ=O) so as to keep 
the commutation relations among the fermion-pair operators in the following manner, 

- t - ( - t - ) - "Bt B -A Ca Cp--7 Ca Cp B-~ aj pj= pa, 
j 

--t (--t)-"BtB C i C j --7 C i C j B - ~ ai aj, 
a 

C J C i --7 ( C Jc ;)B = [B t J I - A ] ia , 

Cl Ca--7( Cl Ca)B=[J I-A B]ai, (2·1) 

where I is the unit matrix in the unoccupied space, (I)ap= Oap. Thus, with the aid of 
the generalized Holstein-Primakoff boson mapping, our starting Hamiltonian 
H( C t, c) is given in terms of the bosons as 

which is expressed by the RP A bosons {o ~, 0 p, J RPA , ~PA} as***) 

H(B t , B) = HRPA + Hresid( 0 t, 0, JRPA, ~PA) 

=H(ot, 0, JRPA, ~PA), 

IT - t+" ot 0 + 1 J2 ****) £.lRPA-COns ~cvp p p 2!i 0 RPA. 

(2'2) 

(2·3) 

*) An extension of such a boson description to the non-Aberian case of three dimensional rotation is 
complicated but essentially capable, as has been shown by Marshalek.14

) 

**) Throughout §§ 2 and 3 we use the convention of denoting occupied single-particle states of the 
deformed Hartree-Fock state 1<1>0> by indices i, j, "', and unoccupied single-particle states by indices a, /:1, .... 
Thus we have cal<l>o>= citl<l>o>=o. 

***) For simplicity, Goldstone modes other than the rotational one are omitted here. 
****) Throughout the formulation in this paper, we employ the convention n=l. 
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Here, the operators {OJ, O~,} represent the vibrational RPA bosons given by 

(2·4) 

and satisfy 

[HRPA, OJ]=(OpOJ, ((Op>o) 

(2' 5) 

The operator J RPA is' the RP A -order part of the angular momentum operator J 
(=(])B) in the boson representation and corresponds to the Goldstone boson with zero 
energy, and (APA is the angle operator canonically conjugate to J RPA. They commute 
with the RPA bosons, i.e., [Op, JRPA]=[OP, (APA]=O, and satisfy 

[HRPA,JRPA]=O, [HRPA, (APA]=-i
J
;:, [(APA,JRPA]=i. (2'6) 

The set of Eq. (2'6) is sufficient to determine (APA and the Thouless-Valatin moment 
of inertia go. 

In the quantum theory of see method, the representation with the use of the set 
of localbosons {OJ, Op, JRPA, (APA} is called the initial representation.2

) It has to be 
noted that the residual interaction Hresid in Eq. (2·3) involves the Goldstone boson J RPA 

as well as the angle operator (APA in a very complicated way, and the introduction of 
the collective operators {JRPA, (APA} and the non-collective operators {OJ, Op} in the 
initial representation is only valid in the "small-amplitude" RPA region in the 
neighborhood of the stable Hartree-Fock minimum. In the see method, the predse 
definition of the global collective operators (specifying the optimum collective sub­
space) and the "intrinsic" (non-collective) operators is given in the dynamical represen­
tation.2

) 

The dynamical representation is obtained by a non-linear unitary transformation 
from the initial representation, 

J= V(ot, 0, J RPA, (APA)JRPA V-1(ot, 0, JRPA, (APA) , 

l/J= V(ot, 0, JRPA, (APA)lPRPAV-1(Ot, 0, J RPA, (APA) , 

[3J= V(ot, 0, J RPA, (APA) OJ V-1(ot, 0, JRPA, (APA) and h.c., 

(2'7a) 

where J is the exact angular momentum operator and the set {J, l/J} are the global 
collective operators optimally describing the collective rotational motion, while the 
set {[3J, [3p} describes the intrinsic degrees of freedom. By definition, we have 

J RPA = V-1([3t, [3, J,l/J)JV([3t, [3, J, l/J) 

=J +[J, iF([3t, [3, J, l/J)]+ i! [[J, iF], iF]+··· , 
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tPwrA= V-1(p t , 13, J, (/J)(/JV(p t , 13, J, (/J) 

= (/J+[(/J, iF(pt, 13, J, (/J)]+ i![[(/J, iF], iF]+···, 

OZ= V-1(pt, 13, J, (/J)pZ V(pt, 13, J, (/J) 

= pZ + [pZ, iF(pt, 13, J, (/J)] + i! [[pZ, iF], iF] + ... and h.c., 

(2·7b) 

The Hamiltonian in the dynamical representation is generally expressed as 

H( 0 t, 0, J RPA, ~PA)= V-1(p t , 13, J, (/J)H(p t , 13, J, lP) V(pt, 13, J, (/J) 

=.9CCOll(J) + Ll.9C(pt , 13, J)-=-.9C(pt, 13, J), (2·8) 

where the Hamiltonian .9C(pt, 13, J) does not include the angle operator (/J because of 
the rotational invariance of the Hamiltonian. It is now self-evident that the occur­
rence mechanism of the rotational motion, i.e., the transmutation mechanism of the 
Goldstone mode into the rotational mode is given by the non-linear unitary transfor­
mationV. The first term .9C COll(J) in Eq. (2·8) has no intrinsic bosons {P,}, PI'} and 
consists of only the angular momentum J, so that it is identified to be the collective 
rotational Hamiltonian. The remaining part is expressed as 

Ll.9C(pt, 13, J)-=- ~ .9C lnJ (pt, 13, J) , (2·9) 
Jl21 

where n denotes a power of the intrinsic bosons {pZ, PI'} contained in .9C lnJ (pt, 13, J). 
Hereafter the superscript n is called rank. 

An essential idea of the theory of nuclear collective dynamics based on the see 
method is to determine the non-linear unitary transformation V(pt, 13, J, (/J), by 
successive unitary transformations depending on the rank.2

),4),5) The first one is 
decisively important and determines the collective Hamiltonian .9C con(J) as well as the 
optimum collective rotational subspace. This first unitary transformation, denoted 
by Vscc(pt, 13, J, lP), is determined by the see method, by demanding the following 
two conditions: 

i) The optimum collective subspace should satisfy the maximal decoupling condi-
tion 

.9C ln=lJ(pt, 13, J)=O. (2·10) 

ii) The resultant collective Hamiltonian .9CcOll(J) depends only on the angular 
momentum J and never includes the angle operator lP. 

In solving the basic equations of the see method derived from the two conditions, we 
need boundary conditions to specify the global operators {pZ, PI', J, tP} . . This is 
chosen in such a way that these operators have to be connected with the local bosons 
{OZ, 01', J RPA, ~PA} in the small-amplitude RPA region, 

J --->JRPA, (/J---> ~PA, pZ ---> OZ and h.c. (2 ·11) 
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Microscopic Description of Nuclear Collective Rotation 1241 

Although we do not intend to go further into details of the solution in this paper, as 
shown in Ref. 2), the generator Fsee(/3t, /3, J, f/J) defined by 

TT (/3t /3 J di)=eiF>£c(P',P,J,f/) vt = v I'see " ,'V , .L'see L'see, (2-12) 

is determined by the see method, as well as the collective rotational Hamiltonian 
.9[cOll(J) specifying the optimum stationary collective subspace. 

Now, let us express the local bosons {OJ, 01', J RPA , ~PA} in Eq. (2-7b) in terms of 
the rank n for the intrinsic bosons {/3J, /3p.}, 

and h.c. (2 -13) 

Since the unitary transformation Vsee(/3t, /3, J, f/J) is the first one of the successive 
unitary transformations' constructing V(/3t, /3, J, (,/)), the see method determines the 
lowest rank (n=O) parts in Eq. (2-13) through 

JtJ;.OJ(J, (,/))=[ VsctJVsec] [n=OJ , 

diln=OJ(J di) - [ TT-l di TT ][n=oJ Y'RPA , 'V - I'see'V I'see . 

(2 -14) 

Once the lowest rank relations (2-14) and the collective Hamiltonian .9[coll(J) are 
determined by the see method, the higher rank relations of Eq. (2-13) and .9[[nJ(/3t, 

/3, J) in Eq. (2-9) are determined by the successive unitary transformations which are 
obtained by a perturbation theory with respect to the rank n of the intrinsic bos­
ons.2),4),5) 

2.2. Classical image of boson representation by time-dependent Hartree-Fock theory in 
canonical-variable representation 

In the previous subsection we have seen that the essential dynamics of the 
occurrence mechanism of the rotational motion is given by the non-linear unitary 
transformation Vsee(/3J, /31', J, (,/)). In order to visualize the occurrence dynamics in 
a transparent way, it is convenient to employ a classical image of the boson represen­
tation of the generalized Holstein-Primakoff type. The classical image is directly 
obtained by means of the time-dependent Hartree-Fock (TDHF) theory in the 
canonical-variable representation.3),15),16) 

The basic equation of the TDHF theory is 

o<¢(t)I{ (i ~ -H )I¢(t» }=O, (2-15) 

where the time-dependent Slater determinant I¢(t» is given by 
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1242 ]. Terasaki, T. Marumori and F. Sakata 

(2 °16) 

with I¢o) being the deformed Hartree-Fock stationary solution. Instead of the 
variables {f;;(t), !ai(t)}, we introduce a new set of variables {Cti, Cai} through a 
variable transformation 

(2 °17) 

The symplectic structure of the TDHF theory3) always enables us to choose the 
variables {Cti, CaJ to be of the canonical-variable representation, in which the TDHF 
equation (2 °15) can be expressed as the canonical equations of motion in classical 
mechanics, 

(2 0 18a) 

i.e., 

(2 0 18b) 

where 

H=<¢(t)lfIl¢(t)=<¢ol Ot fIOI¢o) . (2°19) 

The necessary condition for the canonical-variable representation is that the 
local infinitesimal generators, defined by 

(2°20) 

have to satisfy the "weak" boson-like commutation relations 

(2 ° 21) 

Since the TDHF equation (2 °15) is written as 

(2°22) 

and the generators {Yati, Yai} are one-body operators by definition, the canonical 
equations of motion (2°18) are easily derived from Eq. (2°22) by taking 10'¢)cx:: Ya~: I¢) 
and: Yai : I¢), and using Eq. (2°21). 

It can be proved l
) that the generators {Yati, Yai} which satisfy Eq. (2 ° 21) are 

generally determined by the relations called the canonical:variable conditions 

<¢I yatil¢)= ~ Cti- i a~ai S( C*, C) , 

<¢I Yail¢)= ~ Cai+i a~ti S(C*, C), (2 ° 23) 

where S(C*, C) is an arbitrary real function of {Cti, CaJ The form of Eq. (2°18) is 
invariant under canonical transformations of the variables {Cti, Cai}, and so the 
function S( C*, C) expresses the freedom in choosing a set of canonical variables. 
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Microscopic Description of Nuclear Collective Rotation 1243 

Let us choose the variable transformation in Eq. (2 ·17) so as to be of the form 

C sinfGGt C C t = Ct sinJGGT 
jcc t ' jcc t ' 

(2·24) 

with C, C t , C and C t being matrices whose elements are defined by 

(C)ai=Cai, (Ct)ia=Cl'i, 

(C)ai=!ai, (Ct)ia=!Ji. (2·25) 

Then, we can see 1),3) that the choice of the canonical variables {C ti, Cai} satisfy 
Eq. (2·23) with S(C*, C)=O, and leads us to the relations 

<¢i cJ cpi¢>=~ctjC.Bj=Apa, <¢i cicJi¢>=~CtiCaj, 
j a 

(2·26) 

Comparing Eq. (2·26) with Eq. (2 ·1), we can easily see that the TDHF theory in the 
canonical-variable representation with the choice (2·24) precisely corresponds to a 
classical image of the boson representation of the fermion-pair operators {c J c i, 
c? Ca, cJ Cp, CiC]}, with the correspondence 

[Bai , B pj] =0 <-+ {Cai, Cpj}PB=O, (2·27) 

where the symbol {A, B}PB denotes the Poisson bracket defined by 

Thus, the classical correspondence {O;, Op.,]RPA, ([)RPA} of the RPA boson opera­
tors {OJ, 01', JRPA, ~PA}, which have been defined by Eq~ (2·4) and by 

is simply obtained by the RPA canonical transformation of {Cti, Cai}, 

O;=~{¢p.(ai)Cti+<pp.(ai)Cai} and c.c., ai 

2.3. Collective rotation in TDHF phase sjJace 

(2·29) 

(2·30) 

Corresponding to the non-linear unitary transformation (2·7), let us consider a 
non-linear canonical transformation in the TDHF phase space, 

(2· 31) 

where {c;;, c;l'} and {J, ([)} are classical correspondents of the global intrinsic and 
collective operators, {PJ, PI'} and {J, a>}, respectively. In a parallel way with the full 
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quantum theory, we can express the canonical transformation with the use of a Lie 
derivative5)..L' F with a real generating function F(e, ~.J, ({)), which is defined by 

..L' F * = - i{F, * }PB . 

As the correspondents to Eq. (2· 7b), we thus have 

]RPA= (exp..L' F)] =] +{], iF(e, ~.J, ({))hB+ i! {{], iF}PB, iFhB+'" , 

({)RPA = (exp..L' F) ({) = ({) + {({), iF(~*, ~.J, ({) )}PB + i! {{ ({), iF}PB, iF}PB + ... , 

(2·32) 

O;=(exp..L'F)~;=~;+{~;, iF(~*, ~.J, ({))}PB+ i!{{~;, iFhB, iFhB+'" and c.c. 

0(2·33) 

Since the transformation (2·33) is canonical, the canonical equations of motion in the 
TDHF phase space, (2·18), is transformed into the canonical form with respect to 
{~;, ~p,], ({)}, i.e., 

(2·34) 

where the Hamiltonian 3C(e, ~,]) is given by 

(2·35) 

corresponding to Eq. (2·8). 
The generators with respect to the new variables {~;, ~p,], ({)} are expressed in 

terms of those of Eq. (2·20) as 

]- - (0. a u-) u- t _ '''\;"1{ aCa; y;-tact; y;- } 
<1>= Z a({) -z7it act) a;-~ a; , 

XJ=( - a~; D)Dt=-~{ ~~;; Yat;- ~~;i Ya;} and h.c. (2·36) 

By definition, they have to satisfy the canonical-variable conditions with the same 
form as Eq. (2·23),1),*) 

<¢I J <1>1¢>=] + a~ S(e, ~.J, ({)) , 

-a <¢I ({)I¢>= - a] S(e, ~.J, ({)) , 

<¢IXJI¢>=~ ~~-i at S(e, ~.J, (()), 

*) As will be seen from Eqs. (2'45), (2'46) and (4'8), it turns out that S(e, t;, j, ([J)=O is actually 

convenient for describing the collective rotation under consideration. 
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(2·37) 

which guarantee the "weak" canonical commutation relations 

(2·38) 

Corresponding to Eq. (2·8) with Eq. (2·9), the Hamiltonian (2·35) is expressed as 
a Taylor expansion with respect to the intrinsic variables {~;, ~p}, 

!JC[n=oJ = [!JC] ==!JC COliC!) , 

(2·39) 

where the symbol [A] for any function A(~*, ~,], (/J) denotes a function on a collec­
tive submanifold (surface) l:R, i.e., 

[A]==A(e=O, ~=O,], (/J). (2·40) 

In the same way as the full quantum case, the canonical transformation exp.1' F in 
Eq. (2·33) is determined by successive transformations depending on the rank n. 
The first one is expressed by exp.1' Fsee with 

.1' Fsee * = - i{Fscc, * hB , 
Fscc=FJ8cOJC!, (/J)+ FJ8c iJ(e, ~,], (/J), Fs*cc=Fscc, 

FJ8clJ=="2},{~;Fl:ccC!, (/J)+~pFI:cH], (/J)}, (2·41) 
p 

and determines the collective Hamiltonian !JC COliC!) and the optimum collective sub­
manifold l:R. Thus, the essential dynamics of the occurrence mechanism of 
rotational motion (described by the global collective variables {j, (/J}) is given by the 
first canonical transformation with Fscc. The aim of the SCC method formulated 
within the TDHF theory is to determine the functional form Fscc, so as to extract the 
optimum collective submanifold l:R out of the huge-dimensional TDHF phase sp<rce 
and to obtain the optimum collective Hamiltonian !JCeollC!). 

The basic equations of the SCC method are the following.!) The canonical 
equations of motion (2·34) have expressions in die rank n=O, 

[I] rP=(J[!JC]/(J] , j =-(J[!JC]/(J(/J=O, (2·42) 

which is called the equations of collective motion of the SCC method. The condition 
that the optimum collective submanifold l:R should be stationary is simply written as 

[II] !JC[n=lJ=o, i.e., [~~J=[ ~~J=o, (2·43) 

which is called the equation of collective submani/old or the maximal decoupling 
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condition. The canonical-variable conditions (2·37) have expressions in the rank n 
=0, 

[III] - - - 0 - -- 0 
<¢ol[ U t

][] 4>][ U]I¢o>= f + 0(1) [S]' <¢ol[ U t ][ (1)][ U]I¢o>= - of [S], 

(2·44) 

which is called the canonical-variable condition for the collective variables {J, (1)} in the 
see method. When we choose 

o 
0(1) [S]=O, (2 ·45) 

we obtain <¢ol[ Ot][J 4>][ O]I¢o>= f, so that the generator [J <ll]=(io[ O]/o(1»)[Ot] may 
be identified with the angular momentum operator in terms of the fermion operators, 
i.e., 

(2·46) 

The set of basic equations [1], [II] and [III] of the see method, together with the 
choice (2·45) and the boundary condition in the small-amplitude RPA region, 

(2·47) 

enables us to determine the generating function Fsee as well as the collective 
rotational Hamiltonian !J(con(f). 

§ 3. see method and cranking model 

The classical image of the boson representation by means of the TDHF theory 
discussed in the previous section enables us to establish a manifest relationship 
between the MW full quantum theory of collective rotation and the conventional 
cranking model description through the mediation of the see method. 

Let us introduce a class of TDHF states 

(3 ·1) 

which corresponds to the rank n=O part of Eq. (2·16) with 

[O(t)]= Osee=ei[G(t)], [G(t)]=~{gai(f, (1») cJ ci-g;;(f, (1») Cl Ca}. (3·2) 
ai 

It satisfies 

(3·3) 

which is called the invariance principle of the time-dependent Schrodinger equation in 
the see method. Since Osee is a function of only the cQllective variables {J, (1)}, 
Eq. (3·3) is formally written as 

O<¢see(t)lil- dJ J + j [&]1 ¢see(t» =0, (3·4) 
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Microscopic Description of Nuclear Collective Rotation 1247 

where [d5] is the rank n=O part of the generator d5 defined in Eq. (2·36) and J is the 
angular momentum operator in Eq. (2·46). 

Advantage of the use of the invariance principle of the time-dependent Schrodin­
ger equation (3·3) is that the basic equations [I], [II] and [III] can be derived from it 
without the explicit use of the intrinsic variables {.;;, .;,,}. 

They are derived in the following way. By taking 1 ocPscc> ex : [d5]: 1 cPscc> and: J: 
IcPscc> in Eq. (3·4) and by using the rank n=O parts of the commutation relations 
(2·38), we obtain the equations of collective motion 

[I] (j) = a.3C con/a], j = - a.3C con/a(f) = 0 , 

.3Ccoll =<cPscciillcPscc>=[.3C] . (3·5) 

By taking 10-1- cPscc> ex : [XJ]: 1 cPscc> and: [X,,]: 1 cPscc> in Eq. (3 ·4), we obtain the equation 
of collective submanifold*) 

[II] (3·6) 

which means that the optimum collective submanifold IR should be extracted in such 
a way that the expectation value of the Hamiltonian with the TDHF states (3 ·1) is 
stationary at each point on the surface IR with respect to the variations perpendicular 
to the surface. The canonical-variable conditions for the ~ollective variables (2 ·44) 
with Eq. (2·45) are simply written as 

[III] - - a 
<cPsccl] 1 cPscc> =] , <cPscci[(f)]lcPscc>=- a][S]. (3·7)**) 

Inserting Eq. (3·5) into Eq. (3·4), we obtain 

- - a a-
o<cPscclH - w(J)J 1 cPscc> =0 , w(J)= a] .3CcOll(J)= a] < cPscciHI cPscc> . (3·8) 

Thus, the set of basic equations [1], [II] and [III] of the see method (Eqs. (2·42) 
------(2·44» is simply reduced to Eq. (3·8) with the canonical-variable conditions (3.7). 

Now the relationship of the above formulation of the see method to the cranking 
model is self-evident.17l With Eqs. (3·8) and (3·7) we may have 

0< cPscc(w )Iil - w J 1 cPscc( w» =0, < cPscc(w) 1 J 1 cPscc(w »=] (3·9) 

with the Lagrange multiplier w. This is nothing but the basic equation of the 
constrained cranking model. For lower values of ], the equation is conventionally 
solved by the perturbation method with respect to w. For higher values of ], it is well 
known that the equation is successfully solved self-consistently by making use of the 
steepest decent method. IS) 

*) Equivalence of the expression (3·6) to that of Eq. (2·43) for the equation of collective submanifold is 
proved in Ref. 3). 

**) See the footnote on p. 1244. 
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1248 J Terasaki, T Marumori and F. Sakata 

§ 4. Structure of low-spin states in ground-state rotational band 

4.1. Excitation energies of ground-state rotational band 

In order to visualize the occurrence dynamics of the collective rotation, in this 
section we analyze structure of low-spin states in the ground-state rotational bands of 
axially symmetric even-even deformed nuclei, by solving the basic equations of the 
SCC method. The excitation energies of the low-spin states in the ground bands of 
these nuclei are conventionally expressed, in an expansion form with respect to the 
angular momentum 1,6M) 

E(I)=Jl1(I + 1)+ g) P(I + 1)2+ .... (4 ·1) 

Provided that the coefficient Jl is given by the cranking model value Jl=1/2g 0 with 
the Thouless-V alatin moment of inertia g D, various investigations of the structure of 
the coefficient g) have been done. Marshalek2o

) treated the Coriolis force as a 
perturbation, and calculated E(I). He separated g) into some coupling terms by 
paying attention to the variation of the self-consistent field caused by the rotation. 
Ma et al. 21

) separated g) into some terms with the aid of the variable moment of inertia 
model.22

) Pavlichenkov23
) and Mikoshiba et al.24

) also separated g) into some cou­
pling terms by representing the variation of the self-consistent field in terms of the 
RPA operators and treating them as a perturbation. Semi-macroscopic approach 
should be also noted. One can obtain the contribution to g) which comes from the 
coupling with the y-vibration and theE-vibration from the experimental data of the 
transition probability based on the model of Bohr and Mottelson.6

) Faessler et al. 
also performed calculations by means of the rotation-vibration coupling model.25

) 

Physically the term with g) expresses leading effects due to variations of the deformed 
mean field by the rotation. 

In the SCC method, the dynamics of the occurrence of the optimum collective 
rotation is self-consistently specified by the basic equations [1], [II] and [III]. Espe­
cially the equation of collective submanifold [II] given in Eq. (3·6) is decisively 
important in determining the optimum collective rotation. It is, therefore, quite 
interesting to investigate the structure of the coefficient g) by means of the SCC 
method: We then can clarify how the rotation-vibration coupling effects are self­
consistently organized so as to construct the optimum collective rotation. 

4.2. Perturbative solution of basic equations of see method 

Since we are considering the low-spin states in the ground band of an axially 
symmetric deformed even-even 'nucleus, let us suppose that a rotational invariant 
Hamiltonian is given with the pairing-pIus-quadrupole force, which is adequately 
treated by the Hartree-Fock-Bogoliubov quasiparticles {aL aa}**) rather than the 

*) In the low-spin region we can use this expression, although the expression is worse than that of the 
co-expansion in the high-spin region, 

**) Hereafter, we use the convention of denoting the single-quasiparticle states of the deformed Hartree­
Fock-Bogoliubov state I¢o> by indices a, fl, "', Thus, we have aal¢o>=O. 
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Microscopic Description of Nuclear Collective Rotation 1249 

Hartree-Fock particles and holes {cJ, Ci ; Ca, cn employed in §§ 2 and 3. For 
simplifying the problem, we further restrict ourselves to the collective rotation around 
an axis (I-axis) perpendicular to the symmetry axis (3-axis). The invariance princi­
ple of the time-dependent Schrodinger equation in the see method (in Eq. (3·3» is 
then expressed as 

o<¢secl{i ~ - 81¢see> }=O, 1 ¢see> = Usecl¢o>, 

(4 ·2) 

where J is the component of the angular momentum to the I-axis and 1 ¢o> is the 
deformed Hartree-Fock-Bogoliubov ground state. The form of the unitary transfor­
mation Usee in Eq. (4·2) is adopted so as to satisfy Eq. (2·46).17) Then iGsee(J) is an 
anti-Hermitian operator written in terms of the quasiparticles and can be expressed 
by means of the quasiparticle RPA operators as 

where the quasiparticle RP A operators {OJ, 01', J RPA, d5RPA} satisfy 

[8, OJhPA=WpOJ, (wp>O) 

[01', O!]RPA=OpV, [01', OV]RPA=O, 

[8, J RPA]RPA =0, [8, fPRPA]RPA = - iJ RPA/ go, 

(4 ·4) 

corresponding to Eqs. (2·5) and (2·6), and the symbol LA, BhpA denotes the commuta­
tion relation under the quasiparticle RP A. The linear term in ] of iGsee(J) is chosen 
so as to satisfy the boundary condition that, in the small-amplitude RPA region, the 
collective variables {J, fP} are reduced to 

(4 ·5) 

The unknown expansion coefficieilts, !A(r), !M(r) and gp(r) in iGsee(J) are determined 
self-consistently so as to satisfy the basic equations (3·8) and (3·7) in each order of J. 

It is shown!) that the set of basic equations (3·5) and (3·6) can be reduced to an 
equation 

W(J) d3{con(J) 
d] (4 ·6) 

accompanied with the canonical-variable condition (3·7). Provided that the 
Hartree-Fock-Bogoliubov ground state I¢o> has a definite time-reversal symmetry and 
satisfies <¢oIJI¢o>=o, we obtain a self-consistent solution of Eqs. (4·6) and (3·7) 
which are necessary for obtaining the expression (4 ·1), in the form 
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!A(2)=0, 

!M(2)=0, 

J Terasaki, T. Marumori and F. Sakata 

gp(2)= ;;p {~ <<Pol[1l, icPRPA, icPRPA, Op]l<po>- )0 <<Pol[J, icPRPA, Op]l<po>} , 

!A(3)= - <<Pol[ J, icPRPA, L:{gp(2) OJ - gt(2)Op}]1 <Po> 
p 

with the choice of 

[5]=0. 

In Eq. (4·7) the symbol [A, 13, C] denotes a multi-commutation relation 

LA, 13, C]=[[A, 13], C]. 

(4·7) 

(4·8) 

(4·9) 

Evaluating the expectation value <<pscclHI<pscc> and replacing r by I(I + 1), we obtain 

(4·10) 

which corresponds to 93 in Eq. (4·1).*) 
The first and second terms in 93 0 are independent of the RP A vibrational modes 

{OJ, Op}, and the third term in 93 0 just corresponds to the effects due to the conven­
tional rotation-vibration coupling with the RPA modes. It is however noted that, in 
the conventional rotation-vibration coupling approach, only the couplings with the 
"collective" vibrational modes (with the lowest eigenvalue for each K-quantum 
number) are explicitly taken into account. One of the characteristic features of the 
see method is that not only the coupling with the "collective" vibrational modes but 
also the coupling with the other many non-collective modes contribute to 93 0 explicit­
ly. The formulation of Pavlichenkov23

) also has this feature. 

4.3. Numerical calculations for Er isotopes 

In order to visualize the various contributions to the coeffi<;:ient 93 0 given in 
Eq. (4 ·10), we perform the numerical calculation for Er isotopes by using the model 
Hamiltonian with the pairing-pIus-quadrupole force, which is treated by the Hartree­
Fock-Bogoliubov quasiparticles. Since the quasiparticle representation based on the 
deformed Hartree-Fock-Bogoliubov ground state l<Po> breaks down the particle 
(proton and neutron) number conservations, there also occur the Goldstone modes 
associated with the broken symmetry. The fluctuations of the pairing field induced 

*) We have used the notation 93 0 in Eq. (4·10), since we will use the notation 93 in Eq. (4·23) for an 

extended case. 
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by the rotation are thus interwoven with such Goldstone modes .. In obtaining the 
expression (4-10), we have not taken account of such Goldstone modes. We therefore 
make the numerical calculation in the following way: First of all, we perform the 
numerical calculation of Eq. (4 -10) by employing a model Hamiltonian without the 
pairing residual interaction. In this case the correlations for the RP A modes arise 
from the quadrupole force. In the next subsection, we treat the effects of the pairing 
fluctuations by carefully taking into account the Goldstone modes associated with the 
broken particle-number conservations. 

The first model Hamiltonian thus consists of a one-body Hamiltonian with the 
quadrupole-force two-body interaction. It is rotationally invariant but breaks the 
particle-number conservations, and is given by 

H1=hsho+vzsZ - s+ ~ vzz(r)( P-~< P>NoscCZ Ck) 
r=p,n k 

(4 -11) 

where lisho describes the single-particle Hamiltonian based on the spherical harmonic 
oscillator,*) 

(4-12) 

with C Z and C k being the nucleon creation and annihilation operators of the single­
particle state k of the oscillator, respectively. For simplifying the problem, two 
major shells are used for the calculation, i.e., Nosc=4 and 5 for the proton and Nosc=5 
and 6 for the neutron. The terms i- sand P in Eq. (4 -11) are the conventional 
one-body operators defined by 

(4-13) 

where i and s are the single-particle orbital angular momentum and its spin, 
respectively, and < P>Nosc=Nosc(Nosc+3)/2 is the expectation value of P averaged 
over each major shell with a definite value of Nose. The quantities QM(M=O, ±1, 
±2), j\(r=p, n) and Nr are the quadrupole operators, the conventional monopole 
pair-operators and the number operators for the proton (p) and the neutron (n), 
respectively. The adopted values of the parameters in Eq. (4 -11) are the following: 

tiwo=41/Al/3 MeV ,6) vzs= -0.1270tiwo MeV, 

vll(n) = -0.0268tiwo MeV, Vll(P)= -0.0382tiwo MeV ,6) 

X = 240/A5/3(Mwo/ti)2 X a MeV , 

where A and M are the mass number and the nucleon mass, respectively, and a is a 
correction factor with the value of 1.02-1.03 by which the experimental energy of the 
.a-vibration is reproduced by the RPA within the difference of about 10 %. For 
derivation of the value X = 240/A5/3(Mwo/ti)2 MeV, see, for example, Ref. 26). The 

*) In the numerical calculation, we do not emploY the convention n=l which is used throughout the 
formulation in this paper. 
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Table I. Parameters used in the Hamiltonian (4·11). 

X LIp LIn Ap An 
[( J:~wo )"Mev] [MeV] [MeV] [MeV] [MeV] 

160Er 0.050895 1.0544 1.1287 44.37 48.47 
162Er 0.051348 1.0470 1.0522 44.20 48.50 
164Er 0.050309 0.9855 1.0378 44.04 48.74 
I 66Er 0.048824 0.8762 0.9640 43.89 49.01 
16SEr 0.048328 0.8305 0.7755 43.71 49.26 

values of the pairing fields LIr are determined from the experimental odd-even mass 
differences,27) and the chemical potentials Ar are fixed so as to satisfy the particle­
number constraints for the ground state [<Po>. These values are given in Table I 
together with the values of x. 

We summarize the procedure of the numerical calculation. At first, we solve the 
Hartree-Bogoliubov equation and determine the deformed ground state [<Po>, by which 
the single-particle (quasiparticle) base with the signature representation28

) is con­
structed. The exchange term of the quadrupole interaction has been neglected. 
Under this condition, the (quasiparticle) RPA modes with the negative signature have 
no contribution to fE o. The contributions of the RP A modes with higher energies are 
very small, so we have adopted about 250 RP A modes in the order of the lowest in 
energy, except the special modes which have zero matrix elements of the quadrupole 
operators. The highest excitation energy of the adopted RPA modes is 7.0-7.5 MeV. 

In Figs. 1 and 2, the calculated values of Jl and fEo in Eq. (4·10) for Er isotopes 
are shown, respectively. In order to compare with the experimental values, we also 
show the values of Jl deduced from the energy of the lowest 1"=2+ state29

) and fE 

obtained by the 4-parameter fitting with the expression 

0> 
~ s:-II) 0.02 

~ 

~ 0.01 

o 

~.~ 
...... -0... __ _ 

-0-----0 

160 162 164 166 168 

Mass Number 

Fig. 1. Parameter JI. for Er isotopes as a function 
of the mass number. Solid circles indicate the 
results of our calculation with the Hamiltonian 
(4 ·11). Open circles are deduced from the 
experimental energy at r=2+!9) 

..tJ 
I 0.5 

'l 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

160 162 164 166 168 

Mass Number 

Fig. 2. Parameter -!Bo for Er isotopes as a func­
tion of the mass number. Solid circles indi­
cate the results of our calculation with the 
Hamiltonian (4 ·11). Open circles are the 
results of the 4-parameter fitting with Eq. 
(4·14) to the experimental energies up to r 
=8+ state. 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/85/6/1235/1841452 by guest on 09 April 2024



Microscopic Description of Nuclear Collective Rotation 1253 

E(I) =JlI(I + 1) + 93 (I(I + 1))2 + C (I(I + 1))3 + fJ) (I(I + 1))4 (4 ·14) 

to the experimental energies up to 1"=8+ state. 
The magnitudes of both Jl and 93 0 of our calculations are larger than those of the 

experimental ones.*) The problem of the larger Jl values, which means small 
moments of inertia, has been studied as a problem of the effective interaction. The 
introduction of the quadrupole-pairing interaction30

) may be one of the possibilities to 
revise the problem. 

Figure 3 shows the contribution of the rotation-vibration coupling by each RP A 
mode, separately. In Fig. 4, the sum of the contribution of the rotation-vibration 
couplings (the third term in Eq. (4 ·10)) and the contribution of the first and second 

160Er l66Er 

6 6 

w~ [MeV] w~ [MeV] 

162Er 16SEr 

6 6 
w~ [MeV] w~ [MeV] 

III.;JJ"L LL~. __ ........ . 

6 

w~ [MeV] 

Fig. 3. The rotation·vibration coupling wplg~(2)12 with the RPA eigenenergy Wp. Note that the 
contribution to $0 is -wplgp(2)i2. 

*) Although the reduction of the magnitude of the pairing fields by about 20·30% brings much better 
result, such reduction becomes inconsistent with the odd· even mass difference. 
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6 
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Fig. 4. Contribution of the sum of the rotation­
vibration couplings and the other terms to the 
93 0 parameter. Solid line indicates'the sum of 
the rotation-vibration couplings and dotted line 
shows the other terms. Pairing residual 
interaction is not included. 
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Fig. 5. The strength function 1<¢ol[Qo,Qp]l¢o>1 in a free scale. The abscissa denotes the RPA 
eigenenergy Wp. 

terms are shown by the solid line and the dashed line, respectively. It is clear that the 
contribution of the first and second terms is always positive, and its isotope depen-
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l66Er 

6 

w~ [MeV] 

l6SEr 

6 

w~ [MeV] 

Fig. 6. The strength function I<¢ol[ Q2, 6~]I¢o>1 in a free scale as a function of the RPA eigenenergy w~. 

dence is less prominent than that of the rotation-vibration couplings. In Figs. 5 and 
6, the strength functions with QM=O and QM=2 are shown, respectively. By comparing 
Fig. 3 with Figs. 5 and 6, it is clearly seen that the rotation-vibration couplings with 
K=2 modes are smaller than those of K=O modes,*) and the largest coupling, which 
is the bne with the ,B-vibration, shows especially strong neutron number dependence: 
The magnitude increases with the neutron number decreasing. Here, it should be 
remembered that the transition from the rotational nuclei to the vibrational nuclei is 
known to occur at the neutron number N ~ 88-90,31) and 154Er is clearly a vibrational 
nucleus~ 32) 

*) The energy of the y-vibration in our calculation is overestimated compared with the experimental 
value due to the fact that the adopted strength of the QQ-force in the spherical base is K-independent because 
of the rotational invariance. This may make the magnitude of the rotation-y-vibration coupling underes­
timated to some extent. 
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4.4. Contribution of pairing residual interaction 

We are now at the stage to investigate the contribution of the pairing fluctuation 
to 93 in Eq. (4 ·1) by carefully taking account of the Goldstone modes associated with 
the broken particle-number conservations. The Hamiltonian adopted is that of the 
pairing-pIus-quadrupole force model: 

fi = hShO+ VZs l· s + ~ vzlr)( p-~< P>Nosc c Z C k)- ~ ).JJ"r 
T=p,n k r=p,n 

(4'15) 

which is rotationally invariant and conserves the neutron and proton numbers. The 
strength of the pairing force Gr(r=p, n) are determined so as to reproduce the pairing 
field Llr of the ground state, and are given in Table II. The other parameters are the 
same as those in fil in Eq. (4 ·n). Physically the coupling of the rotational motion 
with the Goldstone modes associated with the broken particle-number conservation 
originates from the coupling between the spatial rotation and the so-called pairing 
rotation. The coupling can be precisely treated by the see method in the following 
way:33) In addition to the variables {j, <J)}, we introduce the collective variables 
{Nr, er; r=p, n} which describes the particle numbers and their gauge angles. Then, 
the state I¢scc> in Eq. (4·2) is extended as 

I ¢scc> = Usccl¢o> , Uscc= e-i<PJ e-iBNeiGscd!,N) , (4 '16) 

where we have used the n=1 convention employed in the formulation, and, for 
simplicity, an abbreviation such as ieN = i~rerNr is adopted hereafter by dropping 
the subscript r. The equations of collective motion (3· 5) are then written as 

[I] 

9= a!J(COll N = - a!J(COll =0 
Cf aN' ae' 

!J(COll(J, N)=<¢scclfil¢scc> . (4 ·17) 

The equation of collective submanifold (3'6) is expressed as 

[II] o<¢scci( fi - a~lll J _a:;t N)I¢scc>=0 , (4 ·18) 

Table II. Strength of the pairing interaction used 
in the Hamiltonian (4 '15). 

Gp Gn 

[MeV] [MeV] 

16°Er 0.17225 0.14565 
162Er 0.17421 0.14729 
164Er 0.17128 . 0.14413 
166Er 0.16283 0.14038 
16sEr 0.16089 0.13141 

which simply means O-L<¢scclfil ¢scc> =0. 
The canonical-variable condition can be 
adopted as 

[III] < ¢sccl J I ¢scc> = J , 

a 
<¢sccl aJ l¢scc>=O, 

<¢scclNI¢scc>=N + No, 
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Microscopic Description of Nuclear Collective Rotation 1257 

o 
< <psccl oN I <Pscc> =0 (4°19) 

with No=<<PoINI<Po> . 

As immediately seen from [I] ~ [III], the treatment of the pairing rotation is 
parallel to that of the rotation. Thus, we put iGscc(f, N) as 

(4°20) 

where {O~, Op, JRPA, <i5RPA} are the quasiparticle RPA operators defined in Eq. (4 0 4), 
and NRPA and eRPA are the number operator (corresponding to the Goldstone mode) and 
the gauge-angle operator in the quasiparticle RP A, respectively. The quasiparticle 
RP A operators NRPA and eRPA satisfy 

(4°21) 

The unknown coefficients fA(r,s), fM(r, s), fNA(r, s), fNM(r, s) and g;.(r, s) are deter­
mined self-consistently so as to satisfy the basic equations (4 °18) and (4 °19) in each 
order of· the expansion. Since the variable N means the difference of particle 
numbers between the ground state and the excited states in the pairing rotation, iri 
fact, we can put N=O after the desired quantities have been calculated. We thus 
obtain the following results with the replacement of J by {I(1 + 1)p/2, 

!J(con(f, N =O)=const+JiI(1 + 1)+$]2(1 + 1)2+ ... , 

where Ji=I/2g 0 is determined by Eq. (4°4) and 

(4°22) 

" .;-' '1\ 
1.5 1\ .c:: 1\ ;:- \ \ 

Q) \\ 
~ \ \ 

\ \ ..,. 
1.0 \ \ I 

0 \ .. 
~ I ., 

\ " I , 
I I-I -\:Q 0.5 'a 

I " -..... 
"'0... .......... _ 

'0---_-0 

o. 
160 162 164 166 168 

Mass Number 

Fig. 7. The coefficients of 1"(1 + 1)2 in the excita­
tion energy with the inverted sign. Solid 
square denotes - 9J obtained with the pairing 
residual interaction. Solid circles and open 
circles are the same as those in Fig. 2. 

1 
$=$0- g OfNA(2, 0) 

with 

x<<Pol[J, i<i5RPA, ieRPA]I<po> 

+ 2} Nf~A(2, 0)+ ~ fNi2, 0) 

X <<Pol[H, i<i5RPA, i<i5RPA, ieRPA] I <Po> 
(4 °23) 

fNA(2,0) 

1 - - -= -2 <<Pol[N, i(/JRPA, i(/JRPA]I<Po> . 

(4 °24) 

In Eq. (4°23) $0 has the same expression 
as that given in Eq. (4°10). Thus, we 
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have two types of contribution of the pairing fluctuations to fB. The second, third 
and fourth terms in Eq. (4·23) represent the contribution of the Goldstone modes 
associated with the broken particle-number conservations, and the contribution of the 
pairing fluctuations through the correlations producing the RPA modes are given in 
the form of fB o. 

The calculated values of fB in Eq. (4·23) for Er isotopes are plotted in Fig. 7 
together with those values obtained in the previous subsection as well as the experi­
mental values. The magnitude of fB is appreciably larger than the fBo value calcu­
lated in the previous subsection. This demonstrates that the contribution of the 
pairing fluctuation to the rotation is quite large. In order to analyze the contribution 
of the pairing fluctuations through the rotation-vibration coupling term, which corre-

~ .~ 

8.576X10·! ~ 

:::- 160Er :::-
ffi " ~ 
I 2 I 2 

~ ~ 

l66Er 

"'-- "'--
0-

j 
0-

'" ~ ] ii 
3"-

II.J. dtJIJ L.Lu~ ___ ~I _____ . 

"-
3 

0 

0 6 6 

w~ [MeV] wp [MeV] 

'" 4.508xlO'1 -;", 
:::- 162Er ~ 
~ ~ 

:;' 

l6SEr 

I 

~ ~ 
2 

0-
j 

SO 
j 

"," "," 

~ 

IJ 1 JJlJlt .,~ _____________ 
~ -,;: "-

3 3 1,11d. d_I.L~_. ______ . __ _ 

6 6 

w~ [MeV] wp [MelT] 

164Er 

6 

w~ IMeV] 

Fig. 8. The rotation-vibration coupling (Oplgp(2, 0)1 2 calculated from the Hamiltonian (4·15). Note 
that contribution to !B is - (O~lg~(2, oW 
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: : : 

I 

-1 

-2 
160Er 162Er 164Er 166Er 16SEr 

Fig. 9. The same as Fig. 4 but the pairing residual 
interaction is included. 

6 

wp [MeV] 

20 

~ 
162Er 

0: 
'0 

.& 
~ 10 
~ 

JI. .,,1,1 J.~I.HtWII'~ 
6 

wp [MeV] 

'0 = 10 

~ 

6 

wp [MeV] 

sponds to the third term of !B 0 in the 
expression (4 '10) with 

1 g,.,(2,0)=-
w,., 

x{ ~ <¢01[J'1, iii5RPA, iii5RPA, O,.,]I¢o> 

- )0 <¢ol[j, iii5RPA, O,.,]I¢o>}, 
(4·25) 

we show in Fig. 8 the contribution of the 
rotation-vibration coupling by each RPA 

6 

wp [MeV] 

20 

~ 
l6SEr 

0: 
'0 

'0 
~1O 
~ 

0 II., 1111J.JJ .dl[Jl~~ILi 
0 6 

wp [MeV] 

Fig. 10. The strength function [<¢o[[Qo, Op][¢o>[ in a free scale, Op is derived from the RPA equation 
with the Hamiltonian (4'15). 
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mode with (J)I'=I=O. By comparing Fig. 8 with Fig. 3 and also from Fig. 7, we can see 
how the pairing residual interaction contributes to the rotation through the correla­
tions producing the RP A modes: The effect of the pairing residual interaction is not 
concentrated on a single coupling, but. rather distributed to many couplings. The 
sum of the couplings and the other contribution are shown in Fig. 9. 

The coupling with the Goldstone mode associated with the pairing rotation, which 
is represented by the second, third and fourth terms in Eq. (4·23), is smaller than the 
other terms by a factor of ~ 10-2

• In Figs. 10 and 11, the strength functions with QM=O 
operator and the pair operator pt + P are shown, respectively. It is seen that the 
coupling with the .a-vibration is important for the lighter nuclei, while the contribu­
tion of the pairing correlation is relatively important in the heavier nuclei, as shown 
by Fig. 7. This point is consistent with the analysis of Mikoshiba et a1.24

) 

4.5. Microscopic structure of rotation-vibration coupling 

In this subsection, in order to understand microscopic structure of the rotation-

;;::: 
l66Er p 

~4 
160 Er p ~4 

~ ~ 

'0 '0 

,Ii, 3 ,Ii, 3 

+ + 
'~2 ':::... 
~ 

Ill..J 
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I ,ILJ. .. L[~_JJll I .. JJLLklt 
6 6 

w~ [MeV] w~ [MeV] 

-2:.4 
162Er p 

~4 
16BEr p 

" ~ 

'0 '0 -
,Ii, 3 ,Ii, 3 

+ + 
'0.. ':::... = 2 0 

~ 

~ II t,J,IJ_JI"J 
~ 

,l.liLIJlJ~ 0 

6 0 6 

w~ [MeV] w~ [MeV] 

~4 
164Er p 

~ 

'0 
,Ii, 3 

+ 
'0.. = 2 

~ 

I illiLL"Mlj 0 

0 6 

w~ [MeV] 

Fig. 11. (a) The strength function I<¢ol[pt + P. Op]l¢o>1 in a free scale for the proton. 
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~4 
IGOEr n ~4 
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"- "-
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-
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Fig. 11. (b) The strength function 1<<Pol[P' + P, 6~11<po>1 in a free scale for the neutron. 

vibration coupling, we investigate what components of the quasiparticle excitations 
are effective for the rotation-vibration coupling. The quantity gp.(2, 0) in Eq. (4-25) 
can be separated into 

(4-26) 
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The gl'(R) term originates from (a.JCCOll/af)J in the equation of submanifold (4·18), 
and we call it a direct term hereafter. The quantities gl'(Pr ) and gl'(Q) are due to the 
coupling through the pairing residual interaction and the quadrupole residual interac­
tion, respectively. 

In order to investigate these coupling effects microscopically, we explicitly 
employ the quasiparticles {a~, at, aa;aa} in the signature representation,*) which we . . 

have used so far. Then we have 

(4 ·27) 

and the angular momentum operator J is explicitly written in the form 

(Jll 
..... _ -t..... aa' 
J - 2:: (aa, ap) J21 

alia'pr Pa' 

p2ap')(aa') 
22 -t' J PP' ali' 

(4·28) 

where 

(4·29) 

Here, Sa is a phase factor which connects the time-reversal inversion with the signa­
ture inversion,**) and Jap are the matrix elements of the angular momentum operator 
with the deformed single-particle base, which is assumed to be connected with the 
quasiparticle base by a BCS transformation. In the lowest approximation, i&RPA is 
given by 

1 J12 
no ~. aP 
'Vap= go Ea+ Ep , (4·30) 

where Ea is the quasiparticle energy. Using Eqs. (4·27)~(4,·30)\'we obtain 

+ Ef~ Ep (UaU r+ VaVr)(UrVp- upvr) }sp . (4·31) 

From this expression, we can see that §(R)ap has the following properties: 
i) From the structure of Jap-dependence, the diagonal components, which couples 

with signature-pair excitations of the quasiparticles inOp. with LlK=O, and atso the 

*) a and li denote single· quasiparticle states with the positive signature and the negative signature. 

respectively. 
**) This phase .factor is given by ii),=saii'iz. where ii denotes the time-reversed state of a. 
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Microscopic Description of Nuclear Collective Rotation 1263 

components g(R)a/3 with LlK =2 may be dominant. Among them, especially, the 
components associated with the high-j andlow-K single-particle orbits may be large. 

ii) From the uv-factor dependence, quasiparticles far from the Fermi surface and 
those very close to the Fermi surface mas make small contributions. 

In Table III, the quantities (J),.,g,.,(Q), (J),.,g,.,(Pr)(r=p, n), (J),.,g,.,(R) and (J),.,g,.,(2, 0) are 
shown. One can see that the direct term g,.,(R) makes the main contribution to 
g,.,(2,0). We show in Table IV some components of g(R) associated with low-energy 
levels for 166Er. From these tables, it is clearly seen that the components in 0,., which 
are effective in making the coupling large are the signature-pair excitations not far 

Table III.(a) Components of the rotation·vibration couplings of 168Er. (JJp is a RPA 
eigenenergy. 

(JJp (JJpgp(Q) (JJpgp(Pp) (JJpgp(Pn) (JJpgp(R) (JJpgp(2, 0) 

[MeV] [M:2V lO-3J [M~V lO-3J [M~V 10-3J [M~V 10-3J [M:2V W3J 

1.299 -0.716 0.031 0.610 4.57 4.50 

1.639 -0.197 -0.167 -0.823 -1.70 -2.89 

1. 745 -0.038 0 0 0.168 0.130 

1.755 0.235 -0.427 0.384 -1.02 -0.833 

1.857 -0.025 0.029 -0.366 -1.62 -1.99 

2.055 0.0001 -0.423 0.001 -1.57 -2.00 

2.063 -0.310 0 0 1.19 0.884 
2.073 -0.007 -0.038 -0.780 -2.39 -3.21 

(b) The same as (a) for 166Er. 

(JJp (JJpgp(Q) (JJpgp(Pp) (JJpgp(Pn) (JJpgp(R) (JJpgp(2,0) 

[MeV] [M:2V lO-3J [M~V lO-3J [M:2V lO-3J [M:2V 10-3J [M~V lO-3J 

1.603 -0.897 0.137 0.462 5.15 4.85 

1.768 -0.030 -0.611 0.020 -1.33 -1.95 

1.870 -0.356 0 0 1.92 1.56 
1.944 -0.033 0.005 -0.350 -0.256 -0.634 
2.103 -0.009 -0.583 0.014 -2.22 -2.80 
2.219 0.051 -0.041 -0.501 -1.43 -1.92 

2.223 0.013 -0.010 -1.27 -3.78 -5.04 

2.231 -0,001 0 0 -0.046 -0.047 

(c) The same as (a) for 164Er. 

(JJp (JJpgp(Q) (JJpgp(Pp) (JJpgp(Pn) (JJpgp(R) (JJpgp(2,0) 

[MeV] [M:2V lO-3J [M~V 10-3J [M:2V lO-3J [M:2V 10-3J [M~V lO-3J 

1.431 -1.08 0.124 0.193 5.21 4.44 
1.807 -0.351 0 0 2.42 2.07 
2.017 0.054 -0.498 0.547 0.699 0.802 
2.041 0.108 -0.302 -1.01 -5.13 -6.33 
2.223 -0.003 0.004 -0.413 0.739 0.328 
2.272 0.042 -0.334 -0.426 -2.96 -3.68 
2.275 -0.023 -0.470 0.202 -0.937 -1.23 
2.378 -0.105 0 0 0.524 0.419 

(continued) 
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(d) The same as (a) for 162Er. 

w~ 
w~g,,(Q) w"g,,(pp) w"g,,(Pn) w~g~(R) w"g,,(2,0) 

[MeV] [M:2V 1O-3J . [M:2V 10-3 J [M:2V W3J [M;V 10-3J [M:2V 1O-3J 

1.035 -1.15 0.172 0.641 7.20 6.87 
1.962 -0.344 0 0 2.66 2.31 
2.075 0.014 -0.406 ·0.080 -0.461 -0.774 
2.137 0:080 -0.248 -0.541 -3.25 -3.96 

2.212 0 0 0 0 0 
2.269 -0.086 0.240 -0.800 -2.07 -2.72 

2.307 0.050 -0.174 -0.798 -4.64 -5.56 
2.323 0.002 -0.569 -0.009 -2.08 -2.26 

(e) The same as (a) for 16°Er. 

WI' 
w~g,,(Q) w~g,,(Pp) w~g"(Pn) w~g~(R) w~g~(2, 0) 

[MeV] [M:,v 1O-3J [M:2V 1O-3J [M;2V 1O-3J [M;V 10-3J [M:2V 1O-3J 

1.340 -1.45 0.448 1.03 10.8 10.77 
2.139 -0.492 0 0 5.05 4.56 
2.144 -0.162 -0.398 0.031 -0.544 -1.07 

2.232 0.090 -0.012 -0.369 -2.44 -2.73 

2.301 -0.017 0.148 -1.05 -2.84 -3.76 

2.305 0 0 0 0 0 
2.312 -0.006 -0.682 -0.433 -4.56 -5.68 

2.400 -0.061 -0.725 0.305 -1.41 -1.89 

from the Fermi surface. This means that rotation-p'-vibration coupling is large. 
Moreover, when the neutron number approaches the transition region, the Fermi 
surface becomes close to the high-j and low-K levels, so that the coupling is enhanced. 
The levels which largely contribute to the coupling in I66Er are seen to be (in terms of 
the asymptotic quantum number) [6425/2], [6249/2] and [5125/2] of the neutron and 
[5411/2], [5237/2], [5149/2] and [404 7/2] ofthe proton. The main components ofthe 
p'-vibration in I66Er are the signature-pair excitations to the levels [5411/2] and [404 
7/2] of the proton, while the main components of the y-vibration are the excitations 
to [5211/2] [5235/2] of the neutron and to [4111/2] [4113/2] of the proton. 

Tables III and IV also indicate that the couplings induced by the LlK =2 excita­
tions are smaller than those of the LlK =0 excitations except for the y-vibration, as 
pointed out in the previous subsection. For these two types of excitations, Eq. (4·31) 
is expressed as 

g(R)PK PK={UPK PK+I? E_+2
E (UPKVPK(VPK+I

2
- UPK+l2) 

pK pK+I 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/85/6/1235/1841452 by guest on 09 April 2024



Microscopic Description of Nuclear Collective Rotation 1295 

- UP.KVP.KVP.K+IVP.K-l- UP.K
2

VP.K+IUP.K-l) 

1 ( 2 

E-+E UP.K+IUP.K Vp.K-I-UP.K+IVP.KUp.KUP.K-l 
P.K p.K-l 

(4·32) 

where the indices K and f--l denote the K-quantum number and the other quantum 
numbers, respectively. In §(R)P.K p.K, only two quasiparticle-levels with K and K + 1 
or K and K -1 contribute. In §(R)P.K+l p.K-l, however, three levels with K -1, K and 
K + 1 contribute simultaneously. Thus, the main difference in magnitude of the 
above two components comes from the fact that three quasiparticle-levels which have 
the K-quantum numbers with K -1, K and K + 1 are not energetically close to one 

Table IV.(a-1) Matrix elements of g(R) in the space of the neutron Nose 
=6 of IBBEr. E denotes a quasiparticle energy. 

E[MeV] 1.75 1.84 2.03 2.67 3.03 

1.75 0.004 0 0 0 0.051 
1.84 0 0.088 0.011 -0.005 0 
2.03 0 0.011 0.087 0 0 
2.67 0 0.005 0 -0.010 -0.004 

3.03 0.051 0 0 -0.004 -0.018 

(a-2) Main components of the quasiparticle states 
in terms of the Nilsson orbit. 

E[MeV] [NnaAQ] 

1.75 [633 ~ ] 
1.84 [642 ~ ] 
2.03 [624 n 
2.67 [651 ~ ] 
3.03 [651 n 

(b-1) The same as (a-I) in the space of the neutron Nose=5. 

E[MeV] 1.25 1.27 1.54 1.67 1.73 

1.25 0.006 0.002 0.008 0 0.006 
1.27 0.002 -0.034 -0.0001 0 0 
1.54 -0.008 0.0001 -0.030 0 0 
1.67 0 0 0 -0.008 0 
1.73 0.006- 0 0 0 0.04 

(continued) 
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(b·2) The same as (a-2). 

E[MeV] [Nn3AQ] 

1.25 [521 U 
1.27 [512 ~ J 
1.54 [523 ~ J 
1.67 [505

1
2
1 J 

1.73 [521 n 
(c-l) The same as (a-I) in the space of the proton Nose = 5. 

E[MeV] 

1.19 
1.33 
2.09 

2.34 
2.46 

(d-1) 

E[MeV] 

0.88 

1.05 
1.45 

1.70 
2.03 

1.19 1.33 2.09 2.34 2.46 

0.037 0 0 -0.007 0.007 
0 0.046 0 -0.001 0 
0 0 -0.066 0 0 

0.007 0.001 0 0.019 0.017 

0.007 0 0 0.017 -0.009 

(c-2) The same as (a-2). 

E[MeV] [Nn3AQ] 

1.19 [541 ~ J 
1.33 [523 ~ J 
2.09 [514 ~ J 
2.34 [532~ J 
2.46 [530+J 

The same as (a-I) in the space of the proton Nose=4. 

0.88 1.05 1.45 1.70 2.03 

0.002 0 -0.003 -0.005 0.003 

0 -0.022 0 0.001 0 

0.003 0 0.017 0 0.001 

0.005 -0.001 0 -0.014 0 

0.003 0 -0.001 0 0.019 

(d-2) The same as (a-2). 

E[MeV] [Nn3AQ] 

0.88 [411 ~ J 
1.05 [404 ~ J 
1.45 [402 ~ J 
1.70 [411 ~ J 
2.03 [413 ~ J 
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another, while two quasiparticle-levels with K and K -lor K + 1 have a chance to be 
close to each other, as can be seen from Table IV. Of course, this fact depends on the 
distribution of the single-particle levels. 

N ow let us discuss quantity gp.(Pr) due to the coupling through the pairing 
residual interaction, which is smaller than the direct term but not negligible. With 
the use of the matrix elements of the pair operators PJ and Pr defined in the same way 
as Eq. (4-28), i.e., 

--. t _ - t .-.. _ r aa' TaP' a a' (p 11 P 12 )( - ) 
Pr - 2; ,(aa, ap) P 21 P 22 -t +const, 

apa p r pa' r PP' a ii' 

(4-33) 

we obtain 

(J)p.gp.(Pr)= - Gr<¢ol[pJ + Pr, OJ]I¢o> 2::( (fJA,JP/CJ,Pr 11 /CA - (fJV/C(fJVAP/2/CA) AV/C 

= - Gr 2::( ¢;¢p+ qJ::p)(Pr 12 ap+ Pr tI2 ap) 2:: «(fJAv(fJ/CVP/ 1 /CA - (fJV/C(fJvAP/2/CA) , • ~/C . 
(4 -34)23) 

where we have used the axial symmetry property of the single-particle base. This 
form of the expression demonstrates that the RPA mode Op. which has the pairing­
vibrational character with the signature-pair excitations has the remarkable coupling 
with the rotation. In 166Er, the RPA mode with the energy (J)p.=2.223 MeV mainly 
consists of the signature-pair excitations to the levels [5125/2], [5235/2] and [505 
11/2] of the neutron, so that it has the remarkable coupling with the rotation. 

The factor in Eq. (4-34) which does not depend on the character of the RPA 
operator Op. can be written 

g(Pr) == 2:: «(fJAv(fJ/CvPr 11 /CA - (fJv/C(fJvAPr 22 /CA) 
Av/C 

(4-35) 

The quasiparticle excitations to the levels far from the Fermi surface do not have 
large contributions because of the factors l/(Ev+ EK:)2 and U/CV/C. The high-j and low­
K levels are important due to the factor (]v/C)2, and this results in the mass-number 
dependence of the rotation- pairing-vibration coupling. We show in Table V the 

Table V. Neutron·number dependence of g(Pn). 

- 0.7857 X 10-2 

- 0.5518 X 10-2 

-0.5487x10-2 

- 0.5103 X 10-2 

-0.4492 X 10-2 

neutron-number dependence of g(Pn). 
It is noted that the magnitude of the 
strength 1<¢ol[PJ + Pr, Op.]I¢o>1 does not 
have strong neutron-number depen­
dence, so that g(Pn) carries the main 
neutron-number dependence of the gp.(Pn) 
in Eq. (4-34). 

Concerning the rotation-vibration 
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coupling through the quadrupole force with the use of the matrix elements of QM 
defined in the same way as Eq. (4.28), we have 

(4·36) 

One should note that g(QM) contains the factor (UAU,,-VAV,,) instead of u"v" in g(Pr). 
This makes the contribution of low energy levels suppressed, so that (J)pgp(Q) does not 
become large. 

§ 5. Concluding remarks 

In this paper, emphasizing the concept of the broken symmetry as the origin of the 
collective rotation, we have shown the main concept and scenario to understand the 
occurrence mechanism of the nuclear collective rotation by means of the see method: 
The initial representation which is based on the RP A is transformed into the dynami­
cal representation which is beyond the RPA-order. This scenario may be realized in 
both the full quantum theory and the semi-classical one in a parallel way. 

In order to visualize how the rotation-vibration coupling effects are coherently 
organized so as to construct the optimum rotational subspace, we have performed the 
numerical calculations for Er isotopes with the pairing-pIus-quadrupole force model. 
In the case with the fixed pairing field and no pairing residual interaction, it has been 
shown that the coupling between the collective rotation and the p-vibration especially 
increases with the neutron number approaching the transition region. It has been 
also found that the couplings between the collective rotation and the other many 
non-collective modes also increase. Such an analysis is one of the advantages of our 
approach, because the initial representation is based on the RP A so that the micro­
scopic definition of the rotation-vibration coupling becomes clear. Furthermore, the 
couplings with many non-collective modes are explicitly included in a coherent way 
so as to construct the optimum collective subspace. As has been shown in the end of 
§ 3, our equations used for the numerical calculations are essentially equivalent to 
those of the constraint cranking model. It should be noted, therefore, that the 
Jl-parameter and the $ -parameter in our calculation ought to be the same as those 
obtained by means of the perturbation calculation within the constraint cranking 
model without making use of the RP A operators. 

By the calculation with the pairing residual interaction, it has been confirmed that 
the influence of the pairing fluctuation due to the pairing residual interaction on the 
structure of the collective rotation is appreciably large: The calculation shows that 
the conventional values of parameters for the pairing-pIus-quadrupole force lead us to 
the overestimated contributions of the rotation-vibration couplings when the pairing 
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fluctuation due to the pairing residual interaction is properly taken into account. 
In our opinion, the following two points should be examined in order to solve this 

problem: The first is an investigation of effects of .9[[n=21(pt, 13, J) in Eq. (2·9) which 
are neglected in the numerical calculations in this paper. The second is an investiga­
tion of the improvement of the effective interaction. The quadrupole-pairing force 
may be one of the candidates as mentioned in § 4. 

We have also investigated the microscopic structure of the rotation-vibration 
coupling. It has been found that the low-energy signature-pair excitations of 
quasiparticles play an important role for the coupling. 
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