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We discuss implications of the discovery of the cosmic microwave anisotropy at 10° scale by 
COBE·DMR and the null result at 1° scale from the South· Pole experiment to inflationary universe 
models. In doing so, we derive an'approximate analytic formula which relates the anisotropies at 10° 
and at 1° without a heavy numerical computation. The formula, when tested against the known 
numerical results, turns out to reproduce those results quite accurately, and gives us a clear insight 
into cause and effect of the intermediate and large angular CMB anisotropies. Then applying the 
formula to models with adiabatic density perturbations based on the inflationary universe scenario, 
we find that the only model compatible with the claimed observational data is either 0) a power-law 
inflation model which predicts the power spectrum of density fluctuations with the power-law index 
n:SO.8, in which case the gravitational wave contribution to the CMB anisotropies on 8>5° FWHM 
is significant, or (ij) a natural inflation model with n:SO.7, in which case the gravitational wave 
contribution is negligible on all angular scales. In both of these cases, if the universe is dominated 
by cold dark matter, the resulting bias factor turns out to be b;:;2, i.e.,'a relatively large bias is 
unavoidable. 

§ 1. Introduction 

The first detection of cosmic microwave background (CMB) anisotropies by 
COBE-DMRI) has given much excitement in the field of cosmology.2) From the 
analysis of the data, Smoot et al. l

) concluded that the rms value of the anisotropy at 
10° scale is 

(I-I) 

and the autocorrelation function is consistent with a power-law spectrum of the 
primordial density fluctuation; p(k)rxkn with n=Ll±0.5. Smoot et al. also claimed 
a finite detection of the quadrupole moment; (LlTjT)Q=(6±L5) X 10-6

• However, 
here we disregard the reported valu.e, since it may be an overestimate3

) or at least it 
is subject to a large cosmic variance. At any rate, unless one considers a rather 
eccentric scenario, Eq.(I-I) implies the existence of density fluctuations on super­
horizon scales in the very early universe with an almost scale-invariant spectrum, a 
natural explanation of which is possible only in the context of the inflationary 
universe scenario. 

However, soon after the discovery of CMB anisotropy by COBE-DMR, Gaier et 
al.4

) reported no detection of CMB anisotropy above (LlTjT)noise=10-5 at 1° scale in 
the sky near the South Pole. This result is rather controversial, since the predicted 
rms temperature fluctuation at 1° scale for the scale-invariant spectrum, which is the 
case of the standard exponential inflationary scenario, is ~ 2 X 10-5

• Hence one would 
naively expect that the probability of no signal detection is small. In fact, assuming 
(LlTjT)IO°FWHM = 1 X 10-5

, Gorski et al.5
) performed a detailed statistical analysis and 
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1184 M. Sasaki 

concluded that all conceivable Q=l universe models with n=l spectrum are excluded 
at 95% c.L. 

In this respect, the possible dominance of the tensor mode contribution to the 
CMB anisotropy and its relation to the scalar mode power spectrum has been 
discussed already by Davis et al.6

) and Lucchin et al.7
) However, the analysis by 

Davis et al. relies on the value of quadrupole moment detected by COBE, which is 
subject to large cosmic variations as mentioned above. Further, they seem to place 
too much emphasis on the tensor mode contribution to the CMB anisotropy. On the 
other hand, Lucchin et al. give a detailed analysis but only for power-law inflation 
models. 

In this paper, we investigate all conceivable inflation models .withadiabatic 
curvature perturbations having the spectral index nS::1 in a semi-quantitative but 
analytically tractable way and derive the constraint on these models from the results 
of 10° COBE-DMR and r South-Pole experiments. By doing so, we clearly demon­
strate the essential factors that determine the intermediate and large angular CMB 
anisotropies. 

§ 2. Scalar and tensor contributions to CMB anisotropy 

If both of the results of COBE-DMR and South-Pole experiments should be taken 
seriously, one has to abandon at least the simplest scenario of exponential inflation . 

. It is then a matter of great concern if this means the death of the inflationary universe 
scenario. Fortunately, it is not so but indeed there are other viable inflationary 
scenarios in which the power spectrum of density perturbations differs appreciably 
from n=1. Among them are the scenarios of power-law inflation8

)-9) and natural 
inflation.ll) In particular, the former predicts not only the matter density fluctuations 
but also a significant amplitude of fluctuations in the transverse-traceless part of the 
metric, i.e., the gravitational wave perturbations, which may be actually the ones 
detected by COBE-DMR.6

),7) 

In what follows, we briefly review the origin of these fluctuations in the 
inflationary universe and give an estimate of the predicted amplitude of CMB 
anisotropy. Concerning the possible types of density perturbations,. there is yet 
another possibility, namely isocurvature perturbations. However, here we focus on 
the curvature, (i.e., the so-called adiabatic type) perturbations. 

2.1. Origin of fluctuations 

In almost all of the inflationary scenarios, inflationary expansion of the universe 
is driven by the potential energy of some scalar field cp. At the stage when the 
universe is under inflation, the quantum fluctuations of the scalar field are rapidly 
redshifted to a macroscopic scale and give rise to super-horizon scale fluctuations in 
the matter density and hence the scalar-type perturbations in the metric which 
eventually turns into large scale structures of the universe. 

The power spectrum of thus generated perturbation is given by12),13) 
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(2·1) 

where g{ is the spatial curvature perturbation measured on the co moving hypersur­
face and tk is the time at which the comoving scale k leaves the Hubble horizon scale 
H-1 during the inflation. After the inflation, this in turn gives rise to perturbations 
in the Newtonian potential 1jf" as 

2 _{ (~ y<g{2)k: matter-dominated stage; 

< 1jf" )k- (2)2 
3 <g{2)k: matter-dominated stage. (2·2) 

On the other hand, the quantum fluctuations of the gravitational wave modes are 
also redshifted to a macroscopic scale and give rise to the transverse-traceless (i.e., 
tensor-type) perturbations in the metric MI. The power spectrum is given byl4) 

(2·3) 

where m~l is the planck mass. 

2.2. CMB anisotropy 

The CMB anisotropy induced by the perturbations discussed above can be 
calculated by solving the photon propagation equation in the perturbed Friedmann 
universe. Assuming the universe is spatially flat, matter-dominated after the baryon­
photon decoupling, it is approximately given byl5) 

LlT (i )~ 1 eOd (aMI i"~)+ 1 7Tf( )+ i( v'( ) v'( » T Y; 7)0 ~2 )~d 7) -----a;;-Y I 3't' 7)d Y i 7)d - i 7)0 , (2·4) 

where 7)=rdt/a(t) is the conformal time, 7)d and 7)0 are the decoupling time and the 
present time, respectively, yi is the direction cosine and Vi is the matter velocity 
perturbation. As it is clear, the first term on the right:hand side of Eq.(2 ·4) is due to 
tensor-type perturbations, and the second and third to scalar-type ones. Following 
conventional terminology, we call the second the Sachs-Wolfe effect and the third the 
Doppler effect. 

When discussing the CMB anisotropy, it is often convenient to express it in terms 
of its multipoles with respect to the spherical harmonics: 

(2·5) 

Quadrupole 

Among the multipoles, the lowest non-trivial one is the dipole, but it is generally 
believed (and is true for most of viable cosmological models) that the dipole is 
dominated by our peculiar velocity at present, i.e., V;(7)o). Hence, the lowest 
nontrivial multipole which carries the direct information of the early universe is the 
quadrupole. The mean square of it can be estimated from Eqs.(2·1)~(2·3), and (2·4) 
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1186 M. Sasaki 

as 

(2-6) 

where k=Ho, Ho is the present value of the Hubble parameter and the scale factor at 
present has been normalized to unity; ao=l. From Eq.(2-6), one finds 

(2-7) 

Thus, the tensor mode contribution can dominate the quadrupole only if the kinetic 
energy of the scalar field is comparable to the potential energy of it at the inflationary 
stage. 

Intermediate scales 

At intermediate angular scales (1 ° ~ 10°), it is convenient to express the degree of 
anisotropy in terms of the temperature auto-correlation function, 

where <al>=~m<a1m>. In the present case, <al> can be approximately expressed as 

<al>~<al>Gw+<al>sw+<al>DoPPler , (2-8) 

where the first, second and third terms are the contributions from the gravitational 
waves, the Sachs-Wolfe effect and the Doppler effect, respectively. For inflation 
models considered later, the primordial power spectrum is well approximated by a 
power-law. In such a case, the Sachs-Wolfe contribution can be analytically evaluat­
ed.16

) Further, for models of power-law (or extended) inflation, in which case the 
tensor contribution can become significant, one may assume P!R(k)<xPT(k)<xkn

-
4

•
6

),7) 

In this case, one approximately has 

< 2> < 2> ~ 12 < 2> In-2. l~ 1. at GW<X at sW-T a2 sw , (2-9) 

As for the Doppler term, noting that the Fourier component is given by 

(2-10) 

it may be approximated as 

<al>DoPPler~ 1 ~2Zd <al>sw=( L r <al>sw, (2-11) 

where Zd~ 103 is the redshift at decoupling and hence Id~30, whichcorresponds to the 
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Implications of the COBE-DMR and South-Pole Experiments 1187 

angular scale ed~2°( =5°FWHM) or to the horizon scale atdecoupling. 
From Eqs. (2·9) and (2·11), one finds: 

(a) (LlT/T)w is dominated by <al>Gw and/or <ahsw, and 

. •• { <al>DOPPler if QT~ Qs , 
(b) (LlT/T)I" IS dommated by < 2> d/ < 2>· f Q Q 

al GWan or al Doppler i T?:; S. 

§ 3. (,LJT/T)-test of power spectrum 

In order to evaluate the CMB anisotropy predicted in a given cosmological model 
in a quantitatively accurate way, one of course has to do numerical integrations. 
However, it is always useful to have an analytic formula to do a semi-quantitative 
analysis, not only because we may gain clearer understanding of cause and effect, but 
also we can obtain predictions of other models without a heavy numerical computa­
tion by simply varying the parameters in the formula. Furthermore, considering 
uncertainties in the observational data, it is sometimes meaningless to require a high 
accuracy in the resulting numbers. In this section, we give such a formula for 
cosmological models with a power-law spectrum discussed above and compare the 
result with the observations. 

3.1. (LlT/T)lO" versus Qrms 

According to Smoot et aI.,I) the relevant theoretical formula which corresponds to 
the mean square temperature fluctuation at 10° discovered by COBE-DMR is 

~ Q2 xRl"" dl 1n- I -12/10 2 

~rms 53 1 e 

~ Q2 x R -32/102 3
n-I (l_(~)n-I) 

rms 5 e ·l-n 3 ' (3'1) 

where Qrms=jQT2+Qi is the rms quadrupole moment, /0=17.8 is the smearing scale 
relevant for COBE-DMR, and Eq.(2·9) has been used to approximate <al>. The 
above formula gives , 

n=l, 

n=0.8, 

n=0.6, (3·2) 

which are in good agreement with more accurate numerical results. I) This shows our 
approximation is reasonable after all. 

3.2. (LlT/T)wversus (LlT/T)r 

Given the evidence that our approximation works fairly well, let us now turn to 
the anisotropies on intermediate angular scales. 
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1188 M. Sasaki 

The Sachs- Wolfe and tensor contributions 

First consider contributions from the Sachs-Wolfe effect and gravitational waves. 
Again, from Eq.(2·9), one has 

/(l; 80)=2(1- Pl(cos80));:::;2(1- Jo(l80)); 80~1, 1~1, (3·3) 

where80=0.037(2T) and a=0.011(0.63°) are the beam separation and smearing angles, 
respectively, and / is the filter function, relevant for the South-Pole experiment.4

) 

Unfortimate1y, the above integral cannot be done exactly. However, for n=l, it may 
be evaluated as 

( 
LlT)2 ~ 12 2 1°02/(462) 1-e-x 
-T ~-5 Qrms dx 

1°,SW+GW 0 X 

~RQ2 (1 80
2 

+ ) < (10-5)2 ~ 5 rms n 4a2 r ~ , (3·4) 

where r=0.577··· is the Euler constant and the last figure is obtained from Eqs. (1·1) 
and (3·2) with n=1. Now fora fixed value of (LlT/T)lO", (LlT/T)lo(n) is apparently 
a decreasing function of n since the dominant contribution to the integral (3·3) comes 
from 1<; 80-1=27 > 10=17.8. Hence we may conclude that the Sachs-Wolfe and gravi­
tational wave contributions to the CMB anisotropy at 1 ° scale will not make a conflict 
with the observational upper bound for all values of n:O;:;1. 

The DOPPler contribution 

The above result tells us that the only contribution to the 10 anisotropy which we 
have to worry about is the one due to the Doppler effect. Using Eq.(2·11), it is 
approximately given by 

(Lllr(n);:::;aQs21"'df (LYln-le-l262/(l; 80) 

;:::; a1
-

n
( LlI ):0(1) , (3·5) 

where a is a constant of 0(1). Since the approximation (2·11) for the Doppler 
contribution is very crude, we should regard ld as an adjustable parameter rather than 
a given one, by absorbing the factor a. The adjustment can be done by using the fact 
that (LlT/T)I,(I);:::; 3QS:5) 

. (3·6) 

This happens to give ld~30; an interesting coincidence that errors due to the crude­
ness of Eq.(2·11) are canceled somehow by that of Eq.(3·5). 

Combining t1i.e formulas (3 ·1) and (3·5) with Eq.(3· 6), we obtain the final formula, 
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Implications of the COBE-DMR and South-Pole Experiments 1189 

(3·7) 

where 

j
1.00; n=1.0, 

(1- n)(36)1-n _ ._ 
1-(3//0)1 n In(!o/3) - 0.77: n=0.8, 

0.60, n-O.6. 

F(n)= 
(3·8) 

For the CO BE-normalization; (LIT/T)lO'= 1.1 x 10-5
, the above formula gives 

(3·9) 

Comparing these numbers with the rms noise level of the South-Pole experiment; 
(LIT/T)noise=10- 5

,4) and taking into account the inaccuracy of our approximation 
(which we estimate as :S10%), we conclude that en if QT< Qs, all models with n::;;:l 
are consistent with the observational bound, but (ii) if QT4:.. Qs, even a model with n 
=0.8 seems marginally excluded and a moderate allowable range would be n:SO.7. 

§ 4. Models of inflation with n < 1 

Now, let us examine models of inflation which can explain the observational data. 

4.1. Power-law inflation 

Two typical models of power-law inflation are extended inflation9
) and soft 

inflation.10
) Although the extended inflation is basically different from the soft 

inflation in that the former is based on the Brans-Dicke type gravity theory while the 
latter on the conventional Einstein gravity, both of them give effectively the same law 
of inflationary expansion, i.e., the power-law expansion of the universe. Hence, here 
we focus on the proto-type power-law inflationary model.S) 

The power-law inflation is driven by a scalar field with an exponential potential,S) 

(4 ·1) 

The scalar field and the cosmic scale factor then approach asymptotically to 

(4·2) 

At this asymptotic stage of inflation, both fluctuations in the scalar and tensor parts 
of the metric are produced with the same power-law index n=(p-3)/(p-1). The 
ratio of the kinetic energy to the total energy density is given by 

6 1 1-n 
;\2 3p 3(3- n) , (4 ·3) 
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1190 M. Sasaki 

which, together with Eq.(2· 7), implies 

QT: ;:::1i=14 1- n 
Qs p 3-n' 

Hence QT< Qs for p::s 14, or n::S 0.85. 

(4·4) 

Thus, according to the power-law inflationary scenario, the conclusion of the 
previous section implies that the detected anisotropy at 10° by COBE-DMR must be 
dominate4 by the tensor mode contribution with the power-law index n::S0.8. For 
cold dark matter (CDM) models, this implies the bias factor b < 2 as mentioned in 
Davis et a1.6

) and Lucchin et al.7) 

4.2. Natural inflation 

In the scenario of natural inflation,l1) the potential has the form, 

(4 ·5) 

and inflation is assumed to occur when the scalar field is at 1¢I~f. In this case, the 
expansion is exponential, 

1¥-7r M2 
a(t)oceHt. H= ---

, 3 mpl' 
(4 ·6) 

and (p~ V(¢) so that the tensor mode contribution is negligible. But the slow rolling 
approximation for the scalar field does not necessarily hold and the power-law index 
n of the density perturbation can differ appreciably from unity:"),13) 

¢(t) oc e 8Ht
, n;:::1-20; 0(0+3)= i~72 . (4 ·7) 

For example, for a typical GUT scale; M ~ 1015Ge V, a reasonable amplitude of the 
scalar perturbation; 1Jf::S 10-\ is realized for f ~ 5 X 1018Ge V. This value implies 0 
~ 0.1, hence n ~ 0.8. 

Since the tensor perturbation must be necessarily negligible in this scenario, we 
conclude that n::S 0.7 if the natural inflation should be adopted. In this case, the 
corresponding bias factor for CDM models is again b < 2.17) 

§ 5. Summary 

In this paper, we discussed the implications of the results of COBE-DMR and 
South-Pole experiments to inflationary universe models. For this purpose we derived 
a semi-analytic formula which relates the CMB anisotropies at 10° and r scales. In 
the context of inflationary cosmology, we found that only power-law inflation models 
with the spectral index n::S0.8 and natural inflation models with n::S0.7 are allowed, 
provided that the primordial power spectrum is of adiabatic type. In both of these 
cases, the resulting bias factor b for CDM models is found to be b<2. This coinci­
dence happens because the difference in the scalar mode amplitude at 10°, which 
corresponds to a scale~200h-IMpc, is compensated by the difference in the rate of 
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increase in the power spectrum as the scale goes down to 8h- I Mpc. Of course, to 
justify the above conclusion in the strict sense, we have to perform detailed numerical 
computations. In particular, the effects neglected in the present approximation, such 
as the intrinsic photon density fluctuations at decoupling era, may be important on l' 
scale in certain models. However, as noted before, errors due to the crudeness of our 
approximation are expected to be buried well under uncertainties of the observational 
data. Thus our conclusion should be taken as a general, semi-quantitative constraint 
on models of inflation. 

Finally we note that if the existence of large-scale flow; V(40h-IMpc)~400km, is 
proved and if it is found to be a typical value everywhere in the universe, it will be 
a clear contradiction to the null result of the South-Pole experiment, provided one 
relies on the standard gravitational instability scenario of large-scale structure forma­
tion. I8

) A possible resolution is to assume reionization of the universe soon after 
decoupling until quite recently which smears out the CMB anisotropies on I' scales. 
For this to occur, it seems necessary to have baryon isocurvature perturbations of a 
large amplitude on small scales/9

) and interestingly enough there exists such a 
scenario in the context of power-law inflation.20

) Therefore it may be worthwhile to 
investigate the predictions of such a model in more detail, or a hybrid model which 
includes everything necessary, though one cannot deny the feeling that the latter is too 
ad hoc. 
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part by the Grant-in-Aid for Scientific Research on Priority Areas of Ministry of 
Education, Science and Culture, NO.04234104. 

References 

1) G. F. Smoot et aI., Astrophys. J. 396 (1992), Ll. 
2) For implications of the COBE data to general cosmological models, see e.g., N. Sugiyama and 

N. Gouda, Prog. Theor. Phys. 88 (1992), 803. 
3) A. Gould, Astrophys. J. 403 (1993), L5l. 
4) T. Gaier et aI., Astrophys. J. 398 (1992), Ll. 
5) K. M. Gorski, R. Stompor and R. Juszkiewicz, Preprint YITP/U·92-36 (1992). 
6) R. L. Davis et aI., Phys. Rev. Lett. 69 (1992), 1856. 
7) F. Lucchin, S. Matarrese and S. Mollerach, Preprint FERMILAB-Pub-92/185-A (1992). 
8) F. Lucchin and S. Matarrese, Phys. Rev. D32 (1985), 1316. 
9) D. La and P. J. Steinhardt, Phys. Rev. Lett. 62 (1989), 376. 

10) A. L. Berkin, K. Maeda and J. Yokoyama, Phys. Rev. Lett. 65 (1990), 14l. 
11) K. Freese, J. A. Frieman and A. V. Olinto, Phys. Rev. Lett. 65 (1990), 3233. 
12) M. Sasaki, Prog. Theor. Phys. 76 (1986), 1036. 
13) E. D. Stewart and D. H. Lyth, Phys. Lett. 302B (1993), 17l. 
14) L. Abbott and M. Wise, Nucl. Phys. B244 (1984), 54l. 
15) . H. Kodama and M. Sasaki, Prog. Theor. Phys. Suppl. No. 78 (1984); Int. J. Mod. Phys. Al (1986), 

265. 
16) J. R. Bond and J. Efstathiou, Mon. Not. R. Astron. Soc. 226 (1987), 655. 
17) R. Cen et aI., Astrophys. J. 399 (1992), Lll. 
18) K. M. Gorski, Astrophys. J. 398 (1992), L5. 
19) P. J. E. Peebles, Astrophys. J. 315 (1987), L73. 
20) M. Sasaki and J. Yokoyama, Phys. Rev. D44 (1991), 970. 

K. Yamamoto et aI., Phys. Rev. D46 (1992), 4206. 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/89/6/1183/1836446 by guest on 18 April 2024


