Progress of Theoretical Physics, Vol. 95, No. 3, March 1996

P-Wave Charmed Mesons

Katsuo NAKASHIMA,*) Toshiaki ITO, Yoshimitsu MATSUI, Shoji SAWADA and Tsuyoshi B. SUZUKI

Department of Physics, Nagoya University, Nagoya 464-01

(Received April 12, 1995)

We study the *P*-wave charmed meson spectroscopy. We analyze the mixing of two 1⁺ states, the masses and decay widths of the *P*-wave charmed mesons by use of the Breit-Fermi Hamiltonian to account for the $1/m_q$ effects. Though the possibility of the case that $D_1(2420)$ observed by experiments belongs to the $s_i^P = (3/2)^+$ dominant multiplet is high but not yet decisive. Therefore we also examine the case where the $D_1(2420)$ belongs to the $s_i^P = (1/2)^+$ dominant multiplet. For these two cases the relation between the masses and decay widths of the *P*-wave charmed mesons is obtained. When $D_1(2420)$ is assigned into the member of the $s_i^P = (3/2)^+$ dominant multiplet, the decay widths of unfound D_1 and D_0^* become very large, which is consistent to the fact that these states are not found yet by the experiments.

§1. Introduction

Experimentally the two *P*-wave charmed mesons which are $D_2^*(2460)$ and $D_1(2420)$ have been observed. Recently new experimental data for the spectroscopy of these excited states are given by CLEO Collaboration⁵⁾ and E687 Collaboration.⁶⁾ In particular, the data of angular distribution of two dacay pions from $D_1(2420)$ are expected to bring an important information for the assignment of s_i^P .

Heavy flavored hadrons are approximately classified by use of the spin-parity of the light degrees of freedom $s_i^{P,10}$ Since $D_2^*(2460)$ has $J^P = 2^+$, we can assign this meson uniquely to the $s_i^P = (3/2)^+$ state. On the other hand, there are possibilities that the $D_1(2420)$ meson with $J^P = 1^+$ belongs to the $s_i^P = (3/2)^+$ dominant doublet or the s_i^P $= (1/2)^+$ dominant one. Usually $D_1(2420)$ has been assigned to a member of the s_i^P $= (3/2)^+$ dominant doublet since the mass and decay width of this meson are nearly equal to those of $D_2^*(2460)$. However we should note that experiments do not negate definitely the possibility that $D_1(2420)$ belongs to the $s_i^P = (1/2)^+$ dominant doublet as we discuss in § 3.

In this paper, we study the masses and decay widths of unknown P-wave charmed mesons for the two cases:

- Case I. The $D_1(2420)$ belongs to the $s_i^P = (3/2)^+$ dominant doublet, denoted by $s_i^P \simeq (3/2)^+$.
- Case II. The $D_1(2420)$ belongs to the $s_i^P = (1/2)^+$ dominant doublet, denoted by $s_i^P \simeq (1/2)^+$.

In the next section, we discuss the masses, decay widths and D_1 mixing angle. In § 3 we analyze the angular distribution of two final pions in the $D_1(2420)$ decay. A summary and discussion are given in § 4.

^{*)} Address after April 1, 1995: Software Development Center, Hitachi Ltd., Yokohama 244.

§ 2. Masses, decay widths and mixing angle of the P-wave charmed mesons

By taking into account the $1/m_q$ corrections from the heavy quark limit, we consider in this section masses and strong decay widths of the *P*-wave charmed mesons and the mixing angle between two D_1 mesons. In order to estimate the effects of the $1/m_q$ corrections, we use the Breit-Fermi Hamiltonian,⁷⁾

$$\Delta H = c_q \mathbf{L} \cdot \mathbf{S}_q + c_q \mathbf{L} \cdot \mathbf{S}_q + c_T [3(\mathbf{S}_q \cdot \hat{\mathbf{r}})(\mathbf{S}_q \cdot \hat{\mathbf{r}}) - (\mathbf{S}_q \cdot \mathbf{S}_q)].$$
(1)

In Hamiltonian (1), L is the angular momentum between a heavy quark Q and a light anti-quark \bar{q} , S_q and S_q are spins of heavy quark and light anti-quark, and \hat{r} is the unit vector in the direction from the heavy quark to the light anti-quark. We ignore $S \cdot S$ force in Eq. (1) because it affects mainly the S-wave states and not the P-wave states.

First we discuss the two D_1 meson mixing due to the $L \cdot S$ force which causes the mixing between $s_l^{P} = (3/2)^+$ and $s_l^{P} = (1/2)^+$ states. We shall call the lower-mass eigenstate D_1^{α} and the higher-mass one D_1^{β} for physical $J^{P} = 1^+$ mesons. Since we assume that mesons in the $s_l^{P} \simeq (3/2)^+$ doublet are heavier than those in the $s_l^{P} \simeq (1/2)^+$ doublet, we may assign D_1^{α} into $s_l^{P} \simeq (1/2)^+$ state and D_1^{β} into $s_l^{P} \simeq (3/2)^+$ state. So $D_1(2420) = D_1^{\beta}$ in Case I and $D_1(2420) = D_1^{\alpha}$ in Case II. The eigenstates D_1^{α} and D_1^{β} are written as

$$|D_1^{a}\rangle = \cos \Delta \phi \left| J^P = 1^+, s_l^P = \frac{1}{2}^+ \right\rangle - \sin \Delta \phi \left| J^P = 1^+, s_l^P = \frac{3}{2}^+ \right\rangle , \qquad (2)$$

$$|D_1^{\beta}\rangle = \sin \Delta \phi \left| J^P = 1^+, s_t^P = \frac{1}{2}^+ \right\rangle + \cos \Delta \phi \left| J^P = 1^+, s_t^P = \frac{3}{2}^+ \right\rangle , \qquad (3)$$

where $\Delta \phi$ is the mixing angle and specified by

$$\tan^{2}(\phi_{0} - \Delta \phi) = \frac{M_{\theta} - \overline{M}}{\overline{M} - M_{\alpha}}.$$
(4)

Here M_{α} and M_{β} are the masses of the D_1^{α} and D_1^{β} mesons, respectively, and \overline{M} is the average of the spin independent part of the Hamiltonian for L=1 excited states given by

$$\bar{M} = \frac{5M_2 + 3(M_a + M_{\beta}) + M_0}{12},$$
(5)

 M_0 and M_2 being the masses of D_0^* and D_2^* . The mass deviations of M_α and M_β from \overline{M} can be derived straightforwardly by using Eqs. $(1) \sim (3)$.⁷⁾ In Eq. (4) ϕ_0 is the mixing angle between $|^{1}P_{1}\rangle$ and $|^{3}P_{1}\rangle$ states for heavy quark mass limit given by

$$\tan\phi_0 \equiv \sqrt{\frac{1}{2}},\tag{6}$$

and $\Delta \phi$ is the angle indicating the deviation from the heavy quark limit.

If we consider $m_q \gg m_q$ in Eq. (1), since c_q is a quantity of $1/m_q$ effects and c_q , c_T

$$|c_q| \gg |c_q| \simeq |c_T| \tag{7}$$

is derived when we take into account a Hamiltonian including linear confinement and Coulomb-type interactions.⁸⁾ Therefore the masses of P-wave charmed mesons are parametrized as

$$M_2 = \bar{M} + \frac{1}{2}c_q + \frac{2}{5}c_Q, \qquad (8)$$

$$M_{\beta} = \bar{M} + \frac{1}{2}c_{q} - \frac{2}{3}c_{Q}, \qquad (9)$$

$$M_{\alpha} = \overline{M} - c_q + \frac{2}{3} c_q , \qquad (10)$$

$$M_0 = \overline{M} - c_q - 2c_q \,. \tag{11}$$

So these lead to

$$\{M_2 - M_{\beta}\}: \{M_{\alpha} - M_0\} = 2:5.$$
(12)

Then we give the relations of the mixing angle $\Delta \phi$ and the mass of unknown D_1 by use of Eq. (4) and

$$\bar{M} = \frac{5M_2 + 8M_a + 11M_{\beta}}{24}.$$
(13)

In the following calculation we treat the unknown D_1 mass M_1 as a parameter ($M_1 = M_{\alpha}$ for Case I and $M_1 = M_{\beta}$ for Case II). If the mass difference between two D_1 states is too small and the right-hand side of Eq. (4) becomes negative, we obtain no solution of the mixing angle.⁷ Therefore we have to take $M_1 \le 2400$ in Case I and $2435 \le M_1 \le 2460$ in Case II. Furthermore if $M_1 < 2150$ MeV, this meson cannot decay into $D^*\pi$, and is stable for the strong interaction. Therefore for the unknown D_1 mass we take $2150 \le M_1 \le 2400$ MeV in Case I and $2435 \le M_1 \le 2460$ MeV in Case II.

Relations between M_1 and $\Delta \phi$ both for Cases I and II are shown in Fig. 1. The deviation of mixing angle from heavy quark mass limit $\Delta \phi$ almost 0° to $\phi_0 \simeq 35^\circ$ by varying the unknown D_1 meson mass M_1 from 2510 MeV to 2400 MeV for Case I and from 2460 MeV to 2436 MeV for Case II.

Next, we consider decay widths for the P-wave mesons. In order to extract the decay amplitude from experimental decay widths, the kinematical factors are removed by use of the following equation:

$$\Gamma = \frac{1}{8\pi M_{D^{**}}} p^{2L+1} |A|^2 |f(p)|^2$$

$$= \frac{1}{8\pi M_{D^{**}}} p \tilde{\Gamma} |f(p)|^2 ,$$
(15)

where Γ , $M_{D^{**}}$ and f(p) are the decay width, the initial hadron mass and the form factor, respectively. Reduced partial decay widths $\tilde{\Gamma}$ are given by the following

Fig. 1. Relations between the mass of unknown D_1 meson and the mixing angle $\Delta \phi$ between two D_1 mesons (a) for Case I and (b) for Case II.

equations:7)

$$\tilde{\Gamma}(D_2^* \to D^*\pi) = \frac{3}{10} (p/\kappa)^4 D^2, \qquad (16)$$

$$\widetilde{\Gamma}(D_2^* \to D\pi) = \frac{1}{5} (p/\kappa)^4 D^2 , \qquad (17)$$

$$\widetilde{\Gamma}(D_1^{a} \to D^*\pi) = \frac{1}{2} \left(S^2 \cos^2 \varDelta \phi + (p/\kappa)^4 D^2 \sin^2 \varDelta \phi \right), \tag{18}$$

$$\tilde{\Gamma}(D_1^{\beta} \to D^*\pi) = \frac{1}{2} \left(S^2 \sin^2 \varDelta \phi + (p/\kappa)^4 D^2 \cos^2 \varDelta \phi \right), \tag{19}$$

$$\tilde{\Gamma}(D_0^* \to D\pi) = \frac{1}{2} S^2 , \qquad (20)$$

where S and D are the reduced S- and D-wave amplitudes, p is the magnitude of three momentum of decay pion in the center of mass frame for each decay process and κ is a momentum scale characteristic of the decay. The coefficients are determined by the Clebsh-Gordan coefficient for each decay process. We consider the relation of the mass and decay width for the unknown D_1 and D_0^* states by use of the amplitude for the D-wave decay of $D_2^*(2460)$.

In the following analyses, we assume the form factor of the decay vertex f(p) is a Gaussian type given by

Fig. 2. Relations between the mass and decay width of unknown D_1 (a) for Case I and (b) for Case II. Solid lines show results obtained from experimental central values of the $D_2^*(2460)$ and $D_1(2420)$ decay widths. Dashed lines show experimental uncertainties.

where a is a parameter with the dimension of the mass.^{*)} The parameter a is determined so as to reproduce the *D*-wave decay ratio,

$$\frac{\tilde{\Gamma}([D_2^* \to D\pi]_D)}{\tilde{\Gamma}([D_2^* \to D^*\pi]_D)} = \frac{2}{3}$$
(22)

which is derived from Eqs. (16) and (17). From the experimental value of the ratio of $D_2^*(2460)$ decay $\Gamma(D_2^* \to D\pi)/\Gamma(D_2^* \to D^*\pi) = 2.2 \pm 0.7 \pm 0.6$, we obtain a=2.0 GeV. Although we use this value of a, the ratio of two amplitudes Eq. (22) is insensitive for the value of a.

We use the reduced D-wave amplitude D/κ^2 obtained from Eq. (16) and the

Fig. 3. Relations between mass and decay width of unknown D^{*}₀ state (a) for Case I and (b) for Case II. Solid lines and dashed lines denote the same as in Fig. 2.

^{*)} There is ambiguity of function form of the form factor. It may also be possible to take $f(p)=(p^2/a^2)$ exp $(-p^2/2a^2)$ for the *D*-wave decay form factor according to Ref. 9). However, the difference may be absorbed into the parameter *a* and the effect of ambiguity of form factor does not affect the analyses in this paper.

experimental value of $\Gamma(D_2^*(2460) \rightarrow D^*\pi)$. In Case I where $D_1(2420)$ is assigned to the D_1^{β} state, we can determine the reduced S-wave decay amplitude by use of Eq. (19),

$$S^{2} = \frac{1}{\sin^{2} \varDelta \phi} \left[\frac{16 \pi M_{D_{1}(2420)}}{p |f(p)|^{2}} \Gamma(D_{1}(2420) \to D^{*} \pi) - \left(\frac{p}{\kappa}\right)^{4} D^{2} \cos^{2} \varDelta \phi \right],$$
(23)

where

$$\Delta \phi = \phi_0 - \tan^{-1} \sqrt{\frac{M_{D_1(2420)} - \bar{M}}{\bar{M} - M_{D_1}}} \,. \tag{24}$$

The reduced decay width of the unknown D_1 is given by Eq. (18) in Case I. Calculated results for the decay width and mass of the unknown D_1 are shown in Fig. 2(a). The solid line shown in Fig. 2(a) is obtained from experimental central values of the decay widths of $D_2^*(2460)$ and $D_1(2420)$. Dashed lines show the upper bound due to the experimental uncertainties. Though the experimental error is rather large and almost zero decay width for the unknown D_1 meson is not rejected, the decay width is expected very large in Case I.

In Case II the reduced decay width of the unknown D_1 is given by Eq. (19). In Fig. 2(b) we show the relation between the mass and decay width of unknown D_1 for Case II. In this case the expected decay width lies between 6 and 20 MeV almost independent of unknown D_1 mass.

We obtained the reduced S-wave decay amplitude in Eq. (23) in Case I. By use of this S-wave amplitude we calculate the mass and decay width of D_0^* meson which are shown in Fig. 3(a) for Case I. By a similar method we calculate the S-wave amplitude in Case II and obtain the relation between mass and decay width of the D_0^* meson. The results for the D_0^* meson in Case II are shown also in Fig. 3(b). The decay width of D_0^* meson is expected to be very large in Case I, while about 20 MeV irrespective of its mass in Case II.

§ 3. Angular distribution of two decay pions from $D_1(2420)$

Since $D_1(2420)$ decays into $D^*\pi$ and D^* decays successively into $D\pi$ through the strong interactions, the final states of $D_1(2420)$ are $D\pi\pi$. Recently the angular distribution of the final two decay pions from the $D_1(2420)$ was measured by E687 Collaboration.⁶⁾ This experiment gives the important information for the mixing of S- and D-wave decay amplitudes. The angular distribution of pions at θ which is the angle between directions of two pions in the D^* rest frame is given by

$$\frac{1}{N}\frac{dN}{d\cos\theta} = \frac{1}{2} \left(R + (1-R)\frac{1+3\cos^2\theta}{2} + \sqrt{2R(1-R)}\cos\varphi(1-3\cos^2\theta) \right), \quad (25)$$

where φ is the relative phase between the S- and D-wave amplitudes. In Eq. (25) $R = \Gamma_s/\Gamma$ and Γ_s is the S-wave contribution to the total decay width Γ . Then $R = S^2 \sin^2 \Delta \phi/2\tilde{\Gamma}$ in Case I and $R = S^2 \cos^2 \Delta \phi/2\tilde{\Gamma}$ in Case II.

The distribution function in the form of $A(1+B\cos^2\theta)$ is fitted to the angular distribution of decay pions from the neutral $D_1(2420)$ measured by E687 Collaboration. The result is $B=2.74^{+1.40.5}_{-0.93}$ If $D_1(2420)$ is the pure eigenstate with $s_i^P=(3/2)^+$ or with

Fig. 4. Allowed area of the S-wave contribution to the $D_1(2420)$ decay width, denoted as R, and the relative phase φ of between the S- and D-wave decay amplitudes of $D_1(2420)$ meson. The experimental limits of R are shown for Cases I and II.

 $s_t^P = (1/2)^+$, B=3 or 0, respectively. From this result the value B is consistent with the pure D-wave decay of $D_1(2420)$. Then one may conclude that $D_1(2420)$ belongs to the $s_t^P \simeq (3/2)^+$ state. However if we include the effects of relative phase between the S-and D-wave decay amplitudes there remains a possibility that $D_1(2420)$ belongs to the $s_t^P \simeq (1/2)^+$ doublet. The relation between the relative phase φ and the S-wave contribution R is given by

$$\cos\varphi = \frac{C-R}{2\sqrt{2R(1-R)}},\tag{26}$$

where C = (3-B)/(3+B). In Fig. 4 we show the plot of R versus $\cos \varphi$ by using the experimental B. The area between the two dashed lines is the allowed region determined by the E687 experiment.

The allowed region of R is also restricted from both the unknown D_1 mass and the decay width of $D_1(2420)$. For Cases I and II, we obtain the allowed regions for solutions from these constraints,

$$0 \le R \le 0.893$$
 (Case I) (27)

$$0.464 \le R \le 1.0$$
 (Case II) (28)

which are shown in Fig. 4.

As is seen from this result the E687 experiment does not reject the possibility that $D_1(2420)$ is a member of $s_i^P \simeq (1/2)^+$ doublet, though the possibility to belong to $s_i^P \simeq (3/2)^+$ is much higher than to $s_i^P \simeq (1/2)^+$.

§4. Summary and discussion

In the preceding sections we studied the spectroscopy of P-wave charmed mesons from the Breit-Fermi Hamiltonian given in § 2. The two 1⁺ states mixing, the masses and decay widths of unfound D_1 and D_0^* are evaluated. It is believed usually that the mixing angle will be small in the charmed mesons. In Case I where the $D_1(2420)$ meson belongs to $s_i^P = (3/2)^+$ dominant states, the decay widths of unknown D_1 and D_0^* are expected to be very large though the experimental uncertainties are rather large. The large decay widths of these mesons come from the very large S-wave amplitude which is needed to reproduce the experimental ratio $\Gamma(D_2^* \to D\pi)/\Gamma(D_2^* \to D^*\pi)=2.2$ $\pm 0.7 \pm 0.6$. The large decay widths may be the reason why these mesons are not discovered yet by experiments. On the other hand, in Case II, where $D_1(2420)$ is a member of the $s_i^P = (1/2)^+$ dominant doublet, the decay widths of unknown D_0^* and D_1 become small then these mesons will be easily observed by experiments.

We also analyzed the experimental angular distribution of final two pions of the $D_1(2420)$ decay by E687 Collaboration. Our results are that the possibility that $D_1(2420)$ belongs to a member of the $s_i^P = (3/2)^+$ dominant doublet is much higher than the possibility that $D_1(2420)$ belongs to $s_i^P = (1/2)^+$ dominant doublet, but the latter case is not completely rejected.

We are eager for further experiments to decide the spectroscopy of the *P*-wave charmed mesons including the $D_1(2420)$ more clearly and decay widths.

References

- 1) N. Isgur and M. B. Wise, Phys. Lett. B232 (1989), 113; B237 (1990), 527.
- 2) M. Neubert, Phys. Rep. 245 (1994), 259.
- 3) T. Mannel, W. Robert and Z. Ryzak, Phys. Lett. B254 (1990), 274; B259 (1991), 359.
- 4) M. Neubert, Phys. Lett. **B264** (1991), 455.
- 5) CLEO Collaboration, P. Avery et al., Phys. Lett. B331 (1994), 236.
- 6) E687 Collaboration, P. L. Frabetti et al., Phys. Rev. Lett. 72 (1994), 324.
- 7) J. L. Rosner, Comment Nucl. Part. Phys. 16 (1986), 109.
- 8) S. Godfrey and N. Isgur, Phys. Rev. D32 (1985), 189.
- H. J. Schnitzer, Phys. Rev. D18 (1978), 3482.
- N. Isgur, D. Scora, B. Grinstein and M. B. Wise, Phys. Rev. D39 (1989), 799.
 T. B. Suzuki, T. Ito, S. Sawada and M. Matsuda, Prog. Theor. Phys. 91 (1994), 757.
- 10) N. Isgur and M. B. Wise, Phys. Rev. Lett. 66 (1991), 1130.