\boldsymbol{P}-Wave Charmed Mesons

Katsuo Nakashima,*) Toshiaki Ito, Yoshimitsu Matsui, Shoji Sawada and Tsuyoshi B. Suzuki
Department of Physics, Nagoya University, Nagoya 464-01

(Received April 12, 1995)

Abstract

We study the P-wave charmed meson spectroscopy. We analyze the mixing of two 1^{+}states, the masses and decay widths of the P-wave charmed mesons by use of the Breit-Fermi Hamiltonian to account for the $1 / m_{Q}$ effects. Though the possibility of the case that $D_{1}(2420)$ observed by experiments belongs to the $s_{i}^{P}=(3 / 2)^{+}$dominant multiplet is high but not yet decisive. Therefore we also examine the case where the $D_{1}(2420)$ belongs to the $s_{i}^{p}=(1 / 2)^{+}$dominant multiplet. For these two cases the relation between the masses and decay widths of the P-wave charmed mesons is obtained. When $D_{1}(2420)$ is assigned into the member of the $s_{i}^{P}=(3 / 2)^{+}$dominant multiplet, the decay widths of unfound D_{1} and D_{0}^{*} become very large, which is consistent to the fact that these states are not found yet by the experiments.

§ 1. Introduction

Experimentally the two P-wave charmed mesons which are $D_{2}^{*}(2460)$ and $D_{1}(2420)$ have been observed. Recently new experimental data for the spectroscopy of these excited states are given by CLEO Collaboration ${ }^{5}$ and E687 Collaboration. ${ }^{6)}$ In particular, the data of angular distribution of two dacay pions from $\mathrm{D}_{1}(2420)$ are expected to bring an important information for the assignment of s_{l}^{P}.

Heavy flavored hadrons are approximately classified by use of the spin-parity of the light degrees of freedom $s_{l}{ }^{P}{ }^{10)}$ Since $D_{2}^{*}(2460)$ has $J^{P}=2^{+}$, we can assign this meson uniquely to the $s_{l}^{P}=(3 / 2)^{+}$state. On the other hand, there are possibilities that the $D_{1}(2420)$ meson with $J^{P}=1^{+}$belongs to the $s_{l}^{P}=(3 / 2)^{+}$dominant doublet or the $s_{l}{ }^{P}$ $=(1 / 2)^{+}$dominant one. Usually $D_{1}(2420)$ has been assigned to a member of the $s_{i}{ }^{P}$ $=(3 / 2)^{+}$dominant doublet since the mass and decay width of this meson are nearly equal to those of $D_{2}^{*}(2460)$. However we should note that experiments do not negate definitely the possibility that $D_{1}(2420)$ belongs to the $s_{l}^{P}=(1 / 2)^{+}$dominant doublet as we discuss in § 3 .

In this paper, we study the masses and decay widths of unknown P-wave charmed mesons for the two cases:

Case I. The $D_{1}(2420)$ belongs to the $s_{l}^{P}=(3 / 2)^{+}$dominant doublet, denoted by $s_{i}{ }^{P} \simeq(3 / 2)^{+}$.
Case II. The $D_{1}(2420)$ belongs to the $s_{l}^{P}=(1 / 2)^{+}$dominant doublet, denoted by $s_{l}{ }^{P} \simeq(1 / 2)^{+}$.
In the next section, we discuss the masses, decay widths and D_{1} mixing angle. In § 3 we analyze the angular distribution of two final pions in the $D_{1}(2420)$ decay. A summary and discussion are given in $\$ 4$.

[^0]
§ 2. Masses, decay widths and mixing angle of the \boldsymbol{P}-wave charmed mesons

By taking into account the $1 / m_{\theta}$ corrections from the heavy quark limit, we consider in this section masses and strong decay widths of the P-wave charmed mesons and the mixing angle between two D_{1} mesons. In order to estimate the effects of the $1 / m_{Q}$ corrections, we use the Breit-Fermi Hamiltonian, ${ }^{7}$

$$
\begin{equation*}
\Delta H=c_{q} \boldsymbol{L} \cdot \boldsymbol{S}_{q}+c_{\boldsymbol{Q}} \boldsymbol{L} \cdot \boldsymbol{S}_{\boldsymbol{Q}}+c_{T}\left[3\left(\boldsymbol{S}_{\boldsymbol{Q}} \cdot \hat{\boldsymbol{r}}\right)\left(\boldsymbol{S}_{\boldsymbol{Q}} \cdot \hat{\boldsymbol{r}}\right)-\left(\boldsymbol{S}_{q} \cdot \boldsymbol{S}_{\boldsymbol{Q}}\right)\right] . \tag{1}
\end{equation*}
$$

In Hamiltonian (1), \boldsymbol{L} is the angular momentum between a heavy quark Q and a light anti-quark $\bar{q}, \boldsymbol{S}_{\boldsymbol{e}}$ and \boldsymbol{S}_{q} are spins of heavy quark and light anti-quark, and $\hat{\boldsymbol{r}}$ is the unit vector in the direction from the heavy quark to the light anti-quark. We ignore $\boldsymbol{S} \cdot \boldsymbol{S}$ force in Eq. (1) because it affects mainly the S-wave states and not the P-wave states.

First we discuss the two D_{1} meson mixing due to the $\boldsymbol{L} \cdot \boldsymbol{S}$ force which causes the mixing between $s_{l}^{P}=(3 / 2)^{+}$and $s_{i}^{P}=(1 / 2)^{+}$states. We shall call the lower-mass eigenstate $D_{1}{ }^{a}$ and the higher-mass one $D_{1}{ }^{\beta}$ for physical $J^{P}=1^{+}$mesons. Since we assume that mesons in the $s_{l}{ }^{P} \simeq(3 / 2)^{+}$doublet are heavier than those in the $s_{l}{ }^{P} \simeq(1 / 2)^{+}$ doublet, we may assign $D_{1}{ }^{\alpha}$ into $s_{l}{ }^{P} \simeq(1 / 2)^{+}$state and $D_{1}{ }^{\beta}$ into $s_{l}{ }^{P} \simeq(3 / 2)^{+}$state. So $D_{1}(2420)=D_{1}{ }^{\beta}$ in Case I and $D_{1}(2420)=D_{1}{ }^{\alpha}$ in Case II. The eigenstates $D_{1}{ }^{\alpha}$ and $D_{1}{ }^{\beta}$ are written as

$$
\begin{align*}
& \left|D_{1}^{\alpha}\right\rangle=\cos \Delta \phi\left|J^{P}=1^{+}, s_{l}^{P}=\frac{1^{+}}{2}\right\rangle-\sin \Delta \phi\left|J^{P}=1^{+}, s_{l}^{P}=\frac{3}{2}^{+}\right\rangle, \tag{2}\\
& \left|D_{1}^{\beta}\right\rangle=\sin \Delta \phi\left|J^{P}=1^{+}, s l^{P}=\frac{1^{+}}{2}\right\rangle+\cos \Delta \phi\left|J^{P}=1^{+}, s_{l}^{P}=\frac{3^{+}}{2}\right\rangle, \tag{3}
\end{align*}
$$

where $\Delta \phi$ is the mixing angle and specified by

$$
\begin{equation*}
\tan ^{2}\left(\phi_{0}-\Delta \phi\right)=\frac{M_{\beta}-\bar{M}}{\bar{M}-M_{\alpha}} . \tag{4}
\end{equation*}
$$

Here M_{α} and M_{β} are the masses of the $D_{1}{ }^{a}$ and $D_{1}{ }^{\beta}$ mesons, respectively, and \bar{M} is the average of the spin independent part of the Hamiltonian for $L=1$ excited states given by

$$
\begin{equation*}
\bar{M}=\frac{5 M_{2}+3\left(M_{\alpha}+M_{\beta}\right)+M_{0}}{12}, \tag{5}
\end{equation*}
$$

M_{0} and M_{2} being the masses of D_{0}^{*} and D_{2}^{*}. The mass deviations of M_{α} and M_{β} from \bar{M} can be derived straightforwardly by using Eqs. (1)~(3). ${ }^{7}$ In Eq. (4) ϕ_{0} is the mixing angle between $\left|P^{1} P_{1}\right\rangle$ and $\left|{ }^{3} P_{1}\right\rangle$ states for heavy quark mass limit given by

$$
\begin{equation*}
\tan \phi_{0} \equiv \sqrt{\frac{1}{2}}, \tag{6}
\end{equation*}
$$

and $\Delta \phi$ is the angle indicating the deviation from the heavy quark limit.
If we consider $m_{Q} \gg m_{q}$ in Eq. (1), since c_{q} is a quantity of $1 / m_{q}$ effects and c_{Q}, c_{T}
are quantities of $1 / m_{0}$ effects, then

$$
\begin{equation*}
\left|c_{q}\right| \gg\left|c_{Q}\right| \simeq\left|c_{T}\right| \tag{7}
\end{equation*}
$$

is derived when we take into account a Hamiltonian including linear confinement and Coulomb-type interactions. ${ }^{8)} \quad$ Therefore the masses of P-wave charmed mesons are parametrized as

$$
\begin{align*}
& M_{2}=\bar{M}+\frac{1}{2} c_{q}+\frac{2}{5} c_{Q}, \tag{8}\\
& M_{\beta}=\bar{M}+\frac{1}{2} c_{q}-\frac{2}{3} c_{Q}, \tag{9}\\
& M_{\alpha}=\bar{M}-c_{q}+\frac{2}{3} c_{Q}, \tag{10}\\
& M_{0}=\bar{M}-c_{q}-2 c_{Q} . \tag{11}
\end{align*}
$$

So these lead to

$$
\begin{equation*}
\left\{M_{2}-M_{\beta}\right\}:\left\{M_{\alpha}-M_{0}\right\}=2: 5 . \tag{12}
\end{equation*}
$$

Then we give the relations of the mixing angle $\Delta \phi$ and the mass of unknown D_{1} by use of Eq. (4) and

$$
\begin{equation*}
\bar{M}=\frac{5 M_{2}+8 M_{\alpha}+11 M_{\beta}}{24} \tag{13}
\end{equation*}
$$

In the following calculation we treat the unknown D_{1} mass M_{1} as a parameter (M_{1} $=M_{\alpha}$ for Case I and $M_{1}=M_{\beta}$ for Case II). If the mass difference between two D_{1} states is too small and the right-hand side of Eq. (4) becomes negative, we obtain no solution of the mixing angle. ${ }^{7)}$ Therefore we have to take $M_{1} \leq 2400$ in Case I and $2435 \leq M_{1} \leq 2460$ in Case II. Furthermore if $M_{1}<2150 \mathrm{MeV}$, this meson cannot decay into $D^{*} \pi$, and is stable for the strong interaction. Therefore for the unknown D_{1} mass we take $2150 \leq M_{1} \leq 2400 \mathrm{MeV}$ in Case I and $2435 \leq M_{1} \leq 2460 \mathrm{MeV}$ in Case II.

Relations between M_{1} and $\Delta \phi$ both for Cases I and II are shown in Fig. 1. The deviation of mixing angle from heavy quark mass limit $\Delta \phi$ almost 0° to $\phi_{0} \simeq 35^{\circ}$ by varying the unknown D_{1} meson mass M_{1} from 2510 MeV to 2400 MeV for Case I and from 2460 MeV to 2436 MeV for Case II.

Next, we consider decay widths for the P-wave mesons. In order to extract the decay amplitude from experimental decay widths, the kinematical factors are removed by use of the following equation:

$$
\begin{align*}
\Gamma & =\frac{1}{8 \pi M_{D^{* *}}} p^{2 L+1}|A|^{2}|f(p)|^{2} \tag{14}\\
& =\frac{1}{8 \pi M_{D^{* *}}} p \tilde{\Gamma}|f(p)|^{2} \tag{15}
\end{align*}
$$

where $\Gamma, M_{D^{* *}}$ and $f(p)$ are the decay width, the initial hadron mass and the form factor, respectively. Reduced partial decay widths' $\tilde{\Gamma}$ are given by the following

Fig. 1. Relations between the mass of unknown D_{1} meson and the mixing angle $\Delta \phi$ between two D_{1} mesons (a) for Case I and (b) for Case II.
equations: ${ }^{7}$

$$
\begin{align*}
& \tilde{\Gamma}\left(D_{2}^{*} \rightarrow D^{*} \pi\right)=\frac{3}{10}(p / k)^{4} D^{2}, \tag{16}\\
& \tilde{\Gamma}\left(D_{2}^{*} \rightarrow D \pi\right)=\frac{1}{5}(p / \kappa)^{4} D^{2}, \tag{17}\\
& \tilde{\Gamma}\left(D_{1}^{\alpha} \rightarrow D^{*} \pi\right)=\frac{1}{2}\left(S^{2} \cos ^{2} \Delta \phi+(p / k)^{4} D^{2} \sin ^{2} \Delta \phi\right), \tag{18}\\
& \tilde{\Gamma}\left(D_{1}^{\beta} \rightarrow D^{*} \pi\right)=\frac{1}{2}\left(S^{2} \sin ^{2} \Delta \phi+(p / \kappa)^{4} D^{2} \cos ^{2} \Delta \phi\right), \tag{19}\\
& \tilde{\Gamma}\left(D_{0}^{*} \rightarrow D \pi\right)=\frac{1}{2} S^{2}, \tag{20}
\end{align*}
$$

where S and D are the reduced S - and D-wave amplitudes, p is the magnitude of three momentum of decay pion in the center of mass frame for each decay process and κ is a momentum scale characteristic of the decay. The coefficients are determined by the Clebsh-Gordan coefficient for each decay process. We consider the relation of the mass and decay width for the unknown D_{1} and D_{0}^{*} states by use of the amplitude for the D-wave decay of $D_{2}^{*}(2460)$.

In the following analyses, we assume the form factor of the decay vertex $f(p)$ is a Gaussian type given by

$$
\begin{equation*}
f(p)=\exp \left(-\frac{p^{2}}{2 a^{2}}\right) \tag{21}
\end{equation*}
$$

Fig. 2. Relations between the mass and decay width of unknown D_{1} (a) for Case I and (b) for Case II. Solid lines show results obtained from experimental central values of the $D_{2}^{*}(2460)$ and $D_{1}(2420)$ decay widths. Dashed lines show experimental uncertainties.
where a is a parameter with the dimension of the mass. ${ }^{*)}$ The parameter a is determined so as to reproduce the D-wave decay ratio,

$$
\begin{equation*}
\frac{\tilde{\Gamma}\left(\left[D_{2}^{*} \rightarrow D \pi\right]_{D}\right)}{\tilde{\Gamma}\left(\left[D_{2}^{*} \rightarrow D^{*} \pi\right]_{D}\right)}=\frac{2}{3} \tag{22}
\end{equation*}
$$

which is derived from Eqs. (16) and (17). From the experimental value of the ratio of $D_{2}^{*}(2460)$ decay $\Gamma\left(D_{2}^{*} \rightarrow D \pi\right) / \Gamma\left(D_{2}^{*} \rightarrow D^{*} \pi\right)=2.2 \pm 0.7 \pm 0.6$, we obtain $a=2.0 \mathrm{GeV}$. Although we use this value of a, the ratio of two amplitudes Eq. (22) is insensitive for the value of a.

We use the reduced D-wave amplitude D / κ^{2} obtained from Eq. (16) and the

Fig. 3. Relations between mass and decay width of unknown D_{0}^{*} state (a) for Case I and (b) for Case
II. Solid lines and dashed lines denote the same as in Fig. 2.

[^1]experimental value of $\Gamma\left(D_{2}^{*}(2460) \rightarrow D^{*} \pi\right)$. In Case I where $D_{1}(2420)$ is assigned to the $D_{1}{ }^{\beta}$ state, we can determine the reduced S-wave decay amplitude by use of Eq. (19),
\[

$$
\begin{equation*}
S^{2}=\frac{1}{\sin ^{2} \Delta \phi}\left[\frac{16 \pi M_{D_{1}(2420)}}{p|f(p)|^{2}} \Gamma\left(D_{1}(2420) \rightarrow D^{*} \pi\right)-\left(\frac{p}{\kappa}\right)^{4} D^{2} \cos ^{2} \Delta \phi\right], \tag{23}
\end{equation*}
$$

\]

where

$$
\begin{equation*}
\Delta \phi=\phi_{0}-\tan ^{-1} \sqrt{\frac{M_{D_{1}(2420)}-\bar{M}}{\bar{M}-M_{D_{1}}}} . \tag{24}
\end{equation*}
$$

The reduced decay width of the unknown D_{1} is given by Eq. (18) in Case I. Calculated results for the decay width and mass of the unknown D_{1} are shown in Fig. 2(a). The solid line shown in Fig. 2(a) is obtained from experimental central values of the decay widths of $D_{2}^{*}(2460)$ and $D_{1}(2420)$. Dashed lines show the upper bound due to the experimental uncertainties. Though the experimental error is rather large and almost zero decay width for the unknown D_{1} meson is not rejected, the decay width is expected very large in Case I.

In Case II the reduced decay width of the unknown D_{1} is given by Eq. (19). In Fig. 2(b) we show the relation between the mass and decay width of unknown D_{1} for Case II. In this case the expected decay width lies between 6 and 20 MeV almost independent of unknown D_{1} mass.

We obtained the reduced S-wave decay amplitude in Eq. (23) in Case I. By use of this S-wave amplitude we calculate the mass and decay width of D_{0}^{*} meson which are shown in Fig. 3(a) for Case I. By a similar method we calculate the S-wave amplitude in Case II and obtain the relation between mass and decay width of the D_{0}^{*} meson. The results for the D_{0}^{*} meson in Case II are shown also in Fig. 3(b). The decay width of D_{0}^{*} meson is expected to be very large in Case I, while about 20 MeV irrespective of its mass in Case II.

§ 3. Angular distribution of two decay pions from $D_{1}(2420)$

Since $D_{1}(2420)$ decays into $D^{*} \pi$ and D^{*} decays successively into $D \pi$ through the strong interactions, the final states of $D_{1}(2420)$ are $D \pi \pi$. Recently the angular distribution of the final two decay pions from the $D_{1}(2420)$ was measured by E687 Collaboration. ${ }^{6)}$ This experiment gives the important information for the mixing of S - and D-wave decay amplitudes. The angular distribution of pions at θ which is the angle between directions of two pions in the D^{*} rest frame is given by

$$
\begin{equation*}
\frac{1}{N} \frac{d N}{d \cos \theta}=\frac{1}{2}\left(R+(1-R) \frac{1+3 \cos ^{2} \theta}{2}+\sqrt{2 R(1-R)} \cos \varphi\left(1-3 \cos ^{2} \theta\right)\right), \tag{25}
\end{equation*}
$$

where φ is the relative phase between the S - and D-wave amplitudes. In Eq. (25) $R=\Gamma_{s} / \Gamma$ and Γ_{s} is the S-wave contribution to the total decay width Γ. Then $R=S^{2} \sin ^{2} \Delta \phi / 2 \tilde{\Gamma}$ in Case I and $R=S^{2} \cos ^{2} \Delta \phi / 2 \tilde{\Gamma}$ in Case II.

The distribution function in the form of $A\left(1+B \cos ^{2} \theta\right)$ is fitted to the angular distribution of decay pions from the neutral $D_{1}(2420)$ measured by E687 Collaboration. The result is $B=2.74_{-0.99}^{+1.40 .5} \quad$ If $D_{1}(2420)$ is the pure eigenstate with $s_{l}{ }^{P}=(3 / 2)^{+}$or with

Fig. 4. Allowed area of the S-wave contribution to the $D_{1}(2420)$ decay width, denoted as R, and the relative phase φ of between the S - and D-wave decay amplitudes of $D_{1}(2420)$ meson. The experimental limits of R are shown for Cases I and II.
$s_{t}^{P}=(1 / 2)^{+}, B=3$ or 0 , respectively. From this result the value B is consistent with the pure D-wave decay of $D_{1}(2420)$. Then one may conclude that $D_{1}(2420)$ belongs to the $s_{l}{ }^{P} \simeq(3 / 2)^{+}$state. However if we include the effects of relative phase between the S-and D-wave decay amplitudes there remains a possibility that $D_{1}(2420)$ belongs to the $s_{l}^{P} \simeq(1 / 2)^{+}$doublet. The relation between the relative phase φ and the S-wave contribution R is given by

$$
\begin{equation*}
\cos \varphi=\frac{C-R}{2 \sqrt{2 R(1-R)}}, \tag{26}
\end{equation*}
$$

where $C=(3-B) /(3+B)$. In Fig. 4 we show the plot of R versus $\cos \varphi$ by using the experimental B. The area between the two dashed lines is the allowed region determined by the E687 experiment.

The allowed region of R is also restricted from both the unknown D_{1} mass and the decay width of $D_{1}(2420)$. For Cases I and II, we obtain the allowed regions for solutions from these constraints,

$$
\begin{align*}
& 0 \leq R \leq 0.893 \quad \text { (Case I) } \tag{27}\\
& 0.464 \leq R \leq 1.0 \quad \text { (Case II) } \tag{28}
\end{align*}
$$

which are shown in Fig. 4.
As is seen from this result the E687 experiment does not reject the possibility that $D_{1}(2420)$ is a member of $s_{l}^{P} \simeq(1 / 2)^{+}$doublet, though the possibility to belong to s_{l}^{P} $\simeq(3 / 2)^{+}$is much higher than to $s_{l}^{P} \simeq(1 / 2)^{+}$.

§ 4. Summary and discussion

In the preceding sections we studied the spectroscopy of P-wave charmed mesons from the Breit-Fermi Hamiltonian given in § 2. The two 1^{+}states mixing, the masses and decay widths of unfound D_{1} and D_{0}^{*} are evaluated. It is believed usually that the mixing angle will be small in the charmed mesons. In Case I where the $D_{1}(2420)$ meson belongs to $s_{l}^{P}=(3 / 2)^{+}$dominant states, the decay widths of unknown D_{1} and D_{0}^{*} are expected to be very large though the experimental uncertainties are rather large. The large decay widths of these mesons come from the very large S-wave amplitude which is needed to reproduce the experimental ratio $\Gamma\left(D_{2}^{*} \rightarrow D \pi\right) / \Gamma\left(D_{2}^{*} \rightarrow D^{*} \pi\right)=2.2$ $\pm 0.7 \pm 0.6$. The large decay widths may be the reason why these mesons are not discovered yet by experiments. On the other hand, in Case II, where $D_{1}(2420)$ is a member of the $s_{i}^{P}=(1 / 2)^{+}$dominant doublet, the decay widths of unknown D_{0}^{*} and D_{1} become small then these mesons will be easily observed by experiments.

We also analyzed the experimental angular distribution of final two pions of the $D_{1}(2420)$ decay by E687 Collaboration. Our results are that the possibility that $D_{1}(2420)$ belongs to a member of the $s_{l}^{P}=(3 / 2)^{+}$dominant doublet is much higher than the possibility that $D_{1}(2420)$ belongs to $s_{l}{ }^{p}=(1 / 2)^{+}$dominant doublet, but the latter case is not completely rejected.

We are eager for further experiments to decide the spectroscopy of the P-wave charmed mesons including the $D_{1}(2420)$ more clearly and decay widths.

References

) N. Isgur and M. B. Wise, Phys. Lett. B232 (1989), 113; B237 (1990), 527.
2) M. Neubert, Phys. Rep. 245 (1994), 259.
3) T. Mannel, W. Robert and Z. Ryzak, Phys. Lett. B254 (1990), 274; B259 (1991), 359.
4) M. Neubert, Phys. Lett. B264 (1991), 455.
5) CLEO Collaboration, P. Avery et al., Phys. Lett. B331 (1994), 236.
6) E687 Collaboration, P. L. Frabetti et al., Phys. Rev. Lett. 72 (1994), 324.
7) J. L. Rosner, Comment Nucl. Part. Phys. 16 (1986), 109.
8) S. Godfrey and N. Isgur, Phys. Rev. D32 (1985), 189. H. J. Schnitzer, Phys. Rev. D18 (1978), 3482.
9) N. Isgur, D. Scora, B. Grinstein and M. B. Wise, Phys. Rev. D39 (1989), 799.
T. B. Suzuki, T. Ito, S. Sawada and M. Matsuda, Prog. Theor. Phys. 91 (1994), 757.
10) N. Isgur and M. B. Wise, Phys. Rev. Lett. 66 (1991), 1130.

[^0]: ${ }^{*)}$ Address after April 1, 1995: Software Development Center, Hitachi Ltd., Yokohama 244.

[^1]: ${ }^{*)}$ There is ambiguity of function form of the form factor. It may also be possible to take $f(p)=\left(p^{2} / a^{2}\right)$ $\exp \left(-p^{2} / 2 a^{2}\right)$ for the D-wave decay form factor according to Ref. 9). However, the difference may be absorbed into the parameter a and the effect of ambiguity of form factor does not affect the analyses in this paper.

