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The sine-circle map driven by noise with bounded amplitude is shown to be a model
exhibiting the characteristics of chaotic phase synchronization (CPS). Two different routes
to CPS corresponding to the observation by Osipov et al. are also explained by the present
model.

There is a wide class of chaotic oscillators which have the phase of oscillation
as a well-defined dynamical variable, i.e., the phase variable can be taken as one of
the phase space coordinates. In the coupled system of two such chaotic oscillators
which are weakly nonidentical with each other, with a suitable coupling strength
the transition to the chaotic phase synchronization1) (CPS) possibly takes place.
In the CPS state, the phases of oscillation synchronize, but the amplitudes of the
oscillators are chaotic each other. In the present paper, we propose a stochastic
model exhibiting the CPS transition for a phenomenological understanding of CPS.

In the phase space, the attractor of weakly coupled system has a torus-like struc-
ture corresponding to the existence of the two phase variables. By taking a Poincaré
section transversely across the faster phase variable of the torus-like attractor, the
Poincaré map is introduced for the normalized phase difference θn and the vector
rn of its complemental variables as θn+1 = F (θn, rn) and rn+1 = G(θn, rn) where
F (θ + 1, r) = F (θ, r) and G(θ + 1, r) = G(θ, r).2) By neglecting the time correlation
of the chaotic component of rn, it can be replaced by random noise, and then by as-
suming the simplest nonlinear form for F (θn, rn) in θn, the following noisy sine-circle
map is introduced as a model for CPS:

θn+1 = θn − K

2π
sin 2πθn + Ω + fn mod 1, (1)

where K and Ω are control parameters and fn is random noise that incorporates the
modulation by chaotic amplitudes. Here we assume that fn is noise uniformly distrib-
uted over an interval [0, a] for simplicity. Note that the correlation between θn and
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rn is also neglected and the noise term is restricted to additive one in Eq. (1). Equa-
tion (1) without noise term called the sine-circle map3) has been well-investigated as
a typical model for the two-frequency systems. The only important point, here, is
that fn is bounded, which is required by the fact that the trajectory of the original
dynamical system is confined in a bounded subset of the phase space. The bound-
edness of fn brings about a clear transition from the phase desynchronized state to
the phase synchronized state, which cannot be realized under unbounded noise such
as Gaussian white noise.
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Fig. 1. The phase locking structure of the

sine-circle map. The inserts illustrate

the maps at the bifurcation points, where

each dotted line illustrates the orbit with

nonzero rotation number appearing after

the bifurcation.

As an order parameter of the CPS,
the rotation number is introduced as

ω ≡ lim
n→∞

θn − θ0

n
(2)

without taking mod 1 in Eq. (1). Zero
and none zero ω corresponds to the
phase synchronized and phase desyn-
chronized states, respectively. Figure 1
shows the phase locking structure of the
sine-circle map (fn ≡ 0), where an at-
tractor with ω = 0 appears on the line
A+

0/1 (Ω = K
2π ) by the tangent bifurca-

tion and this attractor is destroyed by
crisis on the line C+

0/1. On the line L+
0/1,

the attractor with ω = 0 remains but
the orbit with ω �= 0 appears by crisis.
The inserts in Fig. 1 illustrate the maps

on the bifurcation lines.4) On the Ω-K plane, the noise term in Eq. (1) acts as a
parameter deviation (Ω+fn, K) with fn ∈ [0, a]. If (Ω, K) is inside the phase locking
region with ω = 0, then ω = 0 is expected for the orbit of Eq. (1) with small enough
value of a and ω �= 0 is expected for sufficiently large a. Thus, in the following, we
take the maximum value a of fn as a control parameter with fixed Ω and K.∗)

Figure 2 shows the behavior of rotation number ω for K = 1.4 and several values
of Ω as a function of a, where the critical point ac of CPS satisfying ac = K

2π − Ω
implies this transition to CPS is associated with a tangent bifurcation. The critical
behavior at the onset of CPS2),5) i.e., the normal scaling

ω ∼ √
a − a∗ or a − a∗, (3)

depending on the values of Ω and ac, for a > a∗ with a∗ > ac in the region relatively
away from the critical point ac and the anomalous scaling

ω ∼ exp(−const/
√

a − ac) (4)

for a slightly above ac is observed before the appearance of CPS state ω = 0 for
a < ac. The two types of behavior in the normal scaling region are understood by

∗) The value of K, Ω, or some their combination can also be used as a control parameter, but

the critical behavior is not affected by the choice of the control parameter.
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Fig. 2. The critical behavior of the rotation number ω as a function of a for K = 1.4 and Ω =

0, 0.05, 0.1, 0.15, and 0.2, where ac = K
2π

−Ω is used. ω ∼ √
a − a∗ and ω ∼ a−a∗ are suggested

for Ω = 0.2 and Ω = 0, respectively.
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Fig. 3. The critical behavior of the rotation number around the onset of CPS due to crisis at K = 3

and Ω = 0 and 0.05. Similar behavior as the case due to tangent bifurcation is observed.

considering the strength of the stochasticity of the chaotic modulation: If the sto-
chasticity of the chaotic modulation is weak enough the tangent structure of the map
is kept after the average over several time steps yielding the square root behavior.
On the other hand, if the stochasticity of the chaotic modulation is strong enough
the tangent structure of the map is averaged out and the parameter dependence be-
comes trivial. The anomalous scaling (4) can be theoretically explained in a similar
manner as the unstable-unstable pair bifurcation2),6) despite the randomness of the
modulation in the present system. Figure 2(c) is consistent with the theory.

For larger values of K such as K = 3, a transition to CPS due to crisis is
observed. Figure 3 shows the behavior of ω for K = 3 and Ω = 0 and 0.05, where
the critical point ac is determined such that (Ω + ac, K) is on the line L+

0/1. The
scaling behavior

ω ∼ a − a∗ (5)

for a > a∗ and
ω ∼ exp(−const/

√
a − ac) (6)

for a slightly above ac is confirmed. The anomalous scaling can be explained by
considering the escape time by crisis and the probability that the state of finite
escape time continues for the time interval as long as its escape time. Note that the
inverse square root in Eq. (6) stems form the scaling of the escape time of crisis and
it may change to another power for higher dimensional crisis.7) This transition to
CPS due to crisis may correspond to the second one of the three types of CPS found
by Osipov et al.8) and the normal scaling ω ∼ a − a∗ coincides with their result.
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Fig. 4. The critical behavior of the rotation number around the onset of CPS due to tangent

bifurcation at K = 3 and Ω = 0.4 and 0.45 with ac satisfying ac = K
2π

− Ω.

At K = 3 a transition to CPS due to tangent bifurcation is also observed pro-
vided that the value of Ω is set close to A+

0/1
such that the amplitude of modulation

is small enough. Indeed, as shown in Fig. 4, similar behavior of the rotation number
as the case of K = 1.4 is observed. Since the amplitude of modulation is kept small,
only the scaling ω ∼ √

a − a∗ is observed.
In summary, by introducing a noisy sine-circle map with bounded noise, two

routes to CPS associated with tangent bifurcation and crisis, which may coincide the
first two types among the three found by Osipov et al.,8) are investigated. In the case
of CPS by tangent bifurcation, the normal scaling of the rotation number is summa-
rized as ω ∼ √

a − a∗ or a−a∗, while only ω ∼ a−a∗ is observed in the case of crisis.
In the anomalous scaling region, the same scaling law ω ∼ exp(−const/

√
a − ac)

holds for the both cases of tangent bifurcation and crisis. In applying this result
for the case of crisis to coupled chaotic oscillators, the inverse square form in the
exponent of the scaling law may need to be modified due to the dimensionality of
crisis, which is not incorporated in the noisy 1d sine-circle map. The transition to
CPS by crossing another crisis line C+

0/1, which is not investigated in the present
paper, may be a possible another route to CPS. The behavior of the phase diffusion
coefficient is also a matter of the future investigation.

Finally, let us remark that the systems under bounded noise are worth to be
investigated and useful for understanding nonlinear dynamics, and possibly show
a variety of interesting phenomena, e.g., a bistable system driven by dichotomous
noise9) exhibits dynamical phase transition which can not be possible under un-
bounded noise such as Gaussian white noise.
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