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We construct explicit BPS and non-BPS solutions of the Yang-Mills equations on
noncommutative spaces R

2n
θ × G/H which are manifestly G-symmetric. Given a G-

representation, by twisting with a particular bundle over G/H, we obtain a G-equivariant
U(k) bundle with a G-equivariant connection over R

2n
θ × G/H. The U(k) Donaldson-

Uhlenbeck-Yau equations on these spaces reduce to vortex-type equations in a particular
quiver gauge theory on R

2n
θ . Seiberg-Witten monopole equations are particular examples.

The noncommutative BPS configurations are formulated with partial isometries, which are
obtained from an equivariant Atiyah-Bott-Shapiro construction. They can be interpreted as
D0-branes inside a space-filling brane-antibrane system.

§1. Twisted dimensional reduction

It is an old dream to “explain” the standard model of particle physics by di-
mensional reduction of a higher-dimensional gauge theory. After the reduction, the
field dependence on the extra coordinates must of course disappear from the four-
dimensional Lagrangian. Usually, this is achieved, in a rather crude way, by simply
discarding the fields’ dependence on the extra coordinates. However, independence
is by no means necessary: it suffices to prescribe some dependence, like, e.g., in
warped compactifications. If the extra spacetime dimensions admit isometries, it is
particularly elegant to compensate these by gauge transformations. In this way, the
Lie derivative with respect to a Killing vector becomes a gauge generator. The bonus
is a unification of gauge and Higgs sectors in the higher-dimensional gauge theory.

The natural setting for spacetime isometries are coset spaces G/H, and thus
one is led to a reduction M× G

H −→ M where the manifoldM is to be specified
later. Such a “coset-space dimensional reduction”1) was first suggested by Witten,2)

Forgacs and Manton,3),4) and has since been extended supersymmetrically5) and
embedded into superstring theory.6) In the present talk, for Lie groups G of rank
one and rank two, we shall apply this scheme to perform a G-equivariant reduction
of Yang-Mills theory over G/H to a quiver gauge theory on M,7)–10) formulate its
BPS equations and show how to construct a certain class of solutions, which admit
a D-brane interpretation. These solutions, however, only exist when the system is
subjected to a noncommutative deformation. Therefore, about half-way into the talk
we specialize to M = C

n and apply a Moyal deformation. Most material presented
here has appeared in Refs. 11)–13), some is work in progress.
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Quiver Gauge Theory and Noncommutative Vortices 259

§2. Kähler times coset space G/H

To be concrete, let us consider U(k) Yang-Mills theory onM2n× G
H , withM2n

being a real 2n-dimensional Kähler manifold with Kähler form ω and metric g.
For cosets, we shall examine the following four examples:

G/H: CP 1
CP 1 × CP 1

CP 2 Q3

‖ ‖ ‖ ‖
SU(2)
U(1)

SU(2)×SU(2)
U(1)×U(1)

SU(3)
S(U(2)×U(1))

SU(3)
U(1)×U(1)

d=2 d=4 d=4 d=6

These are homogeneous but not necessarily symmetric spaces (Q3 is not). Further-
more, they are Kähler, with Kähler forms β ∧ β̄ factorized into canonical one-forms.

§3. Donaldson-Uhlenbeck-Yau equations

To formulate U(k) Yang-Mills theory on M2n × G
H , we introduce a rank-k her-

mitian vector bundle
E�Ck

M2n × G
H

(3.1)

with structure group U(k) and a connection A which gives rise to the curvature or
field strength F = dA+A∧A subject to the Bianchi identity DA F = 0 where
DA is the gauge covariant derivative.

The (vacuum) Yang-Mills equations read

DA (∗F) = 0, (3.2)

where ‘∗’ denotes the Hodge dual. With respect to the Kähler form Ω = ω + β∧β̄
of the total space, the field strength decomposes as

F = F (2,0) + F (1,1) + F (0,2) . (3.3)

So-called stable bundles E solve the Donaldson-Uhlenbeck-Yau equations14),15)

F (2,0) = 0 = F (0,2) and ∗Ω ∧ F = 0 (DUY) (3.4)

which are first-order conditions on the connection A. Their importance derives
from the fact that the n2−n+1 DUY equations imply the 2n full Yang-Mills equa-
tions (3.2). Hence, for obtaining classical solutions it suffices to solve the DUY
equations rather than the full second-order field equations (but it is by no means
necessary). As a special case, on M4 (n=2) the 3 DUY equations reduce to the
famous self-duality equations F = ∗F which yield instantons and monopoles.
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260 O. Lechtenfeld, A. D. Popov and R. J. Szabo

§4. G-equivariant bundle construction

In order to implement the coset-space reduction, we must construct a G-

equivariant bundle over the coset space. A rank-d vector bundle L Cd−→ G/H with
structure group U(d) is G-equivariant if the left translations Lg on L (with g ∈ G)
are compatible with the right U(d) action and the following diagram is commutative,

L Lg−−−−→ L�π π

�
G
H

lg−−−−→ G
H

, (4.1)

where lg is the left translation on the coset space. Since Lh ∈ U(d) for h ∈ H, this
defines a representation ρ : H ↪→ U(d). For simplicity, we take ρ to be irreducible.

As a next step, we extend the bundle L by a rank-k vector bundle E overM2n,

L�Cd

G
H

−→
E ⊗L�Ck⊗Cd

M2n × G
H

, (4.2)

to a bundle over the total space with a trivial G-action on E. Further, we form a
Whitney sum of m+1 such bundles with data (ki, di, ρi) for i = 0, 1, . . . , m. The
G-equivariant total bundle

E =
m⊕

i=0

Ei ⊗ Li (4.3)

comes with a structure group
∏

i U(ki)×U(di) and admits G-equivariant connections
A (i.e. connections compatible with equivariance).

§5. G-equivariant connection

Finally, we twist each subbundle Ei
Cki−→ M2n with a connection Ai ∈ u(ki)

by the homogeneous bundle Li
Cdi−→ G/H with a connection ai in the LieH-irrep ρi.

Hence, the connection on Ei ⊗ Li reads

Ai = Ai ⊗ 1di
+ 1ki

⊗ ai for i = 0, 1, . . . , m . (5.1)

It is important to realize that the G-action connects different H-irreps, ρi
g→ ρj , so

that the total connection

A =
m⊕

i=0

Ai + “off-diagonal” (5.2)

D
ow

nloaded from
 https://academ

ic.oup.com
/ptps/article/doi/10.1143/PTPS.171.258/1890925 by guest on 25 April 2024



Quiver Gauge Theory and Noncommutative Vortices 261

is not block-diagonal. G-equivariance then dictates the decomposition of the con-
nection into kidi×kjdj blocks as

A =




A0⊗1d0 + 1k0⊗ a0 φ01 ⊗ β01 · · · φ0m ⊗ β0m

φ10 ⊗ β10 A1⊗1d1 + 1k1⊗ a1 · · · φ1m ⊗ β1m

...
...

. . .
...

φm0 ⊗ βm0 φm1 ⊗ βm1 · · · Am⊗1dm + 1km⊗ am



(5.3)

with size ki×kj Higgs fields

φij = φ†
ji ∈ Hom(Ckj , Cki) (5.4)

in the bi-fundamental representation of U(ki) × U(kj) and size di×dj one-forms
βij = −β†

ji on G
H built from the components of β and β̄.

This construction breaks the original gauge group

U(
∑

ikidi) −→
∏

i

U(ki) (5.5)

via the Higgs effect. In the following we choose the collection {ρi} to descend from
some G-irrep D, i.e.

D|
H

=
m⊕

i=0

ρi . (5.6)

It should be noted that the coset generators connect only particular pairs (ρj , ρi) so
that many one-forms βij actually vanish.

§6. The quiver diagram

The connection A ∼ {Ai, φij} realizes a quiver gauge theory: For each H-
irrep ρi draw one vertex, which carries a multiplicity space C

ki and a connection
Ai ∈ u(ki); for each nonzero one-form βij : ρj → ρi draw an arrow from vertex j to
vertex i, which carries a Higgs field φij : C

kj → C
ki . Abbreviating φij ⊗ βij =: Φij

we obtain pictorially∗)

· · · i• Φij←− j• · · · (6.1)

as the building block for a quiver diagram. The most general such diagram may in
fact be obtained from the above construction by deleting some of the vertices (and
connecting arrows).10) In the following, we discuss examples based on G of rank one
and rank two.

∗) Our arrows point to the left for later agreement with the standard building of weight diagrams

from the highest weight downward. This is opposite to the convention of 12) and 13) where instead

Φji was used.
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262 O. Lechtenfeld, A. D. Popov and R. J. Szabo

§7. Rank-one example

We come to the basic example of

G

H
∼= SU(2)

U(1)
∼= S2

R with β =
2R2dy

R2 + yȳ
, (7.1)

where R is the radius of the two-sphere and y denotes its (complex) stereographic
coordinate.

The homogeneous bundle in question is the q-monopole bundle

Lq = L⊗q with

L=S3�S1

S2
R

(7.2)

and transition functions (y
ȳ )

q
2 = e i qϕ. The q-monopole connection and field strength

read

aq =
q

2
ȳdy − ydȳ

R2 + yȳ
−→ fq = − q

4R2
β ∧ β̄ with c1 = degLq = q .

(7.3)
Let us pick an SU(2)-irrep D = m+1 (i.e. spin m

2 ) so that the U(1) irreps
are characterized by charges qi = m−2i for i = 0, 1, . . . , m, and βij = 0 except for
βi i−1 = −β and βi i+1 = β̄. Labelling the vertices from the highest SU(2) weight
downwards, we get chains

Em
φm m−1←− · · · φ21←− E1

φ10←− E0 and L−m β←− · · · β←− Lm−2 β←− Lm (7.4)

which are represented diagrammatically by the linear (or Am+1) quiver

m• Φm m−1←−−−−− · · · Φ32←−−−− 2• Φ21←−−−− 1• Φ10←−−−− 0• . (7.5)

§8. Rank-two examples

More instructive are the three rank-two examples listed in §2. First, in the
product case of

CP 1 × CP 1 ∼= SU(2)
U(1)

× SU(2)
U(1)

the G-irrep is given by a pair of spins,

D = (m1+1 , m2+1) .

It is obvious that the corresponding quiver becomes a product of two chains.
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Quiver Gauge Theory and Noncommutative Vortices 263

• ←−−−− • ←−−−− • ←−−−− · · · ←−−−− •� � � �
• ←−−−− • ←−−−− • ←−−−− · · · ←−−−− •� � � �
...

...
...

...� � � �
• ←−−−− • ←−−−− • ←−−−− · · · ←−−−− •

Second, for the nonsymmetric coset

Q3
∼= SU(3)

U(1)× U(1)
∼= G

maximal torus
(8.1)

the ρi are labelled by the eigenvalues of the SU(3) Cartan generators, and thus the
quiver is simply based on the weight diagram of the SU(3) representation D. We
order the weights descending from the highest one, and our arrows agree with the
action of the lowering operators. Third, the case of

CP 2 ∼= SU(3)
S(U(2)× U(1))

(8.2)

calls for a decomposition D =
⊕

i di qi
of the SU(3) representation into ‘isospin’

irreps di with ‘hypercharge’ qi and a (di, qi) plot for the quiver vertices. Since each
vertex represents a full isospin multiplet, we may alternatively obtain the corre-
sponding quiver diagram for CP 2 from the Q3 quiver by collapsing all vertices of a
‘horizontal’ SU(2)-irrep to single vertex.

Clearly, the novel features of the rank-two situation are, firstly, the appearance of
multiple arrows due to weight degeneracy and, secondly, the occurrence of nontrivial
Higgs-field relations, such as Φ32Φ21 = Φ31, due to the commutativity of the quiver
diagrams.

§9. Nonabelian coupled vortex equations

The condition of G-equivariance together with the data {D, ki} uniquely deter-
mine the dependence of A and F on the coset coordinates. Therefore, the Yang-Mills
and DUY equations dimensionally reduce to equations for Ai (or F i) ∈ u(ki) and
φij ∈ Hom(Ckj , Cki) on M2n only, with the indices i, j = 0, 1, . . . , m running over
the vertices of the quiver and index pairs (i, j) labelling the blocks in (5.3). For
explicitness, we introduce local holomorphic coordinates {za} with a = 1, 2, . . . , n
on M2n, so that the U(ki) connection and field strength take the form

Ai = Ai
a dza+Ai

ā dz̄ā −→ F i = F i
ab dza∧dzb+2F i

ab̄ dza∧dz̄b̄+F i
āb̄ dz̄ā∧dz̄b̄

(9.1)
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Fig. 1. SU(3) irreps, weights and quiver diagrams.

with (Ai
a)† = −Ai

ā and (F i
ab)

† = F i
āb̄

, (F i
ab̄

)† = F i
āb etc. For the rank-one case

with D = m+1 and redenoting φij =: φi,j , the DUY equations on M2n × CP 1

descend to

F i
ab = 0 = F i

āb̄ , Dā φi,i+1 = 0 = Da φi+1,i , (9.2)

gab̄ F i
ab̄ = 1

2R2

(
m−2i + φi,i−1φi−1,i − φi,i+1φi+1,i

)
, (9.3)

where D denotes the gauge covariant derivative, and φ0 = φm+1 = 0. We call this set
of relations the “nonabelian chain vortex equations” with data (M2n, R, m, {ki}).

§10. Seiberg-Witten monopole equations

The simplest nontrivial case occurs for M4 (i.e. n=2), a spin-1
2 representation

(i.e. m=1) and the breaking U(2) → U(1) × U(1). Dropping irrelevant indices, 1s
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Quiver Gauge Theory and Noncommutative Vortices 265

and ⊗s, the connection becomes

A =




A0(z) + a+1(y) φ(z) β̄(y)

−φ̄(z)β(y) A1(z) + a−1(y)


 . (10.1)

The DUY equations then imply A0 = −A1 =: A and simplify to

Fab = 0 = Fāb̄ , ∂ā φ + 2Aā φ = 0 , gab̄ Fab̄ = 1
2R2

(
1− φ φ̄

)
, (10.2)

which are known as the “perturbed abelian Seiberg-Witten monopole equations”.16)

OnM4 = R
4, the latter admit only trivial solutions; one of the reasons why we shall

now apply a noncommutative deformation.17)

§11. Moyal deformation

For the remainder of the talk we specialize to M2n = C
n in order to Moyal

deform the base manifold. This deformation is realized by the Moyal-Weyl map
sending

Schwartz functions f �−→ compact operators f̂ , (11.1)

coordinates za and z̄b̄ �−→ operators ẑa and ̂̄zb̄ (11.2)

subject to [ẑa, ̂̄zb̄] = θab̄ with an antisymmetric matrix (θab̄). We can always rotate
the coordinates such that

θab̄ = 2δab θa for θa ∈ R+ with a, b = 1, . . . , n . (11.3)

This defines the noncommutative space C
n
θ , with isometry USp(n) and carrying n

copies of the Heisenberg algebra,
[

bza√
2θa

,
b̄zb̄√
2θb

]
= δab . (11.4)

To represent this algebra, we need to introduce an auxiliary Fock space H. Finally,
we remark that derivatives and integrals are represented as follows (θab̄ θb̄c = δa

c ),

∂b̄f �−→ θb̄c [ẑc, f̂ ] and ∫dV f �−→ (2π)nPf(θ) trHf̂ . (11.5)

§12. Noncommutative chain vortex system

How do the nonabelian chain vortex equations (9.2) and (9.3) change under the
Moyal deformation? Dropping the hats from now on, we define “covariant coordi-
nates”

X i
a := Ai

a + θab̄ z̄b̄ and X i
ā := Ai

ā + θāb zb (12.1)

and express the field strengths and Higgs gradients through them,

F i
ab = [X i

a, X
i
b] , F i

ab̄ = [X i
a, X

i
b̄] + θab̄ and Dā φi,i+1 = Xi

ā φi,i+1−φi,i+1X
i+1
ā .

(12.2)
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266 O. Lechtenfeld, A. D. Popov and R. J. Szabo

With this, the DUY/vortex equations (9.2) and (9.3) reduce to algebraic equations
for {X i, φi,i+1}:

[Xi
a, X

i
b] = 0 = [Xi

ā, X
i
b̄] , Xi

ā φi,i+1 − φi,i+1X
i+1
ā = 0 , (12.3)

δab
(
[Xi

a, X
i
b̄] + θab̄

)
= 1

4R2

(
m−2i + φi,i−1φi−1,i − φi,i+1φi+1,i

)
. (12.4)

§13. BPS solutions

We remain with the G
H = CP 1 case and consider momentarily the particular

situation of k1 = . . . = km =: r, i.e. gauge group U(k0)× U(r)m. In this context, a
good ansatz is

Ai
a = 0 and φi,i+1 ∼ 1r for i = 1, 2, . . . , m (13.1)

but A0
a = θab̄

(
T z̄b T † − z̄b

)
and φ0,1 =

√
m T , (13.2)

with a partial isometry realized by a k0×r matrix T (Toeplitz operator) obeying

T †T = 1r , T T † = 1k0 −P , P 2 = P = P † with rk(P ) =: N . (13.3)

Suitable operators T obtain from an SU(2)-equivariant generalization of the ABS
construction.18) With this ansatz, the field strengths and Higgs gradients become

F i
·· = 0 except F 0

ab̄ = θab̄ P and Dā φi,i+1 = 0 = Da φi,i+1 . (13.4)

Finally, plugging the ansatz into the noncommutative chain vortex system (12.3)
and (12.4), we observe that all equations are fulfilled provided

n∑
a=1

1
θa

=
m

2R2
, (13.5)

a nontrivial relation between the deformation strength and the size of the coset space!

§14. Non-BPS solutions

Turning on more than one quiver vertex in the ansatz above fails to produce a
nontrivial solution to the noncommutative DUY/vortex equations. Nevertheless, let
us consider the general situation of

∏
i U(ki) as the gauge group and generalize the

ansatz (13.1) and (13.2) to

Ai
a = θab̄

(
Ti z̄b T †

i −z̄b
)

and φi,i+1 = αi+1 Ti T †
i+1 with αi ∈ C , (14.1)

where m+1 partial isometries are realized by ki×r matrices Ti (Toeplitz operators):

T †
i Ti = 1r , Ti T †

i = 1ki
− Pi , P 2

i = Pi = P †
i of rank Ni . (14.2)

This ansatz implies

F i
ab = 0 = F i

āb̄ , F i
ab̄ = θab̄ Pi , Dā φi,i+1 = 0 = Da φi,i+1 (14.3)

and |αi|−2 φi,i−1 φi−1,i = 1ki
− Pi = |αi+1|−2 φi,i+1 φi+1,i , (14.4)
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Quiver Gauge Theory and Noncommutative Vortices 267

which finally contradicts (12.4) if more than one projector is nonzero.
Surprisingly, however, it does solve the full noncommutative Yang-Mills equa-

tions! The energy of the so-constructed non-BPS configurations is given by

E = 2πR2
( n∏

a=1

2πθa
) m∑

i=0

TrH
[
λi Pi + µi (1ki

−Pi)
]

(14.5)

with

λi =
∑

b

1
(θb)2

+
(m−2i)2

4R4
and µi =

(m−2i+|αi|2−|αi+1|2)2
4R4

, (14.6)

where α0 = αm+1 = 0. Finite energy requires µi = 0 for i = 0, 1, . . . , m, which
determines |αi+1|2 = (i+1)(m−1). The BPS solution (13.4) with (13.5) is seen as a
special case: Putting P1 = . . . = Pm = 0 (and µi = 0) yields

EBPS = 2πR2
( n∏

a=1

2πθa
)

λ0 TrH P0 with λ0 = 2
∑
b≤c

(θbθc)−1 . (14.7)

§15. D-brane interpretation

Our construction and the constructed classical field configurations allow for a
D-brane interpretation. For simplicity, let us stay with the G

H = CP 1 case. One has
a higher-dimensional and a lower-dimensional picture:

“Upstairs” on C
n
θ × S2 we began with k coincident D(2n+2)-branes wrapping

the S2. The SU(2)-equivariance condition splits k → {ki} and wraps the S2 with
charge-qi monopole fields, for i = 0, . . . , m.

“Downstairs” on C
n
θ we find m+1 subsets of D(2n)-branes carrying magnetic

fluxes qi. On each subset of these space-filling branes live Chan-Paton gauge fields
Ai ∈ End(Eki

), and neighboring subsets are connected by Higgs fields φi,i+1 ∈
Hom(Eki+1

, Eki
) which correspond to massless open-string excitations.

This chain of brane subsets is marginally bound but stabilized by the magnetic
fluxes. The BPS vortex configurations we have constructed are bound states of mN
D0-branes inside the D(2n)-brane system. The energy and topological charge of such
a BPS state is most elegantly computed via equivariant K-homology.

The aforesaid generalizes to quivers based on higher-rank Lie groups and their
corresponding vortex-type equations, but some new features will arise due to non-
trivial Higgs-field relations and quiver vertex degeneracies.
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