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A Manifestly Covariant Hamiltonian Formalism
for Dynamical Geometry
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Center for Mathematics and Theoretical Physics,
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A frame independent, manifestly 4-covariant, reformulation of our covariant Hamiltonian
formalism for dynamical geometry is presented. The validity of all the steps in the derivation
of the Hamiltonian and the exact meaning of the quasi-local Hamiltonian boundary term
expressions for the energy-momentum and angular momentum are thereby clarified.

§1. Introduction

Previously1)–9) we had developed a 4-covariant Hamiltonian formalism for dy-
namical geometry. All the principles were well explained in those works, however,
due to using the components of the connection and a frame as the independent fields,
the reference frame independent meaning of certain quantities and the validity of one
or two steps in the argument leading to the quasi-local Hamiltonian boundary term
expressions are not so apparent. Here we succinctly present a reformulation: a frame
independent, manifestly covariant Hamiltonian formulation for dynamical geometry,
which clarifies the meaning of the expressions.

§2. Our usual formulation

We find it convenient to work with fields which are differential forms, both
because forms facilitate a “covariant” space-time split of derivatives and because of
the boundary theorem, ∫

Σ
dα =

∮
∂Σ

α. (2.1)

In our aforementioned work, for the dynamic geometric potentials we used the
metric components, the co-frame one-form and the connection one-form components:

gαβ, ϑα, Γα
β. (2.2)

The respective field strengths are the non-metricity one-form, the torsion 2-form and
the curvature 2-form:

−Qμν := Dgμν := dgμν − Γ λ
μgλν − Γ λ

νgμλ, (2.3)

Tα := Dϑα := dϑα + Γα
β ∧ ϑβ, (2.4)

Rα
β := DΓα

β := dΓα
β + Γα

γ ∧ Γ γ
β. (2.5)
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A Manifestly Covariant Hamiltonian Formalism 31

This formulation facilitates regarding gravity as a gauge theory of local spacetime
symmetry. The co-frame and connection one-forms are the gauge “vector potentials”
for the “translations” and “rotations”. Such a gauge approach to gravity enables a
unified view of the physical interactions.10),11)

The Hamiltonian for evolving dynamic geometry within a spatial region Σ along
the displacement vector field N was found to have the form

H(N, Σ) =
∫

Σ
H(N), (2.6)

where the 3-form integrand,

H(N) = NμHμ + D̃βNαHα
β + dB(N), (2.7)

included a total differential that leads to an integral over the boundary 2-surface S =
∂Σ. The value of the Hamiltonian, which is determined by the boundary term, gives
the various quasi-local quantities (energy-momentum, angular momentum/center-of-
mass). For each choice of boundary conditions there is a specific associated Hamil-
tonian boundary term. We identified several particular boundary term expressions,
each is associated with certain boundary conditions (e.g., Dirichlet, Neumann), and
we also found the associated quasi-local flux expressions. For Einstein’s general
relativity (GR) a particular boundary term was identified:

B(N) = ΔΓα
β ∧ iNηα

β + D̄βNαΔηα
β; (2.8)

it is distinguished by directly giving the Bondi energy flux and by having an associ-
ated positive energy proof.8),9)

The virtue of this gauge approach naturally has a price: one must necessarily
have dynamic equations for inherently gauge dependent, non-covariant objects: the
metric, frame and connection components. Then covariance cannot be manifest.
That the final resulting expressions obtained actually describe the desired proper
physical covariant meaning is not manifestly obvious (e.g., the argument concerning
Eq. (24) in Ref. 4) may leave some lingering doubts; also the formalism lacks clarity
in exactly how to calculate ΔΓα

β).
Here a manifestly covariant version is presented. The benefit lies in clarifying

the exact meaning of certain ideas, quantities, and expressions. A spinoff is that
some mathematical techniques for manifestly covariant calculations are developed.

§3. Invariant foundations

We consider quite general geometries,12) with a priori independent metric g and
covariant derivative ∇. The torsion tensor (a vector valued 2-form) is

T (X, Y ) := ∇XY −∇Y X − [X, Y ] , (3.1)

and the curvature tensor is

R(Z, X, Y ) := RXY Z , (3.2)
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32 J. M. Nester

where the linear-operator-valued curvature operator 2-form is

RXY := [∇X ,∇Y ] −∇[X,Y ] . (3.3)

It is very convenient to generalize d, the exterior differential (which acts on scalar
valued forms), to an exterior covariant differential1),13) which acts on tensor valued
forms just by formally replacing d → ∇. Thus, for a tensor-valued one-form

(∇α)(X, Y ) = iX∇iY α − iY ∇iXα − i[X,Y ]α (3.4)

(here iXβ := β(X, . . . ) is the interior product).

For example for the the identity vector-valued one-form,

I(X) = X, (3.5)

one finds the torsion:

(∇∧ I)(X, Y ) := iX∇(iY I) − iY ∇(iXI) − i[X,Y ]I

≡ ∇XY −∇Y X − [X, Y ] ≡ T (X, Y ) . (3.6)

For the vector valued one-form ∇Z,

(∇∧∇Z)(X, Y ) := iX∇(iY ∇Z) − iY ∇(iX∇Z) − i[X,Y ]∇Z

≡ ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z ≡ R(X, Y )Z , (3.7)

one gets the curvature. These results can be compactly expressed as

T ≡ ∇ ∧ I , (3.8)

R( . , . )Z ≡ ∇ ∧∇Z . (3.9)

Thus ∇ gives a powerful and succinct notation.

§4. Invariant Lie derivatives

The transpose connection (it has the property T̃ = −T ) is defined by

∇̃XY := ∇Y X − £Y X ≡ ∇Y X − [Y, X] ≡ ∇XY − T (X, Y ) . (4.1)

Using it one can express the Lie derivative in terms of the covariant connection. In
particular for the metric,

(£Zg)(X, Y ) := £Z (g(X, Y )) − g(£ZX, Y ) − g(X,£ZY ) ≡ ∇Z (g(X, Y )) − . . .

≡ (∇Zg)(X, Y ) + g(∇ZX − £ZX, Y ) + g(X,∇ZY − £ZY )
≡ (∇Zg)(X, Y ) + g(∇̃XZ, Y ) + g(X, ∇̃Y Z) . (4.2)

Concisely,
£Zg = ∇Zg + g(∇̃Z, ) + g( , ∇̃Z) . (4.3)
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A Manifestly Covariant Hamiltonian Formalism 33

Now consider the Lie derivative of the connection:

(£Z∇)X Y := £Z(∇XY ) −∇£ZXY −∇X£ZY

≡ R(Z, X)Y + ∇X(∇ZY − £ZY ) − [∇Z(∇XY ) − £Z(∇XY )]
≡ R(Z, X)Y + ∇X∇̃Y Z − ∇̃∇XY Z

≡ R(Z, X)Y + 〈∇∇̃Z|X, Y 〉 . (4.4)

Concisely,
£Z∇ ≡ iZR + ∇∇̃Z . (4.5)

For a tensor-valued form S one finds a result of the form

£ZS = ∇ZS + certain terms linear in both S and ∇̃Z . (4.6)

§5. First-order Lagrangian 4-form

We find it convenient to use a first-order Lagrangian approach. For example, for
the Maxwell field,

L = dA ∧ H +
1
2
∗ H ∧ H , (5.1)

has the variation

δL ≡ dδA ∧ H + (dA + ∗H) ∧ δH (5.2)
≡ d(δA ∧ H) + δA ∧ dH + (dA + ∗H) ∧ δH (5.3)

≡ d(δA ∧ H) + δA ∧ δL
δA

+
δL
δH

∧ δH . (5.4)

Hamilton’s principle, requiring the action (the integral of the Lagrangian) to have
an extreme with A fixed on the boundary, gives the pair of first order field equations:

0 =
δL
δA

= dH , 0 =
δL
δH

= dA + ∗H , (5.5)

which are equivalent to the vacuum Maxwell equations. These equations can be
split into their dynamic and initial value constraint pieces by “spatial pullback” and
“contracting” with a timelike vector field N . These same dynamic and constraint
equations can be derived from a Hamiltonian 3-form simply constructed via

iNL ≡ iNdA ∧ H + dA ∧ iNH + iN (∗H ∧ H) (5.6)
≡ £NA ∧ H − diNA ∧ H + dA ∧ iNH + iN (∗H ∧ H) (5.7)
≡ £NA ∧ H −H . (5.8)

§6. Invariant first-order Lagrangian 4-form for dynamic geometry

A first-order Lagrangian for a dynamic geometry can always be put in the form

L = ∇g ∧ π + T ∧ τ + R ∧ ρ − Λ(g, π, ρ, τ, λ) . (6.1)
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34 J. M. Nester

Here L is a scalar valued 4-form, ∇g is a type
(0
2

)
one-form and π is a type

(2
0

)
3-form. Since T is a vector valued 2-form, τ must be a co-vector valued 2-form. R is
a linear-operator-valued 2-form, and likewise ρ. λ stands for some possible Lagrange
multiplier fields. Appropriate contractions are implied.

We need the variations of certain quantities. First note that

δ(∇Zg)(X, Y ) = (∇Zδg)(X, Y ) − g(δ∇ZX, Y ) − g(X, δ∇ZY ) . (6.2)

This can be concisely written as

δ∇g = ∇δg − g(δ∇ , ) − g( , δ∇ ) . (6.3)

Consider two connections: ∇′ = ∇ + K. Then

R′(X, Y )Z = R(X, Y )Z + [KX , KY ]Z + 〈∇ ∧ K|(X, Y )〉Z . (6.4)

Briefly, from (3.3,3.9) with K = δ∇,

δR = δ(∇∧∇) = ∇∧ δ∇ . (6.5)

For the torsion from the definition (3.1) and (3.6,3.8)

δT (X, Y ) = δ∇XY − δ∇Y X ; (6.6)

succinctly,
δT = δ(∇∧ I) = δ∇∧ I . (6.7)

Now compute the variation of the Lagrangian 4-form:

δL ≡ δ(∇g) ∧ π + ∇g ∧ δπ + δT ∧ τ + T ∧ δτ + δR ∧ ρ + R ∧ δρ − δΛ

≡ [∇δg − g(δ∇ , ) − g( , δ∇ )] ∧ π + ∇g ∧ δπ

+(δ∇∧ I) ∧ τ + T ∧ δτ + (∇∧ δ∇) ∧ ρ + R ∧ δρ − δΛ (6.8)
≡ d [δgπ + δ∇∧ ρ] − δg∇π − [g(δ∇ , ) + g( , δ∇ )] ∧ π + ∇g ∧ δπ

+(δ∇∧ I) ∧ τ + T ∧ δτ + δ∇∧∇ρ + R ∧ δρ − δΛ (6.9)
≡ d [δgπ + δ∇∧ ρ]

+δg
δL
δg

+
δL
δπ

δπ +
δL
δτ

∧ δτ + δ∇∧ δL
δ∇ +

δL
δρ

∧ δρ + δλ
δL
δλ

. (6.10)

6.1. Field equations

The variational derivatives—the vanishing of which, according to Hamilton’s
principle, are the vacuum field equations—are

δL
δg

:= −∇π − ∂Λ

∂g
, (6.11)

δL
δπ

:= ∇g − ∂Λ

∂π
, (6.12)

δL
δτ

:= T − ∂Λ

∂τ
, (6.13)
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A Manifestly Covariant Hamiltonian Formalism 35

δL
δ∇ := ∇ρ + I ∧ τ − gπ − gπ , (6.14)

δL
δρ

:= R − ∂Λ

∂ρ
, (6.15)

δL
δλ

:= −∂Λ

∂λ
. (6.16)

6.2. Diffeomorphism invariance

Diffeomorphism invariance requires that the Lagrangian depend on position only
through the fields, consequently the general variational relation (6.10) must become
an identity under the substitution δ → £Z :

diZL ≡ £ZL ≡ d[£Zgπ + £Z∇∧ ρ] + [terms proportional to field eqns]. (6.17)

This naturally identifies (unique up to a total differential) the translation current :

H[Z] := £Zgπ + £Z∇∧ ρ − iZL (6.18)
≡ [∇Zg + g(∇̃Z, ) + g( , ∇̃Z)]π

+(iZR + ∇∇̃Z) ∧ ρ − iZ [∇g ∧ π + T ∧ τ + R ∧ ρ − Λ]
≡ iZΛ + ∇g ∧ iZπ − T ∧ iZτ − R ∧ iZρ

+g(∇̃Z, )π + g( , ∇̃Z)π + (∇Z − ∇̃Z) ∧ τ + ∇∇̃Z ∧ ρ (6.19)
≡ iZΛ + ∇g ∧ iZπ − T ∧ iZτ − R ∧ iZρ − iZI∇τ + d[iZIτ + ∇̃Zρ]

+g(∇̃Z, )π + g( , ∇̃Z)π − ∇̃Z ∧ τ − ∇̃Z∇ρ , (6.20)

which satisfies the identity

−dH[Z] ≡
£Zg

δL
δg

+
δL
δπ

£Zπ +
δL
δτ

∧ £Zτ + £Z∇∧ δL
δ∇ +

δL
δρ

∧ £Zρ + £Zλ
δL
δλ

. (6.21)

The rhs of this identity is proportional to variational derivatives, which are the
(vacuum) field equations. Consequently, for each choice of Z, H[Z] is a (Noether 1st
theorem) conserved current “on shell”.

The “conserved” translational current (6.20) has the form

H[Z] = 〈Z|h〉 + 〈∇̃Z|k〉 + dB[Z], (6.22)

where 〈Z|h〉 and 〈∇̃Z|k〉 are linear in the indicated arguments. Explicitly

〈Z|h〉 := iZΛ + ∇g ∧ iZπ − T ∧ iZτ − R ∧ iZρ − iZI∇τ , (6.23)
〈∇̃Z|k〉 := g(∇̃Z, )π + g( , ∇̃Z)π − ∇̃Z ∧ τ − ∇̃Z∇ρ (6.24)

≡ 〈∇̃Z|gπ + gπ − I ∧ τ −∇ρ〉 . (6.25)

For the theories considered here we also have local diffeomorphism invariance.
Thus (6.21) is an identity for all Z, and consequently the coefficients of Z, ∇̃Z and
∇∇̃Z on the lhs are identical to those on the rhs “off shell”. This leads to certain
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36 J. M. Nester

differential identities (Noether 2nd theorem). In view of (6.22), the left-hand side of
the identity takes the form

−〈∇Z|h〉 − 〈Z|∇h〉 − 〈∇∇̃Z|k〉 − 〈∇̃Z|∇k〉 . (6.26)

The corresponding terms on the rhs are linear combinations of the field equations.
(The additional necessary Lie derivatives to find the explicit form can easily be com-
puted in accordance with the techniques discussed earlier in §4.) Having identified
the general form of this expression, we can conclude that h and k are proportional
to field equations and hence vanish “on shell”.

Consequently the value of the Noether current is entirely determined by the
boundary term. However, this value is highly ambiguous, for the boundary term
B may be modified in any way without affecting the conservation property. The
Hamiltonian formalism includes the remedy for this ambiguity.

§7. The Hamiltonian

In §6.1 we have noted the 4-covariant first-order field equations. Each dynamic
first-order equation can be split into a pair of equations, a constraint equation (the
pullback to any spatial hypersurface) and an evolution equation, obtained by taking
the interior product with any non-spatial vector. Formally, these pairs of equations
can be obtained from a Hamiltonian constructed by evaluating the Lagrangian 4-
form on a vector field. Thus

iNL =: £Ng π + £N∇∧ ρ −H(N) (7.1)

defines the Hamiltonian 3-form for dynamic geometry. A comparison with (6.18)
shows that the Hamiltonian is just the Noether translational current, which has
already featured in our discussion above. Let us formally vary this relation to get

δiNL = δ£Ngπ + £Ngδπ + δ£N∇∧ ρ + £N∇∧ δρ − δH[N ]. (7.2)

On the other hand consider that the contraction of δL (6.10) has the form

iNδL ≡ iNd [δgπ + δ∇∧ ρ] + iN [. . . ] (7.3)
≡ £N [δgπ + δ∇∧ ρ] − diN [δgπ + δ∇∧ ρ] + iN [. . . ] (7.4)
≡ δ£Ngπ + δ£N∇∧ ρ + δg£Nπ + δ∇∧ £Nρ

−diN [δgπ + δ∇∧ ρ] + iN [. . . ] , (7.5)

where the bracket contains terms which vanish “on shell”. Since N is not varied,
one can equate the two expressions and obtain a key identity:8)

δH[N ] − diN [δgπ + δ∇∧ ρ] + iN [. . . ]
≡ £Ngδπ − δg£Nπ + £N∇∧ δρ − δ∇∧ £Nρ. (7.6)

Thus, assuming the 4-covariant field equations are satisfied, the Hamiltonian will
exactly generate the desired equations of evolution for the canonical variables when
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A Manifestly Covariant Hamiltonian Formalism 37

the total differential term vanishes on the boundary of the region. Asymptotically
one would like to have this term vanish automatically with standard fall-offs.

However the boundary term in the variation of the present Hamiltonian does not
have such nice fall off properties. (In particular for GR the term δ∇ ∧ ρ ∼ O(1/r2)
gives a non-vanishing value.14)) To make an improvement we may exploit our freedom
to adjust the boundary term in the Hamiltonian. This is most easily done by simply
dropping the present boundary term and then varying the (unique) pure 3-form
Hamiltonian. Then one can examine the boundary term in the variation. As can be
seen from (6.20), it is

δH(Z) = · · · + d
[
δgiZπ − iZIδτ − δ∇∧ iZρ − ∇̃Zδρ

]
. (7.7)

To compensate one could add the differential of one of the boundary terms

B(Z) = −Δg

{
iZπ
iZ π̄

}
+ iZIΔτ + Δ∇∧

{
iZρ
iZ ρ̄

}
+

{
∇̃Z
˜̄∇Z

}
Δρ , (7.8)

where for any quantity Δα := α − ᾱ ; the bar indicates reference values which are
not varied. For each curly bracket here choose either the upper or lower expression.
The boundary terms in the variation of the respective Hamiltonians are then

C(Z) =
{ −ΔgiZδπ

δgiZΔπ

}
+ 0 +

{
Δ∇∧ iZδρ
−δ∇∧ iZΔρ

}
+

{
iZδ∇Δρ
−iZΔ∇δρ

}
, (7.9)

which, with the standard spatial asymptotics14)–16) regarding parity and fall off:

Δg, Δρ ∼ O+
1 + O−

2 , (7.10)
Δπ, Δ∇ ∼ O−

2 + O+
3 , (7.11)

vanish for all the indicated boundary term choices. At null infinity these expressions
give a non-vanishing radiation flux.8)

§8. Einstein application

The formalism described hereinbefore applies to quite general dynamic geometry
gravity theories. Specifically, for the important special case of GR we may take

Λ = V ∧ (ρ − (2κ)−1η) , (8.1)

where η is a
(
1
1

)
valued 2-form implicitly determined by the metric:

〈α|η(X, Y )Z〉 := Volg
[
g−1(α, ·) ∧ X ∧ Y ∧ Z

]
, (8.2)

and κ = 8πG/c4. The π variation (6.12) then enforces metric compatibility and
the τ variation (6.13) leads to vanishing torsion; variation of the multiplier field V
enforces the definition of ρ; the ρ variation (6.15) gives V = R. The connection
variation (6.14) then leads to vanishing π and τ . Our preferred boundary term for
GR (the one distinguished by directly giving the Bondi energy flux and by having a
positivity proof) then reduces simply to

B(Z) = (∇− ∇̄) ∧ iZρ + ˜̄∇Z(ρ − ρ̄) . (8.3)
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38 J. M. Nester

8.1. Asymptotics

The above expression gives good asymptotic values for the total energy-
momentum, and also for the angular momentum/center-of-mass. The associated
energy flux is

£ZH(Z) = d[(∇− ∇̄) ∧ iZ£Zρ − iZ(∇− ∇̄)£Zρ] , (8.4)

which gives good values in the null-infinity (Bondi) limit.

8.2. Local density

Let ∇ = ∇̄ + K. We assume that ∇̄ is metric compatible, flat and symmetric,
hence R̄ = 0 = ∇̄η̄. Then

H 
 dB(Z) ≡ d[K ∧ iZρ + ˜̄∇Z(ρ − ρ̄)] (8.5)

≡ ∇K ∧ iZρ − K ∧∇iZρ + ∇̄( ˜̄∇Z) ∧ (ρ − ρ̄) + ˜̄∇Z∇̄(ρ − ρ̄)
≡ (R − R̄ + K ∧ K) ∧ iZρ − K ∧∇iZρ

+(£Z∇̄ − iZR̄) ∧ (ρ − ρ̄) + ˜̄∇Z∇̄(ρ − ρ̄)
≡ R ∧ iZρ + K ∧ K ∧ iZρ − K ∧∇iZρ

+£Z∇̄ ∧ (ρ − ρ̄) + ˜̄∇Z∇̄ρ

≡ R ∧ iZρ + K ∧ K ∧ iZρ − K ∧∇iZρ

+£Z∇̄ ∧ (ρ − ρ̄) + ˜̄∇Z(∇ρ − K ∧ ρ + ρ ∧ K)
≡ R ∧ iZρ + (∇̃Z − iZK)∇ρ + K ∧ K ∧ iZρ − K ∧∇iZρ

+£Z∇̄ ∧ (ρ − ρ̄) + ˜̄∇Z(−K ∧ ρ + ρ ∧ K) , (8.6)

where at a key step we used

˜̄∇Y N ≡ ∇̄NY − £NY ≡ ∇NY − £NY − KNY ≡ ∇̃Y N − (iNK)Y. (8.7)

Since torsion vanishes we have

H 
 dB(Z) 
 R ∧ iZρ + K ∧ K ∧ iZρ − K ∧ i∇Zρ + ˜̄∇Z(−K ∧ ρ + ρ ∧ K)
≡ R ∧ iZρ + K ∧ K ∧ iZρ − K ∧ iKZρ

+ ˜̄∇Z(−K ∧ ρ + ρ ∧ K) − K ∧ i∇̄Zρ . (8.8)

Now, assuming that Z is a Killing field of the reference, we have

H(Z) 
 dB(Z) 
 R ∧ iZρ + K ∧ K ∧ iZρ − K ∧ iKZρ. (8.9)

This is a conserved current density. It includes both an energy-momentum and an
angular momentum density. The first term, using Einstein’s equation, is just the
source energy-momentum density. The remaining terms can then be interpreted as
the energy-momentum density of gravity (measured wrt the chosen ḡ, ∇̄).

8.3. Small region

Consider the small region limit. One can choose the reference so that to lowest
order K vanishes, hence within matter one gets just the source energy density—in
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A Manifestly Covariant Hamiltonian Formalism 39

accord with the equivalence principle. In vacuum the first term vanishes and the
remainder is a gravitational energy-momentum density. Taylor series expanding it
around a chosen point in normal coordinates and frames gives, to 2nd order with
K(x) ∼ 1

2 ixR, after detailed calculation, the Bel-Robinson tensor—as desired.17)

§9. Summary

Here we presented a concise summary of a Hamiltonian formulation which is
manifestly covariant and reference frame independent and which can be applied to
general dynamic geometry gravity theories as well as Einstein’s GR.

The Hamiltonian includes a boundary term which depends of the choice of
boundary conditions, a choice of reference, and spacetime displacement. The value of
the Hamiltonian, as determined by the boundary term, gives the quasi-local energy-
momentum, angular mometum/center-of-mass, and energy flux. The expression has
good limits asymptotically to spatial infinity and null infinity and to small regions.

This manifestly covariant formulation clarifies certain points. A spinoff is the
development of some mathematical techniques.
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