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Business Cycle Based on Optimal DI Model
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We propose a dynamic model for the economic growth (ΔG) and the diffusion index
(DI) in order to explain the business cycle. This model is described by equations analogous
to the optimal velocity model in traffic flow. In the model there exists a conserved quantity,
which corresponds to the total energy in a dynamical system. We found that the business
cycle with the period 5–8 years is favorably reproduced, since the model predicts a periodic
motion in the conservative system.

§1. Introduction

The gross domestic product (GDP) is one of the most important quantities
in macroeconomics. The economic trend is visualized typically in terms of time
evolution of GDP. It usually increases in the long term, but there exist fluctuations
in the short term according to economic growth and decline (see Fig. 1).

In order to see the fundamental structure of such fluctuations more clearly, we
propose to extract the economic growth ΔG(i) = G(i) − G(i − 1), where we note
G(i) as the i-th year value of GDP .2),3) ΔG(i) commonly shows a kind of cycle
repeating depression and prosperity as in Fig. 2, and it is called “business cycle”.
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Fig. 1. Time dependence of GDP per capita (constant 1995 US dollar) in Japan from 1975 to

2001.1)
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Fig. 2. Time dependence of ΔG(i) in Japan (i = 1975, 1976, . . ., 2001).

The origin of the fluctuations can be divided into external and internal sources.
There are several models to explain the economic fluctuations caused by the internal
origin.4)–11) Their main concern is to derive the fluctuations from the result of dy-
namics. For example, in non-linear models the economic fluctuations are explained
in terms of a limit cycle. However, these studies were devoted to make a mathemat-
ical model, and did not succeed to explain the property of the real economic system
very well. Therefore we propose a new model based on the equation of the motion
in physics.

After we introduce a new variable, “diffusion index” (DI), we show the observed
data of DI and its relationship to GDP in §2. In §3 we propose a model of the
economic fluctuations and introduce a conserved quantity, namely the total energy
of the system. Section 4 is devoted to investigate the properties of our model. We
compare the calculated results of the energy and the period with the real data in §5.
In §6, we summarize our results and make a short future prospect.

§2. Observation

In this section, we introduce a new variable, “diffusion index” (DI) and show
the observed data of DI, and its relationship to GDP .

The diffusion index is found in “Tankan”, which is announced by Bank of Japan
as the Short-term Economic Survey of Enterprises in Japan. “Tankan” is a report of
the findings of the questionnaires on the business to about 10,000 private enterprises.
DI refers to a result of the question: “Is your business good?”. From the number of
“good / not good / bad” (denoted by G / N / B), DI is defined by Bank of Japan
as follows:

DI = 100
G − B

G + N + B
. (2.1)

Therefore DI represents whether business is thought good or bad in a society. The
time dependence of DI shows oscillating behavior (see Fig. 3).
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Fig. 3. Time dependence of DI(i) in Japan (i = 1975, 1976, . . ., 2001).
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Fig. 4. Each dot represents a data point (ΔG(i), DI(i)), and solid curve represents a trajectory

connecting the series of data points with spline curve (i = 1975, 1976, . . ., 2001).

Originally the two variables, GDP and DI is mutually independent, but it is
found that ΔG(i) and DI(i) are strongly correlated from the observed data. The
year-dependence of ΔG(i) and DI(i) are shown in Figs. 2 and 3, which clearly
indicates that ΔG(i) and DI(i) behave almost similarly. Indeed the correlation
coefficient is found to be 0.85.

A remarkable fact is that a point (ΔG(i), DI(i)) moves almost counterclockwise
(see Fig. 4) in the space (ΔG, DI). Its trajectory resembles that of a vehicle in a
congested traffic flow. Figure 5 shows an example of trajectory of a vehicle motion in
a phase space (Δx, v), where Δx is headway, which is a distance between two vehicles,
and v is velocity of a vehicle. This trajectory is obtained by a numerical simulation
based on the optimal velocity (OV) model.12) The similarity of trajectories suggests
that the dynamics of ΔG(t) and DI(t) can be described by a similar equation to
that of traffic flow.
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Fig. 5. An example of trajectory of a vehicle motion in a phase space of headway Δx and velocity

v. A motion of a vehicle in the phase space is counterclockwise. This trajectory is obtained by

a numerical simulation based on the optimal velocity (OV) model.12)

§3. The optimal DI model

We present a model2),3) to explain the behavior of economic fluctuations. The
model is expressed by non-linear equations in terms of GDP and DI, which is
analogous to the OV model of traffic flow.

The characteristic feature of the OV model is to introduce “optimal velocity”
which is the most desirable velocity for a vehicle with headway Δx. The equation
of motion is determined by the rule that a driver accelerates or decelerates in such a
way that he maintains this optimal velocity. Namely, if the velocity is smaller than
the optimal velocity, he accelerates his car. On the other hand, he decelerates if the
velocity is larger than the optimal velocity. Therefore the optimal velocity function
gives the border between the acceleration region and the deceleration region.

In the economy, DI represents the tendency of the presidents of companies to
accelerate or decelerate their production rates. However DI does not always increase
even if the economic growth ΔG is positive. Sometimes DI decreases even if ΔG
is positive, and DI increases if ΔG is negative. DI seems to increase or decrease
depending on the value of (ΔG, DI). There seems to exist the “optimal” DI value,
and DI decreases when DI is larger than the value. On the other hand, when DI
is smaller than the optimal DI value, DI increases.

We can observe these phenomena in Fig. 6 which is the same scatter diagram
as Fig. 4. We assign “+” or “−” to each point (ΔG(i), DI(i)) according to the
signature of ΔDI(i) = DI(i+1)−DI(i) in Fig. 6. We call the “deceleration” region
above the solid curve in Fig. 6, because many of DIs decrease in this region, and we
call the “acceleration” region below the solid curve.

We here introduce an “optimal” DI function. The optimal DI curve is defined
as the boundary of two regions, acceleration and deceleration regions of DI. From
this figure, ODI function can be read off.
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Fig. 6. Optimal DI, acceleration region, and deceleration region. Each dot represents a data point

(ΔG(i), DI(i)) and a mark “+” or “−” means ΔDI(i) is positive or negative. Solid line

represents the optimal DI function that we choose.

We suppose the optimal DI function in the following form:

ODI(ΔG) = A + B tanh(C(ΔG − D)), (3.1)

where A, B, C, and D are constant parameters. We choose the values of the param-
eters as A = −5, B = 55.3, C = 6.28 × 104, and D = 880. The ODI function with
these parameters is shown in Fig. 6.

When we consider a dynamical model of ΔG and DI, it is natural to introduce
continuous variables ΔG(t) and DI(t). Practically the data points of ΔG(t) and
DI(t) are given annually, and in such a case ΔG(t) and DI(t) are expressed as
ΔG(i) and DI(i) with i =1975, 1976, . . . , and 2001.

The dynamical equation is determined in such a way that companies try to
maintain the optimal DI. Using the optimal DI function, a dynamical equation is

dDI(t)
dt

= a(ODI(ΔG(t)) − DI(t)), (3.2)

where a is a constant, and ΔG(t) = G(t) − G(t − 1) is an economic growth of past
one year.

In addition, we suppose that the derivative of GDP is approximately propor-
tional to DI,

dG(t)
dt

= bDI(t) + c, (3.3)

where b and c are constants. This is because from Figs. 1 and 3 we observe that DI
is large, if the inclination of GDP is steep, and vice versa.

Instead of the above differential equations, we propose difference equations as
follows, because ΔG(t) is defined only at the points t = i and we cannot define
continuous ΔG(t) in a realistic way at present.

DI(i + 1) − DI(i) = a(ODI(ΔG(i))− DI(i)), (3.4)
Δ2G(i + 1) = bDI(i + 1) + c, (3.5)
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where ΔG(i+1) = G(i+1)−G(i), and Δ2G(i+1) = (ΔG(i+1)+ΔG(i))/2. Equa-
tion (3.5) is a discretized equation of Eq. (3.3), and is phenomenologically obtained
because these two variables have very strong correlation, where the correlation coef-
ficient is 0.94. (The correlation coefficient between ΔG and DI is 0.85.) We consider
that Δ2G is linearly dependent on DI. We obtain b = 23.6 and c = 969 by the linear
fit of the observed data.

From Eq. (3.4) and (3.5), we obtain the following equation,

ΔG(i + 1) + aΔG(i) + (a − 1)ΔG(i − 1) = 2abODI(ΔG(i)) + 2ac. (3.6)

Here we note that the economic system in the above model is expressed in terms of
a single dynamical variable ΔG(i). Hereafter we denote x(i) instead of ΔG(i).

By solving Eq. (3.6) numerically, we find that the behavior of x(i) depends on
the parameter a.

(1) a < 2: The behavior of x(i) is similar to that of the original ODI model,2)

namely x(i) tends to a fixed point irrelevant to the initial condition.
(2) a = 2: This is a special case and we find that x(i) shows a periodic behavior.
(3) a > 2: Irrelevant to the initial condition, x(i) tends to infinity.

Now that we have found that only the case (2) reproduce cyclic motion of eco-
nomic system, the case (2) may be a candidate for reproducing a realistic feature
of business cycle. So here we concentrate ourselves to the case a = 2 and rewrite
Eq. (3.6) as follows:

x(i + 1) − 2x(i) + x(i − 1) = 4[ bODI(x(i)) − x(i) + c ]. (3.7)

The left-hand side of Eq. (3.7) can be regarded as the second derivative of the con-
tinuous function x(t). So we replace the difference equation (3.7) by the differential
equation

d2x(t)
dt2

= 4[ bODI(x(t)) − x(t) + c ] (3.8)

as a fundamental equation.
This equation can be regarded as an equation of motion, and the right-hand

side is a force, which is written in terms of x(t) only. This indicates that our model
represents a conservative system. Then we can define the conserved quantity “total
energy”

E =
1
2

(
dx

dt

)2

+ V (x), (3.9)

V (x) = −
∫

4[ bODI(x) − x + c ] dx, (3.10)

where V (x) is the potential energy of this system.
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§4. Properties of the model

In this section we investigate the properties of our model. The dynamical vari-
able of the model is x(t) only, in terms of which the system is expressed by the
following Hamiltonian,

H =
1
2

(
dx

dt

)2

+ V (x), (4.1)

V (x) = −4β log(cosh(C(x − D)) + 2(x − γ)2 + const, (4.2)

where we have used the ODI function, and redefine the parameters β ≡ bB/C and
γ ≡ bA + c. Hereafter we take the unit of x(t) as 103 dollars; x(t) = ΔG(t) × 10−3

and the constant in Eq. (4.2) is set to zero for convenience. The parameters A, B,
C, D, b and c are given in Eqs. (3.1) and (3.5), and the values of parameters of the
above equations are converted to

β = 2.08, γ = 0.851, C = 0.628, D = 0.880. (4.3)

Figure 7 shows the shape of the potential energy. The total energy, which is
conserved quantity, is a sum of this potential energy and kinetic energy. However
in realistic situation irregular changes of economy such as the Depression in 1929
happen to occur. In our model, such irregular changes correspond to the external
forces. We shall discuss this point in §5. The total energy jumps to a different value
due to such effects, and accordingly the total energy evaluated from the observed
data is not really constant. For example, the dashed line (a) in Fig. 7 represents the
total energy evaluated from the data in 1974 (high energy case), and (b) represents
that in 1979 (relatively low energy case). From this figure, we find that x(t) oscillates
between −0.8 and 2.5 in the case (a), and oscillates between 0.2 and 1.3 in the case
(b).

Fig. 7. Solid line represents the potential energy (Eq. (4.1)). Two dashed lines (a) and (b) represent

the energy calculated from the real GDP data in 1974 and 1979 respectively.

D
ow

nloaded from
 https://academ

ic.oup.com
/ptps/article/doi/10.1143/PTPS.179.145/1915209 by guest on 19 April 2024



152 M. Taniguchi, M. Bando and A. Nakayama

Fig. 8. Behaviors of x(t) using the data in (a) 1974 (dashed line) and (b) 1979 (solid line) as the

initial condition. As a reference, we add the observed data (dotted line with diamond marks).

Fig. 9. Trajectories in the phase space (x(t), DI(t)). Dashed and solid curves represent trajectories

starting from the data in (a) 1974 and (b) 1979. Diamond marks show the observed data.

In order to investigate the motion of x(t), we solve Eq. (3.8) numerically in the
above typical cases. Figure 8 shows the results of the simulation using the data in
(a) 1974 and (b) 1979 as the initial condition. The total energy defined in Eq. (4.1)
is (a) E = 1.57 in 106 unit and (b) E = 0.12. The period of the motion is 5.5 and 7
years in the case (a) and (b), respectively. To guide the eye, we plot the real data
points.

In order to understand the behavior of business cycle more clearly, we show the
trajectories in the phase space (x(t), DI(t)) (Fig. 9). This phase space plays an
essential role in the original ODI model.2) Here DI(t) = (1/2b)[x(t)+ x(t− 1)− 2c]
(see Eq. (3.5)). As a reference, we add the observed data. The periodic motion of
x(t) with corresponding DI(t) is visualized by close circles in Fig. 9. It is found that
the higher the total energy is, the larger the circle becomes.
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Fig. 10. The period of this system is shown. The period is a monotonically decreasing function of

E, which tends to the value π.

Here let us investigate the energy dependence of the period of motion. We have
seen in Fig. 7 that the global shape of the potential is approximately of the harmonic
oscillator type. Indeed, if x(t) is large, the second term in Eq. (4.2) dominates and
then the potential becomes that of a harmonic oscillator, V (x) → 2x2. This is
independent of the parameters β, γ, C and D. Thus, for large x(t), the equation of
motion (3.8) reduces to the following simple form,

d2x(t)
dt2

= −4x(t). (4.4)

If the system is described by this equation, x(t) moves periodically with the period
π, independent of the total energy. The larger the total energy is, the wider the
region becomes where the equation of motion of x(t) is approximated by Eq. (4.4).
In such case, the period is determined mainly by the behavior of large x(t), even
if the potential is deviated from the harmonic one for smaller x(t). On the other
hand, if the total energy is small, the effect from the potential deviated from the
harmonic one becomes important. We have found by numerical calculation that this
effect makes the period longer (see Fig. 8).

To see the energy dependence of the period, we calculated the period numerically.
Figure 10 shows that the period is a monotonically decreasing function of the energy
E, and tends to the value π. The reason of this result is as follows. The first term of
Eq. (4.2) makes the potential flatter, and consequently the period becomes longer.
Note that this result depends on the choice of parameters as we shall see in the next
section.

§5. Energy in the real system

Our model is a conservative system and the total energy E is invariant. In order
to see this, we calculate the total energy by using the real GDP data. Figure 11
shows the plot of the energy calculated from the real data of each year.
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Fig. 11. Total energy E calculated from the real GDP data.

Table I. Big change of Japanese economy.

years economic event

1965–70 Izanagi boom

1974 first oil shock

1979 second oil shock

1986–91 bubble economy

1997–98 Heisei depression

There are two distinct peaks in 1974 and 1998, and two broad hills around 1968
and 1990. For other years, the energy seems to be almost constant. The positions
of these peaks and hills coincide with the years of big changes of Japanese economy.
We list the years of the big changes of Japanese economy in Table I. The first
peak corresponds to the so-called “first oil shock” and the second peak is “Heisei
depression”. The first and second broad hills correspond to “Izanagi boom” and
“bubble economy” respectively. We find the sharp peaks correspond to depressions
and the broad hills correspond to booms.

Basically the total energy is an invariant quantity and we assume its change
arises from the external forces. Therefore the change of the total energy can be used
as an index of the change of the economic situation.

As a reference, we also show the periods of business cycle for three cases in
Fig. 12. The periods are obtained from the relation between the period and the
total energy (Fig. 10) and the observed value of total energy (Fig. 11).

The period is roughly 5–8 years. It is known that the period of the Juglar fixed
investment cycle is 7–11 years, and our model could reproduce it.
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Fig. 12. The period of the motion of x(t) calculated from the real GDP data.

§6. Concluding remarks

In this paper, we have introduced a model in order to reproduce the business
cycle. We have concentrated on the case a = 2 in order to investigate the periodic
behavior of the model as the first step of our investigation. In this case, the model
describes a conservative system, having a Hamiltonian with a single dynamical vari-
able x(t). The economic system is described in terms of a point particle moving in
the harmonic like potential. The dynamical variable x(t) moves periodically and the
total energy E of this system is conserved.

There exist the business cycles in the economies of almost all modern countries
in the world. It is a quite general feature of economic system, and has long been one
of the most interesting questions how to explain such business cycles. Our model
naturally explains the origin of the business cycle by the periodicity of x(t). We
also find the relation between the total energy and the period of business cycle. A
constant period of business cycle is a result of the energy conservation. From our
model the business cycle with the period 5–8 emerges in Japan. This cycle may be
identified as the Juglar fixed investment cycle.

The observed data of GDP in Japan shows that the total energy E is not
always constant. At several points E takes very large values as seen in Fig. 11. Such
sudden changes correspond to “Izanagi boom”, “first oil shock”, “bubble economy”
and “Heisei depression”. From the viewpoint of our model, these events can be
interpreted as consequences of some external forces, which cannot be predicted from
our dynamical model. We can use the total energy as a kind of the index of such
economic events.

The behavior of the total energy calculated from the real GDP data also has
an interesting feature. The energy increases quickly by irregular events, but the
effects are washed out immediately and the energy returns to the value before the
events. This feature suggests that our model extracts only a conservative nature of
the economic system. To construct a more realistic model the dissipation term may
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be necessary. The dissipation term emerges in the case a < 2. It is our future work
to investigate the dynamics in this case.

It would be interesting task to investigate the behavior of total energy and the
period of business cycle of the countries other than Japan. Also we note that in real
world the economic system of each country is affected by other countries. It is also
an interesting problem to investigate the interaction among many economic systems
and their collective dynamics.
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