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The interplay between the topological and geometrical properties of a polymer ring can
be clarified by establishing the entanglement trapped in any portion (arc) of the ring. The
task requires closing the open arcs into a ring, and the resulting topological state may depend
on the specific closure scheme that is followed. To understand the impact of this ambiguity in
contexts of practical interest, such as knot localization in a ring with non trivial topology, we
apply various closure schemes to model ring polymers. The rings have the same length and
topological state (a trefoil knot) but have different degree of compactness. The comparison
suggests that a novel method, called the minimally-interfering closure, can be profitably
used to characterize the arc entanglement in a robust and computationally-efficient way.
This closure method is applied to the knot localization problem which is tackled using two
different localization schemes based on top-down or bottom-up searches.

§1. Introduction

It is known that the global topological state of a ring polymer affects its salient
physical properties such as its size!)?) sedimentation velocity, gel-electrophoretic
mobility,?)>%):?) resistance to mechanical stretching® or the behaviour under spatial
confinement.”)

While a comprehensive understanding of this phenomenon is still lacking, it is
often explicitly or implicitly acknowledged that topology-dependent physical proper-
ties arise because of a sophisticated interplay of polymer geometry and topology. In
other words, the global topological state affects the average geometrical properties of
the polymer, which in turn directly impact various physical properties such as those
mentioned above.

A vivid illustration of this relationship is offered by the mechanical resistance
of a knotted polymer that is pulled at both ends. The breaking force depends on
the topological state of the polymer. Indeed, the rupture point is invariably in
correspondence of the knot® which is progressively tightened by the pulling action
(as all fishermen know for the case of a knotted fishing line).

The above example highlights a very important player in the relationship be-
tween the topological, geometrical and physical properties of a ring polymer (or a
polymer with constrained ends), namely the degree of localization of the topologically-
entangled region.®) For example, recent simulations have shown that the delocaliza-
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Probing the Entanglement of Compact Rings 193

tion of “knots” in a linear DNA filament is very important to allow its tranlocation
through a pore (as in viral DNA ejected from the viral capsid) avoiding plug-like
obstructions.”

Locating the knotted portion of the polymer is straightforward when the knot
is tight, but is otherwise highly challenging. Generally speaking, to accomplish
this task one needs to establish the degree/type of entanglement “trapped” in any
portion, or arc, of the ring polymer and then select the shortest arc(s) whose trapped
entanglement matches the global topology of the ring. The entanglement trapped
in a given arc is identified by establishing the topology state of an auxiliary ring
obtained by suitably joining the two arc ends.

The difficulty of this scheme lies in the fact that several viable arc closure (end-
joining) schemes can be used and they can result in different knots being measured
on the same arc. This is especially the case for rings under geometrical confine-
ment.9)-10),11)

While the above-mentioned ambiguity is ultimately unavoidable, it is important
to ascertain how severe it is in contexts of practical interest. This question, motivates
the present study where we use and compare several closure schemes to characterize
the entanglement trapped in portions of three model ring polymers with the same
length and knotted state (trefoil knot) but with different degree of compactness and
hence of geometrical complexity.!2)13),14),15),16)

Three different closure schemes are considered: the direct bridging closure, the
stochastic closure and the novel minimally-interfering closure. The first two have
been introduced previously,!®) 1) while the third is presented and applied here for
the first time.

From the comparative investigation we ascertain that for the ring with the
least degree of compactness (spatially unconstrained), the various closure schemes
yield consistent results for the entanglement trapped in the various arcs. For the
higher level of compactness noticeable differences emerge between the direct bridging
method and the other two schemes. Notably, despite their different formulation, the
stochastic closure and the computationally faster minimally-interfering closure ap-
pear to be well consistent for all the considered levels of ring compactification. This
is an important result as it gives an a posteriori indication of an overall consensus
of unrelated methods about the topological state of various portions of rings with
different geometrical complexity.

The implications of the findings for the problem of knot localization are finally
discussed. Specifically, we consider and compare two alternative knot localization
procedures previously discussed in the literature and corresponding to top-down
and bottom-up searches.!”):18):19 We show that the geometrical complexity of the
ring resulting from increasing confinement of the rings correlates with appreciable
differences in the regions that are identified as accommodating the knot.
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§2. Methods

2.1.  Polymer model

The degree of entanglement is measured for the simplest model of ring polymers,
that is freely-jointed rings (FJR). These rings are fully-flexible equilateral polygons
and no excluded volume interaction is introduced between the ring edges or vertices.

It is known that the global topological complexity of the rings is strongly in-
fluenced by the level of imposed spatial confinement. Typically, a higher degree of
ring compactification leads to more complex knots. This aspect was initially inves-
tigated by Michaels and Wiegel'?) and more recently by other studies2?):13):14).7) jp
biologically-motivated contexts, see Refs. 21) and 22) for two recent reviews.

It is therefore envisaged that, by focusing on conformations having a specific
topological state (such as trefoil knots) and different degree of compactness, one
might observe a very different level of geometrical complexity, i.e. local entanglement,
associated to the same knot type.

We have consequently mapped in detail the topological entanglement for all
subportions of three equilateral rings of N = 100 edges of unit length. The ring con-
figurations are picked randomly from a pool of Monte-Carlo equilibrated structures
subject to three different isotropic confining pressures. Specifically, one configura-
tion was picked from the unconstrained ensemble (zero confining pressure), which
is largely dominated by unknotted rings. The radius of the smallest sphere that is
centred on the ring centre of mass and that encloses all ring vertices is R, = 4.8.

The second configuration has enclosing hull radius equal to R, = 4.1. This hull
radius is close to the value of R, for which the probability of observing a trefoil in
rings with N = 100 edges is maximum, see Ref. 13). The third configuration has
hull radius equal to R. = 2.5 and was picked at values of the confining pressures so
high that the knot spectrum was dominated knots with topology more complex than
the trefoil one.

2.2. Closure schemes

As anticipated in the introduction, one needs to introduce a well-defined proce-
dure to close, or circularize, various subportions of the ring under consideration so
as to properly establish their topological state.

Several viable closure schemes are considered, including some that have been
introduced and applied before.

Before describing the various closure schemes we clarify the notation that will
be used from now on. For a given ring, I' = {r}, 7, -+ ,7n,7N+1 = 71}, we denote
by Ij; = {7i,- -, 7} the arc comprising all edges from vertex i to vertex j (including
the endpoints ¢ and j). The orientation of I5; follows the one given by the increasing

numbering of the nodes on the full ring.
The three following schemes are used to close a given arc I5;:

1. Direct bridging. The two arc ends, ¢ and j are directly joined by a straight segment
(Fig. 1(b)).2%)

2. Stochastic closure at infinity. This scheme, introduced in Ref. 11) consists in closing
I';; by connecting its ends to a point picked randomly on a sphere centred at the centre
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a) b)

Fig. 1. (color online) Sketched examples of the closure schemes used in this work: (a) Stochastic
closure at infinity, (b) direct bridging, (c) minimally-interfering closure.

of mass of the arc and with radius much larger than the radius of gyration of I5;, see
Fig. 1(a). The random closure procedure is repeated a large number of times (1000 in
this study), and the topological state with the largest statistical weight is identified.
If this weight exceeds a preassigned threshold, ¢, then the dominant topological state
is taken as the topological state of the arc Ij;. Otherwise, the topology of I7j; is
considered ambiguous and is left undetermined. In this study we consider two different
threshold values: ¢ = 50% and ¢ = 90%.

3. Minimally-interfering closure. The amount of entanglement introduced by closing
the arc I53; is intuitively expected to grow with the distance spanned by the added
closing segments inside the convex hull of I5;. In order to minimize such “interference”
we consider two alternative closures. In the first closure, the two endpoints of I5;
are prolonged through their nearest points on the convex hull (computed with the
QuickHull algorithm24)) and connected with an arc at infinity. The sum of the distance
of each of the two endpoints from the closest point on the convex hull, d;?}“ is taken

as the measure of the associated entanglement. This quantity is compared to the

geometrical distance of the two points, dZTL7 which is a measure of the interference
associated to the direct bridging closure. The minimally-interfering closure is picked
by comparing dfj?“ and d;;’ If d;? > dfj?“ then the endpoints are joined using their
prolongations to infinity (Fig. 1(c)), otherwise they are directly bridged (Fig. 1(b)).
Both the minimally-interfering closure and the stochastic closure apply for open

chains as well as closed chains. The results are locally continuous in that small

changes in positions of edges result in the same topological identification, except for

a set of conformations of measure zero in the space of conformations. Thus, one

gets the topologically correct answer for open chains when the initial and terminal

edges converge (i.e. become identified) or approach the surface of the convex hull.

In this second case the convex-hull can be easily used to check for the existence of

the classical knotted arc in a topological ball.

2.3. Knot localization schemes

A few different procedures have been proposed so far to localize the shortest
knotted portion of a ring with non-trivial topology.'”:18):19 They can be divided
into two main categories depending on the strategy used to search for the shortest
knotted portion of a ring.

To illustrate the two methods, let us consider a trefoil knot in a ring of N
vertices.
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a) Cf\/g b) Cffb c) Cf?l)

Fig. 2. (color online) An example of how a bottom-up (b) and a top-down search (c) on the trefoil
knotted arc shown in (a) gives rise respectively to the shortest knotted arc (red curve in (b))
and to and shortest C-knotted arc (blue curve in (c)).

The first procedure involves a bottom-up search for the knot. The purpose is to
identify the shortest portion of the ring that has the same topology of the whole ring.
One starts by considering all portions of the ring (arcs) with a small contour length,
[, (small means no larger than the length required to tie a trefoil knot). A trefoil
knot is identified if an arc, after closure, has trefoil topology and its complementary
arc on the ring is unknotted. If none of the arcs is found to satisfy the previous
conditions, then [ is increased by one and the search for a trefoil-knotted arc starts
again. Clearly the search stops when one arc of the current contour length, I, is
found to be trefoil knotted. We shall refer to this arc as the shortest knotted arc.
It is important to stress that the returned shortest knotted arc may correspond to
an ephemeral knot. These are arcs with non-trivial topology that are contained in
longer arcs with a different topology (which, in turn, can be contained inside arcs
with different topology etc.).??)

To avoid detecting ephemeral knots one can resort to a second method, that
involves a top-down search. In this case one looks for the shortest knotted portion
of the ring that (i) cannot be further shortened without losing the knot and (ii) can
be extended continuously to encompass the whole ring. To do so, one begins by
setting [ = 1 and considers all arcs of length N — [ and discards those that are not
trefoil-knotted according to the previous stringent conditions. Then [ is increased
by one unit and, inside the survived arcs, one looks for trefoil-knotted arcs of length
N —1. Those that are not trefoil-knotted are discarded and the procedure is repeated
until at a certain value of I = [ no trefoil-knotted arc is found. The trefoil-knotted
arc (or arcs in case of degeneracy) that survived at the previous iteration step (the
one(s) with length N — (I + 1)) provides the desired ring portion accommodating the
knot. We shall refer to such arc(s) as the shortest continuously-knotted portion of
the ring, or shortest C-knotted portion for brevity.

The knotted portions identified by the two procedures are not necessarily the
same, as illustrated in Fig. 2. From the two definitions it follows that the length of
the shortest C-knotted arc cannot be smaller than that of the shortest knotted arc.
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Fig. 3. (color online) A ring of N edges is associated to N x N knot matrix. Unlike the case of
open chains®” the matrix is periodic. To each entry, i, j of the matrix is associated an oriented
arc I ; of the ring going from 7; to ;. This is illustrated in panel (a), where the arcs associated
to the two different marked entries are highlighted on the matrix diagonal. The topological
state of an arc is encoded by the color of the corresponding matrix entry. In the example
shown in panel (b) white is used for the unknot and green for the trefoil knot. The shortest
knotted arc of a knotted ring is the shortest subarc having the same topology of the ring while
its complementary arc stays unknotted. For this ring it corresponds to the arc I%540 which
coincides with the shortest continuously-knotted arc too (see Methods for the definition).

§3. Results

3.1. Knot matrices

The closure schemes described in §2.2 were applied to all arcs of the three rings
of N =100 edges shown in Figs. 4, 5 and 6.

For each ring we considered all possible N(N — 1) oriented arcs [; with i #
j. After circularization, the topological state of each arcs was established by us-
ing the KNOTFIND routine implemented in the KNOTSCAPE package.?®) The
KNOTFIND routine efficiently simplifies the diagrammatic representation of a knot
and compares it against a look-up table of diagrams of prime knots with less than 17
minimal crossings. When a positive match is found, the topological state of the ring
is unambiguously established. If no match is found (due to genuine excessive com-
plexity of the knot or to insufficient classification) the topological state is regarded
as undetermined.

The topological states of all arcs Ij; are conveniently reported as the (i, j) ele-
ment of an N x N “knot matriz”. The knot matrix entries, which take on discrete
values reflecting the variety of knots trapped in the arcs, are conveniently conveyed
in color-coded graphical representations, see Fig. 3. The graphical representation
adopted here follows the indexing convention first introduced by Yeates and cowork-
ers to highlight the presence of slipknots in naturally-occurring proteins.?”) By
convention the diagonal of the matrix is taken to correspond to the whole ring.

As illustrated in Fig. 3 by analysing the matrix it is possible to recover a wealth
of information about the interplay of the geometrical and topological entanglement
of the ring. In particular it is possible to identify the shortest knotted arc and the
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Fig. 4. (color online) Leftmost panel: spatially-unconstrained trefoil-knotted ring of N = 100 edges.
The indices (numbering) of subset of vertices are shown explicitly; the first vertex is highlighted
with a yellow sphere. Other panels: knot matrices of the ring obtained by using 4 different
closure schemes: stochastic closure at infinity with threshold (a) ¢ = 90% and (b) ¢ = 50%,
(c) direct bridging and (d) minimally-interfering closure. Different topologies are color-coded
according to the legend on the right. The notation 7?7 denotes arcs whose dominant topology,
according to the stocastic closure, does not overcome the threshold ¢q. The knotted portion

identified by using the minimally-interfering closure is highlighted in red.
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Fig. 5. (color online) Mildly-confined trefoil-knotted ring of N = 100 edges (leftmost panel) and
associated knot matrices displayed and coloured as in Fig. 4. The shortest knotted arc com-
puted with the minimally-interfering closure is highlighted in red. The shortest C-knotted arc
computed with the same closure is shown with red interior. Note that the shortest continuously-
knotted arc, I51,16 contains the shortest knotted arc, I'g7,15.

shortest C-knotted arc as well as identifying ephemeral knots.

25)

Knot matrices have been computed for all the closure schemes presented in §2.2.
Their visual inspection and interpretation according to Fig. 3 readily conveys the
salient differences across the closure methods in establishing the degree of entangle-
ment of various ring subportions.
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Fig. 6. (color online) Strongly confined trefoil ring of N = 100 edges (left panel) and associated knot
matrices displayed and coloured as in Fig. 4. The shortest knotted arc computed by using the
minimally-interfering closure (highlighted in red) is an ephemeral knot with a protruding loop
(shown with red interior) which is contained inside a larger trefoil-knotted arc. The union of the
shortest knotted arc and the protruding loop coincides with the shortest continuously-knotted
arc.

3.2. Unconstrained case

We start by discussing the knot matrices for the unconstrained ring in Fig. 4.
From an overall visual inspection, the various knot matrices appear largely consistent
and the topologies of most arcs correspond to either unknots or trefoil knots.

Yet, as it is visible in panels (b), (c¢) and (d), a limited occurrence of knots with
more than 6 minimal crossings is found for arcs of various lengths that either start
or end at vertex number 41. For example the arc Iy 39 is seen as a knot with more
than 6 minimal crossings by all the closing schemes. These instances are manifestly
ephemeral knots because their topological state differs from the global one of the
ring, which is the trefoil.

Note that for this ring, all schemes are consistent. This fact is compatible with
the finding of Ref. 11) that, for unconstrained rings, the dominant knot type found
with the stochastic closures with threshold ¢ = 50% is usually the same one obtained
with the direct closure scheme.

Regarding the robustness of the closure scheme in terms of the threshold, ¢,
we report that for ¢ = 90% about 15% of the entries are marked as undetermined
knots (grey color). These undetermined arcs represent cases where the details of
the closure scheme can likely yield different results. It is interesting to observe that
across panels (b), (c) and (d) most arcs whose topology is not the trefoil or the
unknot, correspond to undetermined entries in panel (a).

It should also be noted that the direct bridging closure scheme introduces “jagged”
boundaries separating the trefoil and unknotted regions. Sharper boundaries are
instead found for the stochastic closure (¢ = 50%) and the minimally-interfering
closure.
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3.3. Spatially-confined cases

The analysis presented above was repeated for the more compact configuration
depicted in Fig. 5.

The increased level of geometrical complexity compared to the unconstrained
case is conveyed by the fact that a much larger fraction of the matrix entries (~ 45%)
have an undetermined topological state according to the stochastic closure scheme
with the stringent ¢ = 90% threshold. This is because the geometrical complexity
characterizing more compact structures prevents the occurrence of a single highly-
dominant knot type.

A related aspect is that the knot matrix obtained with the direct bridging closure,
see panel (c), is considerably noisier that the knot matrices obtained with the tolerant
(¢ = 50%) stochastic closure and the minimally-interfering one, see panels (b) and
(d).

Notably, the visual inspection of panels (b) and (d) indicates that the responses
of these two methods remain highly compatible notwithstanding the increased geo-
metrical complexity.

All the above considerations hold also for the ring with highest level of compact-
ification shown in Fig. 6 (where we additionally note that the direct bridging scheme
returns ephemeral knots that are simpler than those found for the unconstrained
ring!).

In summary, at all the three levels of compactness a high consistency is found
between the tolerant stochastic closure and the minimally-interfering one. Given
the different spirit of these two methods this accord is both pleasing and important
because it provides a posteriori confidence that a consensus indication of the topo-
logical state of various arcs of a ring can be achieved with these two different closure
methods.

It is important to point out that, despite returning consistent results, these two
methods are very different in terms of the computational expenditure because the
stochastic closure scheme is based on a collection of several (in our case 1000) random
closures per arc whereas only two closures per arc are involved in the minimally-
interfering scheme. The latter scheme appears therefore to be preferable when one
seeks to establish the local level of entanglement (as in knot localization problems)
over a large ensemble of rings. The QuickHull algorithm computational cost grows
proportionally to nlog(n), where n is the number of nodes in the arc for which the
convex hull is computed.?*) The evaluation of all the entries of a 100 x 100 knot
matrix takes ~ 6 seconds on a present-day laptop. The stochastic closure scheme,
on the other hand, has the advantage of providing a quantitative control of the
statistical weight (and hence the robustness) associated to the dominant knot type
for every arc.

3.4. Locating the knot

To locate the trefoil knot within each of the three rings under analysis we pro-
cessed the associated knot matrices obtained by applying the minimally-interfering
closure. We use both the top-down and the bottom-up approaches to locate the knot.
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The results are described hereafter and are practically identical to those obtained
by using as input the knot matrices obtained with the tolerant (¢ = 50%) stochastic
closure.

For the unconstrained knot, the two search methods identify the same arc, see
Fig. 4, as the region that accommodates the knot.

This is not the case for the two more compact rings. In particular, for the ring
shown in Fig. 5 the shortest knotted arc corresponds to I's7 s (highlighted in red
in the figure) while the shortest C-knotted arc corresponds to the much longer arc
I'51,16 shown with red interior.

Finally, for the most compact ring, the shortest knotted arc is found to be Ig¢ 95
while the shortest C-knotted arc is found to be Iy 1, see Fig. 6. In this case the
comparison between the two knot localization methods reveals a notable hierarchy
of ephemeral knots. In fact, while arc Igg,95 is trefoil knotted, the longer arcs from
I'y,96 up to Ige 99 are uknotted and still longer arcs, such as Igg 1, are trefoil-knotted
again.

It therefore appears that the increased geometrical complexity of the rings re-
sulting from the isotropic spatial confinement produces a non-trivial interplay of
geometry and topology, which manifests in the sensitive dependence of the knot
location on the search strategy that is used. A systematic study of the broader
implications of this finding is currently underway.

As a final remark we point out that when dealing with large datasets of rings or
suitably closed polymer chains, as in large-scale surveys of knotted proteins,2®)29)
the calculation of the knot detection and knot localization can be speeded up by an
initial simplification of the ring geometry. In principle, such changes could affect the
outcome of the knot localization procedure. While a systematic study of this effect
is beyond the scope of the present investigation, we report in the Appendix a limited
discussion of the matter.

§4. Conclusions

The main aim of this work was to investigate the efficiency and reliability of
different closure schemes in assigning a topological state to a given subportion of
a ring and to characterize the topologically-entangled region of knotted rings when
they are subjected to different levels of compactification. The detailed analysis of
the local entanglement of the ring described in terms of knot matrices shows that
two independent closure schemes yield robust and consistent results at all level of
ring compactification: the stochastic closure and the minimally-interfering closure.

The two methods, while providing consistent results, have different advantages.
The stochastic closure scheme, in fact, provides a statistical confidence level on the
robustness of the dominant topological entanglement associated to each considered
arc. This valuable information comes at the cost of performing a large number of
statistically independent closures on the arc of interest. The statistical robustness
information is not directly available in the minimally-interfering scheme as this re-
quires only two closures. But for this very reason the minimally-interfering method
is much faster than the stochastic and yet typically returns the same dominant knot
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type. Considerations of these aspects can guide the choice of which of the two
methods should be adopted in a specific study.

The interplay of geometry and topology in rings with different degree of compact-
ness was finally examined by comparing two different methods for knot localization
(involving a bottom-up and top-down search, respectively). The analysis indicates
that for spatially unconstrained rings the location of the knot can be performed in a
consistent manner by the two methods. Appreciable differences between the meth-
ods emerge for the more compact configurations, signalling a non-trivial increase of
the geometrical complexity of confined polymer rings.

The source-code of the program that implements the minimally-interfering clo-
sure of an arc is available (free of charge for academic use) upon request. Please
contact L. Tubiana at tubiana®@sissa.it.
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Appendix A
—— Effect of Ring Simplification

In the attempt to reduce the heavy computational cost of locating the knot
either in rings or linear chains, several groups have avoided the extensive topological
profiling of all arcs of the ring and have instead mapped out the topology of a
simplified representation of it.39):31):32)

The simplification, or rectification procedure entails the removal of those ring
vertices which can be made collinear with their neighbouring pair along the ring
through a continuous local deformation (morphing) of the ring that does not lead to
any edge crossing. Such rectification operations clearly preserve the topology of the
ring and can considerably reduce the number of ring vertices, and hence the linear
size of the knot matrix.

Here we discuss the effect of rectification procedure on the two knot localization
schemes introduced in §2.3.

In order to ensure the most uniform level of simplification, we subjected each
ring on N edges to several simplification rounds. At each stage of the procedure
we disallow the removal of ring vertices that would introduce a gap larger than s
in the original index of consecutive surviving beads. Because of the ring periodic
boundary conditions, we employ the modulus operation on s. By starting with s = 2
we carry out NV statistically-independent attempts at bead removal (sweep). Then
s is increased by one and another sweep of vertices elimination is attempted. The
procedure is carried on until no vertex can be further removed within a sweep. Notice
that more beads might be removed by allowing s to increase even further, but these
more aggressive rectifications are not considered here.

Reducing the number of beads of the ring has two distinct effects. First, the
linear dimensions of the knot matrix are reduced. Second, the topological entangle-
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Fig. 7. (color online) (a) Original and (b) simplified ring after the rectification procedure. The
original indexing (numbering) of a subset of vertices is shown explicitly. The first vertex is
highlighted with a yellow sphere. The knot matrix of the simplified ring is shown in panel (c).
The full knot matrix of the original ring is shown in Fig. 5 panel (d).

ment of the remaining subportions might be different from the one measured for the
corresponding subportions of the original ring. Regarding the first aspect we recall
that we establish the entanglement trapped in the arcs of the surviving nodes by
closing the arcs with the same ends on the original, unsimplified ring. As a con-
sequence the knot matrix of the simplified ring is a subset of the original full knot
matrix, obtained by restricting to the rows and columns pertaining to the surviving
ring vertices. This procedure is illustrated in Fig. 7.

Notice that because the simplified knot matrix is a subset of the original knot
matrix, then the length of the shortest knotted arc measured on the simplified ring
can not be smaller than the length of the shortest knotted arc measured on the
unsimplified ring. On the other hand no such reasoning can be made for the shortest
C-knotted arc.

The rectification procedure clearly brings about a simplification of the geomet-
rical complexity of the ring. As a consequence, the difference between the shortest
knotted arc and shortest C-knotted arc will likely decrease after rectification but
it will not be obliterated for sufficiently entangled rings. This is illustrated by the
rectification of the ring with intermediate compactness, whose simplified knot matrix
is shown in Fig. 7. The shortest knotted arc on the simplified ring goes from node
87 to node 16. The inspection of the matrix reveals that from the point (87,16),
corresponding to the shortest knotted arc Iz 16, one cannot find a connected path
through points corresponding to longer and longer trefoil-knotted arcs (even disre-
garding the unknottedness requirement on the complementary arcs) that reach out
to the whole ring. This clarifies that Ig7 16 does not correspond to the shortest
C-knotted arc, and hence the two methods for knot detection do necessarily not
coincide even after simplification.
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