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Summary

An application of the Cagniard–De Hoop method for solving a class of initial-boundary value
problems in bounded regions is presented. A procedure is briefly formulated and subsequently
applied to acoustic and electromagnetic wave propagation problems in layered media. A simple
example with illustrative numerical results is given.

1. Introduction

The Cagniard–De Hoop technique is a sophisticated mathematical tool for solving a collection
of wave and diffusive problems in various branches of physics. The method has been originally
developed for tackling transient seismic problems (1–6) and has found wealth of applications in
electromagnetics (7–11), acoustics (12), (13) and elastodynamics (14–16). The Cagniard–De Hoop
technique has proved to be a useful tool that yields closed-form expressions for problems with an
impulsive source in a discretely layered medium (17) as well as in a continuously layered medium
(18), (19). The latter has been originally analysed by Chapman using the Pekeris modification of
the Cagniard technique (20). The main ingredient of the Cagniard–De Hoop method is a unilateral
Laplace transformation with respect to time with a positive and real transform parameter which
is subsequently used as a scaling parameter in a Fourier representation parallel to a stratification.
An application of the integral transformations requires the time invariance and the shift (spatial)
invariance along the layering of the problem configuration. As a consequence of the latter, a direct
application of the Cagniard–De Hoop method to initial-boundary value problems defined over
bounded regions is not possible.

A class of problems discussed in this article is almost exclusively solved with the aid of the
separation of variables technique with subsequent solution of corresponding eigenvalue problems
via eigenfunction (or modal) expansions in space and time (21, Section 4.2). In such series expansions
all time-domain constituents for a given field point arise at the same time that does not depend on
the spatial coordinate along which the modal expansion applies. An example of this property is the
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Fig. 1 Horizontally stratified and laterally bounded medium in which wavefields are generated by an impulsive
source (Colour version of the figure is available online at QJMAM)

‘axial arrival time’ in a modal solution for cylindrical waveguide structures (see (22, Equation (15)))
or absence of the arrival time in modal expansions connected with completely closed ‘resonator’
problems. An important feature of the modal-expansion solution is an oscillating behaviour of modal
constituents that gradually increases with the growing order of eigenvalues. This property can make
numerical evaluation of the time convolution with a source signature delicate, especially for high-
order constituents. The nature of the modal solution thus limits its applications for late-time responses,
for field points far away from an activating source.

Fortunately, still another series expansions does exist that can circumvent all mentioned difficulties.
It can be found more or less intuitively or from the modal-expansion solution upon application of
Poisson’s summation formula (23, Section B.4). Such solution has a clear interpretation as a set
of contributions from ‘image sources’ and is therefore called as the image-source expansion (24,
Section 7.2). The image-source approach preserves a property that the time-domain constituents
that arise from successive reflections against pertaining boundaries arrive to the field point at a later
time than the previous ones. It is therefore suitable for a combination with the Cagniard–De Hoop
technique, which is exactly the objective of this article.

2. Problem formulation

A generic problem under consideration is given in Fig. 1. The position in the problem configuration
is localized by the coordinates {x1, x2, x3} with respect to a fixed, orthogonal, right-handed Cartesian
reference frame. The spatial reference frame is defined with respect to the origin O and the three
mutually perpendicular base vectors {i1, i2, i3} of unit length each; they form, in the indicated order,
a right-handed system. The subscript notation for Cartesian tensors with the summation convention
for repeated subscripts is employed. The Levi-Civita tensor (completely antisymmetrical tensor of
rank 3) is ek,m,p = 1 for {k, m, p} = even permutation of {1, 2, 3}, ek,m,p = −1 for {k, m, p} = odd
permutation of {1, 2, 3} and ek,m,p = 0 in all other cases. Lower-case Latin subscripts stand for the
values {1, 2, 3} whereas lower-case Greek subscripts stand for the values {1, 2}. Within the reference
frame, the position of a point is defined by the position vector x = xk ik . The spatial differentiation
with respect to xm is denoted by ∂m. The time coordinate is denoted by t and symbol ∂t is reserved
for the partial differentiation with respect to time.

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

am
/article/66/2/185/1866222 by guest on 10 April 2024



[12:21 12/4/2013 hbs025.tex] QJMAM: The Quarterly Journal of Mechanics & Applied Mathematics Page: 187 185–199

RAY-TYPE SOLUTION OF INITIAL-BOUNDARY VALUE PROBLEMS 187

The configuration consists of a time-invariant stratified medium which properties vary in
vertical direction and which is laterally bounded by impenetrable plane boundaries. The layered
medium consists of M domains DN = {0 < x1 < W1, 0 < x2 < W2, x3;N < x3 < x3;N+1} where
D = ∪M

N=1DN . Each of domains DN is characterized by the corresponding wavespeed cN for
N = {1, ..., M} and by its lengths of sides dN = x3;N+1 − x3;N for N = {2, ..., M − 1} and W1 > 0,
W2 > 0. The wavefield is radiated by an impulsive source that is located at x = xS . The source level
x3 = x3;S is placed at the interface of two domains with non-zero or zero contrast in their properties.
The latter can be considered as the source placed within one domain. Consequently, the response
is probed at the receiving point that can be defined either at the interface or within a domain. It
is assumed that a source starts to act at t = 0 and that prior to this instant the wavefields vanish
throughout the configuration.

Let consider the scalar wave u generated by an impulsive point source that satisfies the three-
dimensional wave equation,

∂k∂ku − c−2∂2
t u = −δ(x − xS)F(t), (2.1)

in D for t > 0. Here, δ(x) is the three-dimensional Dirac distribution. For the source signature F(t)
we assume F(t) = 0 for t < 0 and also for the wave function u(x, t) = 0 and ∂tu(x, t) = 0 for t < 0.
The wavespeed is assumed to be a piecewise constant function along the vertical direction c = c(x3).
Across each source-free interface where the wavespeed shows a jump discontinuity we assume that
u and ∂3u are continuous,

lim
x3↓x3;N

{u, ∂3u}(x, t) = lim
x3↑x3;N

{u, ∂3u}(x, t), (2.2)

for {0 < x1 < W1, 0 < x2 < W2} and for all t > 0. In the case of an impenetrable horizontal boundary
we assume

lim
x3↑x3;M

u(x, t) = 0 or lim
x3↑x3;M

∂3u(x, t) = 0 (2.3)

or/and

lim
x3↓x3;2

u(x, t) = 0 or lim
x3↓x3;2

∂3u(x, t) = 0, (2.4)

for {0 < x1 < W1, 0 < x2 < W2} and for all t > 0. The normal derivative of the wave function
across the source level gives the excitation condition

lim
x3↓x3;S

∂3u(x, t) − lim
x3↑x3;S

∂3u(x, t) = −δ(x1 − x1;S)δ(x2 − x2;S)F(t), (2.5)

for {0 < x1 < W1, 0 < x2 < W2} and for all t > 0. Here δ(x) denotes the one-dimensional Dirac
distribution. Along the vertical plane boundaries the wave function satisfies

lim
xμ↓0

u(x, t) = 0 or lim
xμ↓0

∂μu(x, t) = 0 (2.6)

or/and

lim
xμ↑Wμ

u(x, t) = 0 or lim
xμ↑Wμ

∂μu(x, t) = 0, (2.7)

for all t > 0 and x3 ∈ R.
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3. Problem solution

The problem formulated in the previous section is not shift invariant along the direction parallel to
the stratification and as a consequence the Cagniard–De Hoop cannot be applied directly. Instead of
applying discrete Fourier expansions along the layering we express the solution in the form

u(x, t) = uF (x, t) + uG(x, t), (3.1)

where uF is the fundamental solution that satisfies the three-dimensional wave equation (2.1) with
the boundary conditions along the horizontal interfaces (2.2)–(2.5) extended over {−∞ < x1 <

∞, −∞ < x2 < ∞}. The fundamental solution does not satisfy the boundary condition along the
vertical planes and can be found via the Cagniard–De Hoop method. The second part of the solution
uG satisfies the same boundary conditions along horizontal boundaries and is adjusted such that the
boundary conditions along the vertical boundaries (2.6) and (2.7) are satisfied. The solution uG is
not singular in D and obeys here the homogeneous three-dimensional wave equation

∂k∂kuG − c−2∂2
t uG = 0, (3.2)

for t > 0. The scalar wave function uG can be interpreted as to be generated by ‘image sources’.
The fundamental solution follows from (2.1)–(2.5) upon application of a unilateral Laplace
transformation with respect to time with the real-valued and positive parameter s relying on Lerch’s
uniqueness theorem (25, Section 5) in combination with the wave slowness field representation along
the problem stratification. This leads to the transform-domain field equations that are solved in an
iterative manner via the generalized-ray expansion and subsequently transformed back to space-time
(17). The auxiliary solution uG and subsequently the total solution u can be then constructed based
on the symmetry properties of the fundamental solution uF . Without loss of generality let us analyse
the plane boundaries x1 = {0, W1} only. Since the fundamental solution satisfies

uF (x1, x2, x3, t) = uF (−x1, x2, x3, t) (3.3)

∂1uF (x1, x2, x3, t) = −∂1uF (−x1, x2, x3, t), (3.4)

we can write the total solution as

u(x1, x2, x3, t) =
∞∑

m=−∞
(±1)muF (x1|x1;S + 2mW1, x2, x3, t)

±
∞∑

m=−∞
(±1)muF (x1|2mW1 − x1;S, x2, x3, t), (3.5)

for ∂1u = 0 or u = 0 along the vertical planes x1 = {0, W1}. Here x1;S + 2mW1 and 2mW1 − x1;S are
the positions of sources along x1 axis. The procedure for the plane boundaries along x2 = {0, W2}
goes along the same lines. Note that the arrival times of contributions from the image sources increase
together with |m|. This has the consequence that the time-domain constituent arises at a later time
then the previous one. Based on the fact that one is always interested in the wave field in a finite time
window of observation, a finite number of time-domain constituents in the image-source expansion
(3.5) is in practice sufficient to get the exact time-domain response. The image-source expansions
can be interpreted as the sets of (generalised-)rays reflecting against corresponding boundaries.
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4. Construction of the fundamental solution

To construct the fundamental solution we subject wavefield quantities to a unilateral Laplace
transformation:

ûF (x, s) =
∫ ∞

t=0
exp(−st)uF (x, t)dt, (4.1)

where the transform parameter s is taken to be real-valued and positive relying on Lerch’s uniqueness
theorem (25, Section 5). In view of the shift invariance along a direction parallel to the layering we
in addition apply the wave slowness field representation:

ûF (x1, x2, x3, s) = (s/2π)2
∫ ∞

α1=−∞
dα1

×
∫ ∞

α2=−∞
exp[−i s(α1x1 + α2x2)]ũF (α1, α2, x3, s)dα2, (4.2)

which implies ∂̃μ = −isαμ, αμ ∈ R. In each subdomain DN of the configuration, the transform-
domain (bounded) solution can be written

ũF
N = W+

N exp[−sγN (x3 − x3;N )] + W−
N exp[−sγN (x3;N+1 − x3)], (4.3)

where {W+
N , W−

N } are upogoing/downgoing transform-domain wave amplitudes and the vertical
propagation factor is

γN (α1, α2) =
(

c−2
N + α2

1 + α2
2

)1/2
(4.4)

with Re(γN ) � 0 for all p ∈ C. The transform-domain wave amplitudes are mutually related at each
interface via the scattering-matrix description (17):

W+
N = S̄+−

N W−
N + S̄++

N W+
N−1 + X+

N (4.5)

W−
N−1 = S̄−−

N W−
N + S̄−+

N W+
N−1 + X−

N−1, (4.6)

for N = {2, ..., M} with W+
1 = W−

M = 0. Here, S±±
N and {X+

N , X−
N−1} are scattering and source-

coupling parameters, respectively. For horizontally stratified medium consisting of M domains and
M − 1 interfaces we arrive at the (2M − 2) × (2M − 2) scattering matrix S̄ with 4(M − 2) scattering
parameters. Symbolically, the transform-domain constituents are finally iteratively generated in the
following way:

W =
R∑

r=0

S̄r · X + S̄R+1 · W. (4.7)

Here, W is the vector of transform-domain wave amplitudes and X is the source-coupling vector.
Once the scattering and source-coupling parameters are known, (4.7) can be transformed back to
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space-time using the Cagniard–De Hoop inversion procedure. A space-time counterpart of each term
in the sum of (4.7) is denoted as a generalised-ray constituent. Since its arrival time increases with
r, all terms from a certain value R onward can be ignored. Examples of full-vectorial solutions for
acoustic and electromagnetic waves in layered media are constructed in the next subsections. In
them we take F(t) = δ(t).

4.1 Acoustic waves in a layered fluid

Acoustic properties of each subdomain DN are described by its volume density of mass ρN and
compressibility κN with cN = (ρNκN )−1/2. In the following example we consider an acoustic
monopole source defined by its volume source density of injection rate,

q(x, t) = Q(t)δ(x1, x2, x3 − x3;S), (4.8)

and by vanishing volume source density of force fk = 0. Here, Q(t) is the source signature. The
transform-domain solution for the acoustic pressure and the vertical component of the particle
velocity can be then constructed as

p̃F
N (α1, α2, x3, s) = sρN Q̂(s)ũF

N (α1, α2, x3, s) (4.9)

ṽF
3;N (α1, α2, x3, s) = −Q̂(s)∂3ũF

N (α1, α2, x3, s) (4.10)

with the in-plane components of the particle velocity expressed via

ṽF
κ;N (α1, α2, x3, s) = −∂̃κ p̃F

N (α1, α2, x3, s)/sρN . (4.11)

Continuity of the acoustic pressure and the vertical component of the particle velocity across the
interfaces (see (2.2)) implies the scattering parameters corresponding to the N-th interface:

S+−
N = (γN/ρN − γN−1/ρN−1)/(γN/ρN + γN−1/ρN−1) (4.12)

S−+
N = (γN−1/ρN−1 − γN/ρN )/(γN−1/ρN−1 + γN/ρN ) (4.13)

S−−
N = (2γN/ρN−1)/(γN/ρN + γN−1/ρN−1) (4.14)

S++
N = (2γN−1/ρN )/(γN−1/ρN−1 + γN/ρN ). (4.15)

If the fluid is confined between impenetrable boundaries from above or/and below (see (2.3) and
(2.4)) then the corresponding scattering parameters are given as

S+−
2 = ±1 or/and S−+

M = ±1, (4.16)

along a perfectly rigid boundary (+) and along a pressure-release boundary (−), respectively. The
corresponding source-coupling coefficients differ from zero only at the source level:

X−
S−1 = 1/[sρS−1(γS/ρS + γS−1/ρS−1)] (4.17)

X+
S = 1/[sρS(γS/ρS + γS−1/ρS−1)], (4.18)

which follow from the excitation condition (see (2.5)). In this respect, a two-dimensional acoustic
problem for M = 2 (fluid half-spaces) is solved in (26) via the Cagniard–De Hoop method with the
time Fourier transform.
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4.2 Electromagnetic waves in layered media

Electromagnetic properties of each subdomain DN are described by its electric permittivity εN and
magnetic permeability μN with cN = (εNμN )−1/2. In the following example we consider a vertical
electric dipole source defined by its electric current volume density:

J3(x, t) = J(t)δ(x1, x2, x3 − x3;S), (4.19)

where J(t) is the source signature. The transform-domain solution for the electric and magnetic field
strengths Ẽk and H̃j, respectively, can be then constructed as

ẼF
π;N (α1, α2, x3, s) = ∂̃π ∂3Ĵ(s)ũF

N (α1, α2, x3, s)/sεN (4.20)

H̃F
ρ;N (α1, α2, x3, s) = eρ,π,3∂̃π Ĵ(s)ũF

N (α1, α2, x3, s) (4.21)

ẼF
3;N (α1, α2, x3, s) = −sμN Ĵ(s)ũF

N (α1, α2, x3, s) + Ĵ(s)∂2
3 ũF

N (α1, α2, x3, s)/sεN . (4.22)

Continuity of tangential components of the electric and magnetic field strength across the interfaces
(see (2.2)) implies the scattering parameters corresponding to the N-th interface:

S+−
N = (γN/εN − γN−1/εN−1)/(γN/εN + γN−1/εN−1) (4.23)

S−−
N = (2γN/εN )/(γN/εN + γN−1/εN−1) (4.24)

S−+
N = (γN−1/εN−1 − γN/εN )/(γN−1/εN−1 + γN/εN ) (4.25)

S++
N = (2γN−1/εN−1)/(γN−1/εN−1 + γN/εN ). (4.26)

If an impenetrable interface is present (see (2.3) and (2.4)), then we can find

S+−
2 = ±1 or/and S−+

M = ±1 (4.27)

along a perfect electric conductor (+) and a perfect magnetic conductor (−). The corresponding
source-coupling coefficients follow again from the excitation condition (see (2.5)) as

X+
S = X−

S−1 = 1/[s(γS/εS + γS−1/εS−1)], (4.28)

which completes the transform-domain solution.

5. Illustrative example

The procedure for solving initial-boundary value problems will be demonstrated on a simple example.
To this end let us solve the two-dimensional scalar wave equation,(

∂2
1 + ∂2

3

)
u − c−2∂2

t u = 0, (5.1)

in the bounded domain D = {0 < x1 < W , 0 < x3 < H} (Fig. 2) together with the zero-value initial
conditions u(x, t) = 0 and ∂tu(x, t) = 0 for t < 0 and the boundary conditions along the horizontal
planes:

lim
x3↓0

∂3u = −∂tF(t)δ(x1 − x1;S) (5.2)
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Fig. 2 Bounded two-dimensional region in which wavefield is generated by impulsive line source (Colour
version of the figure is available online at QJMAM)

and

lim
x3↑H

∂3u = 0 (5.3)

with F(t) = 0 for t < 0. Along the vertical boundaries we take

lim
x1↓0

u = 0 or lim
x1↓0

∂1u = 0 (5.4)

and

lim
x1↑W

u = 0 or lim
x1↑W

∂1u = 0. (5.5)

In the first step, the fundamental solution satisfying (5.1)–(5.3) is found via the Cagniard–De Hoop
method. To this end we combine the unilateral Laplace transformation (4.1) with the wave slowness
representation along x1 axis:

ûF (x1, x3, s) = s

2π i

∫ i∞

p=−i∞
exp(−spx1)ũF (p, x3, s)dp. (5.6)

Under these transformations (5.1)–(5.3) yield the wave slowness representation of the fundamental
solution,

ûF (x1, x3, s) = sF̂(s)

2π i

∫ i∞

p=−i∞
exp(−spX1)

cosh[sγ (p)(x3 − H)]
sinh[sγ (p)H]

dp

γ (p)
, (5.7)

with X1 = x1 − x1;S and γ (p) = (1/c2 −p2)1/2 with Re[γ (p)] � 0 for all p ∈ C. Instead of evaluating
the integral using the residue theorem, the integrand is expanded into the convergent geometric series
and each of its terms is transformed using the Cagniard–De Hoop inversion (1). This procedure after
a few steps leads to

uF (
x1|x1;S, x3, t

) = ∂tF (t)
(t)∗ 1

π

R∑
r=0

{
H

[
t − T+

(
x1|x1;S, x3

)]
[
t2 − T2+

(
x1|x1;S, x3

)]1/2
+ H

[
t − T−

(
x1|x1;S, x3

)]
[
t2 − T2−

(
x1|x1;S, x3

)]1/2

}
,

(5.8)
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where H(t) is the Heaviside function and where

T+(x1|x1;S, x3) =
[(

x1 − x1;S
)2 + (x3 + 2rH)2

]1/2
(5.9)

T−(x1|x1;S, x3) =
[(

x1 − x1;S
)2 + (2rH + 2H − x3)

2
]1/2

(5.10)

are the arrival times of the upgoing and downgoing time-domain constituents reflecting from
the horizontal impenetrable boundaries. The evaluation of the integral in (5.7) using the residue
theorem and its subsequent inverse Laplace transformation with the help of (27, 29.3.92) yields the
fundamental solution in the following form:

uF (x1|x1;S, x3, t) = c

2H
F(t − X1/c)

+ c

H
∂tF(t)

(t)∗
∞∑

m=1

J0

[
mπ

H

(
c2t2 − X2

1

)1/2
]

H(t − X1/c) cos
(mπ

H
x3

)
, (5.11)

where J0(x) is the Bessel function of the first kind and zero order. Equation (5.11) is the modal-
expansion solution along the vertical direction with the axial arrival time X1/c which will serve to
demonstrate main features of modal-expansion solutions. To complete the solution of the original
problem (5.1)–(5.5) we apply (3.5)–(5.8) which gives

u(x1, x3, t) =
∞∑

m=−∞
(±1)muF (x1|x1;S + 2mW1, x3, t)

±
∞∑

m=−∞
(±1)muF (x1|2mW1 − x1;S, x3, t), (5.12)

for ∂1u = 0 or u = 0 along x1 = {0, W}. Equation (5.12) with (5.9) and (5.10) imply that the solution
of the original problem is constructed as a superposition of time-domain constituents with the arrival
times:

TR+ =
[(

x1 − x1;S − 2mW
)2 + (x3 + 2rH)2

]1/2
(5.13)

TR− =
[(

x1 − x1;S − 2mW
)2 + (2rH + 2H − x3)

2
]1/2

(5.14)

TL+ =
[(

x1 − 2mW + x1;S
)2 + (x3 + 2rH)2

]1/2
(5.15)

TL− =
[(

x1 − 2mW + x1;S
)2 + (2rH + 2H − x3)

2
]1/2

. (5.16)

It is evident that the time-domain constituents successively arrive to the field point which has the
consequence that only a subset of them is needed in any finite time window of observation.

6. Numerical results

This section illustrates main differences between the modal-expansion and the generalised-ray
solutions. To this end the fundamental solution uF is numerically evaluated using the expression
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Fig. 3 Power exponential source signature (Colour version of the figure is available online at QJMAM)

found via the Cagniard–De Hoop technique (viz. (5.8)) as well as using the one obtained via the
modal-expansion approach (viz. (5.11)). The second part of this section provides an example of
the time-varying spatial distribution of the wavefield u = u(x1, x3, t) in D. The pulse time width
of the excitation is chosen such that the separate reflected time-domain constituents can be clearly
distinguished. As the excitation pulse we take the power exponential excitation signature:

F(t) = Fmax(t/tr)
ν exp[−ν(t/tr − 1)]H(t), (6.1)

where Fmax is the pulse amplitude, tr is the pulse rise time and ν > 0 is the rising exponent. The
pulse time width tw is then related to tr and ν via

tw = tr ν−ν−1�(ν + 1) exp(ν), (6.2)

where �(x) is the Euler gamma function. In the following examples we take the power exponential
source signature with the spatial support ctw/H = 0.5, with the rising exponent ν = 2 and amplitude
Fmax = 1. The corresponding pulse rise time is ctr/H = 0.2707 (Fig. 3). In all calculations we
take c = 1. The horizontal offset of the source is x1;S = H and the spatial solution domain is
D = {0 � x1 � 2H, 0 � x3 � H}, that is W = 2H.

The pulse shape of fundamental solution uF is observed at the point (x1, x3) = (2H, 0.8H) within
the time window {0 � ct/H � 10}. Figure 4 show the fundamental solution evaluated using the
Cagniard–De Hoop method. Figure 4a clearly illustrates that each higher time-domain constituent
arrives at the observation point at a later time than the previous one. For the chosen time window, only
the first five time-domain constituents are sufficient to get results within any prescribed precision. In
contrast to these results, Figs 5a show the particular modal constituents (first five) and the fundamental
solution, respectively, found via the modal-expansion approach. It is clear that all modal constituents
arrive at the same axial arrival time X1/c and for practical calculations the sum in (5.11) must be
always truncated. Since the oscillations of the modal constituents increase with the order of modes,
a fine integration technique must be used to take into the account the high-order modes. In Fig. 5b is
illustrated a typical shaky behaviour for an insuficient number (here � = 5) of the modal constituents
included (symbol ∞ in (5.11) is replaced with �). In that case, the modal solution may provide
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Fig. 4 (a) Particular time-domain constituents of the generalised-ray expansion; (b) Fundamental solution
evaluated via the Cagniard–De Hoop method (Colour version of the figures are available online at QJMAM)
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Fig. 5 (a) Particular time-domain constituents of the modal-expansion approach; (b) Fundamental solution
evaluated via the modal-expansion method (Colour version of the figures are available online at QJMAM)

misleading information about the arrival time of the relevant wave motion. As can be seen, the
trembling is canceled out for � = 50.

Next example demonstrates the time evolution of the spatial distribution of u = u(x1, x3, t) given
in (5.12). It is clear that up to ct/H = 1.0 the wave does not reach the boundaries and the solution
(5.13) equals to the one for an open half-space in {0 � ct/H < 1.0}. To observe effects of boundaries
we therefore choose the observation times ct/H = {1.5, 2.0}. Figure 6 show the spatial distribution
of u = u(x1, x3, t) that is closed by the Neumann-type boundaries, that is ∂1u = 0 along x1 = 0 and
x1 = 2H with (5.2) and (5.3), at two observation times ct/H = {1.5, 2.0}, respectively. Figure 6a
shows the reflected wavefronts on a halfway back towards the activating line source. Figure 6b then
illustrates a somewhat more complex wavefield distribution consisting of reflected waves from the
horizontal as well as from the vertical boundaries.
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are available online at QJMAM)

7. Conclusions

It has been demonstrated that the Cagniard–De Hoop technique is capable of handling a large class of
initial-boundary value problems solved in bounded regions with plane boundaries.Ageneral solution
consists of a superposition of the time-domain constituents a subset of which represents an effect
of additional boundaries. The presented procedure extends applications of the Cagniard–De Hoop
technique in an analytical benchmarking of direct discretization numerical techniques that solve the
field equations in bounded solution domains.
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