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Review

Osteoarthritis, angiogenesis and inflammation

C. S. Bonnet and D. A. Walsh

Angiogenesis and inflammation are closely integrated processes in osteoarthritis (OA) and may affect disease progression and

pain. Inflammation can stimulate angiogenesis, and angiogenesis can facilitate inflammation. Angiogenesis can also promote

chondrocyte hypertrophy and endochondral ossification, contributing to radiographic changes in the joint. Inflammation

sensitizes nerves, leading to increased pain. Innervation can also accompany vascularization of the articular cartilage, where

compressive forces and hypoxia may stimulate these new nerves, causing pain even after inflammation has subsided. Inhibition

of inflammation and angiogenesis may provide effective therapeutics for the treatment of OA by improving symptoms and

retarding joint damage. This review aims to summarize (i) the evidence that angiogenesis and inflammation play an important

role in the pathophysiology of OA and (ii) possible directions for future research into therapeutics that could effectively treat

this disease.
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Osteoarthritis (OA) is a group of chronic, painful, disabling
conditions affecting synovial joints. The phenomenon of OA
may be defined clinically, radiologically or pathologically; however,
its aetiology remains poorly understood. As with other complex
clinical syndromes, there is often a lack of concordance between
the various components that we recognize as OA; for example,
there is usually only a weak association between radiological
features and pain. OA may be classified according to presumed
aetiological factors, as in post-traumatic OA. It can be classified
according to the distribution of joints affected; for example, into
nodal, knee or hip joint arthritis. Furthermore, OA can be clas-
sified according to the presence or absence of associated features,
such as chondrocalcinosis. Recent genetic and epidemiological
analyses provide further support for these classifications, whilst
further emphasizing heterogeneity within the diagnosis.

OA is commonly described as a non-inflammatory disease
in order to distinguish it from ‘inflammatory arthritis’, such as
rheumatoid arthritis (RA) or the seronegative spondyloarthro-
pathies. Despite this, inflammation is increasingly recognized as
contributing to the symptoms and progression of OA [1, 2].
Morning and inactivity stiffness are common symptoms in
patients with the disease, and acute inflammatory flares,
characterized by local warmth, tenderness and effusion, are not
uncommon. Non-steroidal anti-inflammatory drugs alleviate
symptoms of OA and may be more effective than simple
analgesics, such as paracetamol [3]. Intra-articular injection of
corticosteroids similarly may alleviate both pain and stiffness,
not only during acute flares but also as maintenance therapy.
Serological or histological evidence of synovitis is commonly
found in OA, even though OA has not been consistently
associated with specific immune responses.

Pain, the predominant symptom in OA, is multidimensional
in its nature and mediated through a variety of factors. The
presence or absence of synovitis may be an independent pre-
dictor of OA symptoms. The pain experience results from inter-
actions between inflammation and other features of disease,

including radiological severity [4], innervation of articular
structures [5, 6], central and peripheral sensitization [7] and
psychological factors [8]. The precise contribution of inflamma-
tion to pain in OA may vary from time to time and from patient
to patient. It is currently unclear whether inflammation is a
feature of all patients with OA at some stage of their disease, or
whether synovitis itself defines one or more disease subgroups.

Inflammation may be both a primary event in OA and
secondary to other aspects of the disease, such as biochemical
changes within the cartilage. Recent studies indicate that
histological and serological evidence of synovitis is an early fea-
ture in OA and not restricted to patients with end-stage disease
undergoing joint replacement surgery [2, 9, 10]. Synovial inflam-
mation may be detected in the presence of mild or severe
cartilage changes in OA [9]. Even when inflammation is second-
ary to other processes within the osteoarthritic joint, synovitis
may yet make an important contribution to the symptoms and
pathology of disease. Clinically detectable joint inflammation
may predict a worse radiological outcome in OA [11]. Further-
more, in a lapine model of arthritis, joint damage was exacer-
bated after induction of inflammation in rabbit knees following
meniscal tear [12]. Synovitis, therefore, although not a pre-
requisite for OA, may lead to a poor clinical outcome.

Mechanisms by which synovitis exacerbates structural damage
in OA are likely to be complex. Hypotheses have included
alterations in chondrocyte function, enhanced angiogenesis and
changes in bone turnover [13, 14]. Novel therapeutic interven-
tions aiming to inhibit synovitis in OA may not only improve
short-term symptoms but also reduce pain and disability in the
long term.

Angiogenesis is the growth of new capillary blood vessels
from pre-existing vasculature. It occurs during essential physio-
logical processes, such as embryogenesis, wound repair and
the female menstrual cycle. Angiogenesis can also contribute
to a variety of pathological conditions, including the unwanted
vessel growth in chronic inflammatory diseases, and the growth

Correspondence to: D. A. Walsh, Academic Rheumatology, University of Nottingham, Clinical Sciences Building, Nottingham City Hospital,

Hucknall Road, Nottingham NG5 1PB, UK. E-mail: David.Walsh@nottingham.ac.uk

Academic Rheumatology, University of Nottingham, Nottingham City Hospital, Nottingham, UK.

Submitted 27 February 2004; accepted 28 June 2004.

Rheumatology Vol. 44. No. 1 � British Society for Rheumatology 2004; all rights reserved
7

D
ow

nloaded from
 https://academ

ic.oup.com
/rheum

atology/article/44/1/7/1784578 by guest on 20 April 2024



and metastasis of tumours. The process is regulated by numer-
ous activating and inhibitory factors (Table 1), which may vary
from tissue to tissue, between disease and normal physiology,
and during different phases of a continuous disease process.

Angiogenesis is a complex multistep process controlled by a
wide range of positive and negative regulatory factors (Table 1).
Detailed reviews have been published on the angiogenesis
process [14, 64–66]. Activated endothelial cells detach from their
neighbouring cells, through disruption of vascular endothelial
cadherin junctions, resulting in increased vascular permeability.
The endothelial basement membrane is degraded by proteo-
lytic enzymes such as matrix metalloproteinases (MMPs), releas-
ing matrix-bound angiogenic factors that, in turn, stimulate
endothelial cell migration and proliferation. Capillary tube
formation, deposition of a new basement membrane and anasto-
mosis lead to blood flow. Factors produced by endothelial cells,
such as platelet-derived growth factor, attract supporting cells
such as pericytes, whilst vascular endothelial growth factor
(VEGF) and the angiopoietins ensure the stability of the new
vessel. The new vessels differentiate into arterioles, capilla-
ries and venules whilst redundant vessels regress, a process that
requires endothelial cell apoptosis. Finally, vasoregulatory sys-
tems are developed and a fully functional microvasculature is
formed.

Synovitis in osteoarthritis

Signs of acute synovitis may be apparent in patients with
OA from time to time. However, the extent of subclinical

inflammation in OA is now increasingly being recognized.
Symptoms differ between acute and chronic inflammation and
patients with OA may experience both: acute flares may occur
either on the background of chronic synovitis or in an otherwise
non-inflamed joint.

Acute inflammation usually has a sudden onset, becoming
apparent over minutes or hours with the classic symptoms of
heat, pain, redness and swelling. Chronic inflammation develops
over a longer period of time and may persist for days, weeks or
months. Neutrophils are the most abundant inflammatory cells in
acute synovitis, whereas in chronic synovitis in OA, macrophages
are most abundant, often with lymphocytic infiltrates [67].

Unlike chronic inflammation, in which inflammation and repair
occur concurrently, the host response in acute inflammation leads
to elimination of the irritant followed by resolution of the tissue to
its original state. During chronic inflammation the joint remains
abnormal even after inflammation subsides. Histological evidence
of chronic synovitis may be present in the absence of overt
clinical signs, and the contribution of chronic synovitis to
symptoms of pain and stiffness may be overlooked [9, 68].

The causes of acute inflammatory flares of OA are multiple
and incompletely understood. Patients will often attribute flares
to particular activities, indicating that physical trauma may
play a role. Acute inflammatory flares in OA may also be asso-
ciated with the presence of calcium pyrophosphate dihydrate
(CPPD) or hydroxyapatite crystals within the joint. CPPD
crystal deposition is associated with OA of the knee, and
manifests as radiological chondrocalcinosis or intermittent acute
synovitis (pseudogout). Up to 25% of patients undergoing knee
joint replacement surgery for OA have radiological evidence of

TABLE 1. Angiogenesis regulators localized to or released within osteoarthritic human synovium, synovial fluid and articular chondrocytes

Stimulators Inhibitors

Synovial fluid/synovium Articular chondrocytes Synovial fluid/synovium Articular chondrocytes

Bradykinin* SP [36] Thrombospondin* Thrombospondin [57]
SP* PGE2 [37] Interferon-�* Leukaemia inhibitory factor [58]
CGRP* Nitric oxide [38] Leukaemia inhibitory factor* Tissue inhibitors of MMP-1 and -2 [59]
Angiotensin II* Histamine [39] Tissue inhibitors of TGF-� [44]
PGE2* VEGF121/189 [15] MMP-1 and -2 [49]* TNF-� [45]
Nitric oxide* Endoglin [40] TGF-� [19]* Chondrocyte inhibitor of
Histamine* Hepatocyte growth TNF-� [20]* angiogenesis [60]
VEGF121/189 [15]* factor [41] Angiopoietin-2 [16]* Chondromodulin-1 [61, 62]
Angiopoietin-1 [16]* IL-1 [42] Endostatin*
bFGF* IL-8 [43] Hyaluronic acid
Endoglin* TGF-�1/2/3 [44] (high molecular weight)*
Hepatocyte growth factor* TNF-� [45] Platelet factor-4 [50, 51]
Epidermal growth factor* IL-18 [46] Somatostatin [52, 53]
IL-1 [17]* Connective tissue growth Bactericidal/
IL-8 [18]* factor [47, 48] permeability-increasing
Angiogenin* protein [54, 55]
TGF-� [19]* IL-4 [35, 36]
TNF-� [20]*
Platelet-derived endothelial
cell growth factor*

Endothelial cell-stimulating
angiogenesis factor*

Hyaluronic acid
(low molecular weight)*

IL-18 [21, 22]
Stem cell-derived factor-1 [23, 24]
Fractalkine [25, 26]
Platelet-derived growth factor [27, 28]
Pleiotrophin [29, 30]
Soluble E-selectin [31, 32]
Vascular cell adhesion molecule-1 [31, 33]
IL-4 [34, 35]

*Primary references can be found in reference 63.
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chondrocalcinosis on preoperative radiographs (our unpublished
observations). Nearly half of patients with chondrocalcinosis
who present to a rheumatologist have associated generalized
OA [69].

Pain is one of the classic symptoms of acute inflammation.
This is mainly due to the sensitization of fine unmyelinated
sensory nerves present in the osteoarthritic joint. However, this
is not restricted to acute inflammation and chronic inflammation
could also be a source of pain in OA.

Chronic synovitis

Evidence and cause of inflammation in OA

There is now much evidence that subclinical inflammation is
common in OA, even in the absence of acute inflammatory
flares. Circulating markers of inflammation, such as C-reactive
protein (CRP), may be elevated in OA compared with control
populations without disease [1, 2, 70, 71]. Histological examina-
tion of synovium frequently indicates inflammatory cell infiltra-
tion, involving macrophages and T cells, increased cell turnover
and angiogenesis [9, 72–75]. The recent use of magnetic
resonance imaging to study patients with OA of the knee has
demonstrated synovial thickening in 73% of patients with
relatively early OA [76]. This synovial thickening was found to
correspond to mild chronic synovitis [77]. Raised serum CRP
may reflect subclinical inflammation in affected joints, mediated
by cytokines entering the circulation. IL-6 is up-regulated during
synovial inflammation, and can augment inflammatory angio-
genesis [78–80]. IL-6 is thought to be the chief stimulator of CRP
production [81]. IL-6 is produced by synovial cells, osteoblasts
and chondrocytes, and is detectable by immunoassay in synovial
fluid samples that have been harvested from joints affected by
OA [82–84].

The causes of chronic synovitis in OA remain poorly
understood. Fragments of cartilage (often referred to as ‘debris’)
may be found within the synovium associated with giant cells
typical of foreign body type reactions. Haemosiderin deposition
suggests a possible role for recurrent minor haemarthrosis in
some patients. Histological synovitis has also been described in
patients with chondrocalcinosis, even in the absence of an acute
flare [85], and it is likely that histological synovitis is more
common in OA with chondrocalcinosis than in OA alone.
CPPD crystals can be identified in synovial tissue and fluid from
patients with chondrocalcinosis between attacks of acute syno-
vitis, when they may be associated with histological evidence
of chronic synovitis [85, 86]. In addition to their acute effects
on neutrophils, CPPD crystals can induce the expression of
inflammatory, angiogenic factors such as TNF-�, IL-6 and IL-8,
by monocytes and macrophages, and they can also stimulate cell
proliferation [87–90]. CPPD crystal types with a low propensity
to induce acute inflammation may therefore contribute to chronic
synovitis and angiogenesis in chondrocalcinosis.

Inflammation, pain and joint damage

The symptoms of chronic synovitis are less well understood than
those of acute inflammation. Features of inflammation, such as
minor elevations of CRP and infiltration of macrophages into
the synovium and even lymphoid aggregates, are not necessarily
associated in OA with the classic signs of inflammation; heat,
redness, soft tissue swelling or effusion. Chronic synovitis is
associated with marked changes in the central connections of
sensory nerves, and changes in their synthesis and release of
neurotransmitters and neuromodulators [7]. Furthermore, there
is increased turnover of cells within the inflamed synovium:
fibroblasts and blood vessels proliferate, macrophages are
recruited, and there is increased cellular apoptosis [14].

Turnover within the synovial tissue is accompanied by retraction
and growth of sensory nerve terminals [91, 92]. Peripheral nerve
growth and injury are closely associated with enhanced pain
sensation [93].

The ability of inflammation to cause pain depends upon
the sensory innervation of the joint. Fine unmyelinated sensory
nerves containing neuropeptides such as substance P (SP) and
calcitonin gene-related peptide (CGRP) have been localized to
the synovium, ligaments, tendons, menisci and the osteochondral
junction in normal and osteoarthritic joints [92, 94, 95]. Such
nerves may mediate slow, burning pain, as described by many
patients with OA. Myelinated nerve fibres in the joint capsule
and intra-articular structures may mediate the sudden pain on
movement or pressure.

During inflammation, chemicals such as adenosine, prosta-
glandin (PG) E1 and PGF2�, leukotriene B4 and (8R-15S)-
dihydroxyeicosa-(5E-9,11,132)-tetraenoic acid (8R-15S-diHETE)
are released within the joint, where they sensitize nerves,
resulting in increased firing to a given stimulus [96]. At the same
time, inflammatory mediators such as bradykinin, histamine,
5-HT, PGE2, prostacyclin and acidosis stimulate nerves even in
the absence of mechanical stimulation [95, 97]. Over a period
of hours or days, recruitment of inflammatory cells and up-
regulation of genes within the synovium generates cytokines
such as IL-1, IL-6, IL-8 and TNF-�, in addition to nerve
growth factor [97]. These factors further enhance peripheral
sensitization, whilst neuronal plasticity contributes to central
sensitization.

Inflammation may exacerbate cartilage degradation in
osteoarthritis (Fig. 1). Patients with OA in whom radiological
scores progress rapidly tend to have higher serum concentrations
of CRP at baseline than do those whose disease progresses
slowly [1, 2]. TNF-� and IL-1 stimulate chondrocytes to produce
MMPs and plasminogen activator, which degrade matrix
proteoglycans and collagen [98, 99]. Chondrocytes also produce
further IL-1 that acts in an autocrine manner and further
stimulates MMP and plasminogen activator production [42].
As discussed below, stimulation of angiogenesis by synovitis may
also contribute to progressive joint damage in OA.

Angiogenesis and inflammation

Angiogenesis and chronic inflammation are closely integrated
processes. Inflammation can stimulate angiogenesis, and
angiogenesis can facilitate inflammation (Fig. 1). However,
although chronic inflammation is almost always accompanied
by angiogenesis, angiogenesis can occur in the absence of
inflammation.

Inflammatory angiogenesis

Inflammatory mediators can either directly or indirectly
stimulate angiogenesis. Inflammatory cells that produce these
factors include the macrophages and mast cells that are present
in abundance in chronically inflamed osteoarthritic synovium.
There are some general mechanisms by which macrophages
can induce angiogenesis. New vessel growth can be stimu-
lated directly by factors secreted from macrophages [100].
Macrophages can be found in most sites where abnormal
angiogenesis is occurring, for example in synovitis and in
tumours. Many of the inflammatory mediators produced by these
macrophages induce angiogenesis in vivo (Table 1). Macrophages
can also secrete factors that stimulate other cells, such as
endothelial cells and fibroblasts, to produce angiogenic factors
such as VEGF [67, 78, 101].

Although not as well defined, neutrophils and lymphocytes
have also been implicated in the induction of angiogenesis.
Angiogenic factors such as basic fibroblast growth factor
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(bFGF) and VEGF may be produced by lymphocytes, and neu-
trophils may be involved in the early induction of angiogenesis
[67, 102, 103].

As well as inflammatory cells, inflammatory conditions
can also stimulate angiogenesis. Tissue hypoxia often occurs in
inflamed tissue and is a potent stimulator of angiogenesis [104].
VEGF gene expression is up-regulated during hypoxia and it is
thought that this stimulation of angiogenic factors is an attempt
to relieve the low oxygen content of the tissue [104, 105]. Plasma
extravasation and fibrin deposition also result in the generation
of angiogenic factors such as kinins [106].

Angiogenesis is observed in the synovium of osteoarthritic
joints, closely associated with chronic synovitis [63, 107]. The
normal synovium is highly vascular in order to supply the
normally avascular cartilage with nutrients and oxygen. In OA,
increased endothelial cell proliferation is associated with new
vessel formation [63]. Concurrent vascular regression results in
little overall change in vascular density [73]. Instead, there is a
redistribution of vessels within the synovium and a change
towards a more immature phenotype [108]. Increased vascular
turnover in the osteoarthritic synovium reflects a change in the
balance between angiogenic and anti-angiogenic factors (Table 1).
The extent of endothelial cell proliferation increases with
increasing vascular density, increased macrophage infiltration and
increased VEGF expression within the synovium, indicating that
synovial neovascularization may be largely driven by synovitis
[9]. Up-regulation of hypoxia inducible factor-1� in the osteo-
arthritic synovium is also associated with increased microvascular

density and expression of angiogenic factors, indicating that
hypoxia may play an additional mediating role [109].

The extent of angiogenesis and inflammation can vary widely
between different patients with OA. Endothelial cell prolifera-
tion indices in synovia from groups of patients with OA are
generally lower than those in RA, although vascular densities
are similar [73]. However, angiogenesis in synovia from some
patients with OA may reach levels comparable to some of the
highest seen in RA [73]. Synovial fluid and serum levels of the
angiogenic factor VEGF may be higher in groups of patients
with RA compared with OA [110, 111]. However, VEGF levels
in the synovial tissue of patients with OA have been found to
be similar to those found in RA [112]. Also the formation of
tubular networks that morphologically resemble capillaries have
been induced to similar extents by synovial fluids from patients
with OA or RA [113]. Some authors have, however, reported
that synovial fluids from OA patients can display lower angio-
genic potential than patients with RA [114]. The severity of
histological inflammation in synovia from patients with OA
can also reach similar levels to those observed in RA [9, 72].
Systemic markers of inflammation such as CRP are elevated in
OA, but generally to a lesser extent than in RA [115].

Synovial inflammation and angiogenesis are enhanced in a
substantial proportion of patients with OA. It remains unclear,
however, whether this heterogeneity observed in cross-sectional
studies reflects subgroups of patients with ‘inflammatory OA’, or
inflammatory episodes that are common to all patients with OA.
Synovial angiogenesis and inflammation are observed across the

FIG. 1. Interactions between inflammation and angiogenesis in the osteoarthritic joint. Blood vessel growth is regulated by a balance
between angiogenic and anti-angiogenic factors within the joint. Inflammation may facilitate angiogenesis directly through the release
of growth factors from cells such as macrophages, and also by stimulation or sensitization of other cells, such as chondrocytes, nerves
and osteoblasts, that in turn release additional angiogenic factors. Angiogenesis at the osteochondral junction leads to endochondral
ossification and the formation of osteophytes. Angiogenesis and joint damage further exacerbate inflammation. New vessels, which
breach the tidemark may later become innervated and could be a source of pain. Through these mechanisms, angiogenesis and
inflammation can contribute to pain and joint damage in OA. bFGF, basic fibroblast growth factor; CGRP, calcitonin gene-related
peptide; IL-1, interleukin-1; MMP, matrix metalloproteinase; PGE2, prostaglandin E2; SP, substance P; TIMP, tissue inhibitor of
metalloproteinases; TGF-�, transforming growth factor-�; TNF-�, tumour necrosis factor-�; VEGF, vascular endothelial growth
factor.
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full range of disease severity, indicating that they are not unique
to early- or late-stage disease [2, 9, 72].

Contribution of angiogenesis to inflammation

Angiogenesis may be most important in potentiating or
perpetuating inflammation rather than in initiating it. Increased
permeability of newly formed blood vessels to macromolecules
facilitates oedema formation [116]. Adhesion molecules such
as E-selectin are highly expressed by new vessels, facilitating
inflammatory cell infiltration [117, 118]. The inflammatory
response can also be maintained by new vessels transporting
inflammatory cells, nutrients and oxygen to the site of inflam-
mation [119]. It is also thought that deficient neural and peptide
regulatory factors in the neovasculature may impair the vascular
regulation of inflammation [120]. Angiogenesis may indirectly
promote itself by increasing inflammatory cell infiltration,
thereby increasing the availability of angiogenic factors produced
by these cells. It has been speculated that, during early synovitis,
angiogenesis may contribute to the transition from acute to
chronic inflammation [14].

Angiogenesis in the bone and cartilage of

osteoarthritic joints

Angiogenesis occurs at the osteochondral junction as well as
within the osteoarthritic synovium. Vascularization of the arti-
cular cartilage and osteophytes is characteristic of the pathology
of OA [15]. The normal articular cartilage is avascular in the
adult [60]. A deep layer of calcified cartilage lies between the
tidemark and the osteochondral junction. Blood vessels may
penetrate the calcified cartilage within fibrovascular channels
originating from the subchondral bone [121]. With increasing
severity of OA, these vascular channels breach the tidemark,
and blood vessels may be found more superficially in the non-
calcified articular cartilage. Blood vessels within the deep layers
of the osteoarthritic articular cartilage are derived from the
vasculature that is normally present in subchondral bone.

As in the synovium, vascularization of the articular cartilage
may also be due to a change in the balance between angiogenic
and anti-angiogenic factors (Table 1). Osteoarthritic articular
cartilage displays reduced resistance to invasion by blood vessels
in the chick embryo chorioallantoic membrane assay [122].
The sources of angiogenic signals to the subchondral bone
remain poorly understood. Hypertrophic chondrocytes within the
deeper layers of articular cartilage produce angiogenic factors
[15] (Fig. 1). With disruption of the tidemark, angiogenic factors
may also reach the osteochondral junction by mass transport
and diffusion from the synovium through synovial fluid and the
cartilage matrix [123]. Synovial fluids from patients with OA
may stimulate endothelial tube formation in vitro [113], and
synovial tissues and fluids from patients with OA contain a
variety of angiogenic factors (Table 1 and Fig. 1). The
subchondral bone may itself contribute or support angiogenic
stimuli within the osteoarthritic joint, through expression of
angiogenic factors by osteoblasts [124] (Fig. 1).

Endochondral ossification is the formation of calcified bone
within a cartilage scaffold, and is the normal mechanism of
growth at the epiphyses of long bones. Differentiated chon-
drocytes proceed through a series of late differentiation steps,
resulting in mature hypertrophic chondrocytes that express alka-
line phosphatase and secrete matrix proteins such as collagen X
[125]. Hypertrophic chondrocytes then undergo apoptosis,
leaving a cartilaginous matrix that is mineralized prior to the
formation of new bone [126]. Where endochondral ossification is
undesirable, for example in normal articular cartilage, this late
chondrocyte differentiation is subject to negative regulation.

Angiogenesis is required for endochondral ossification [127].
In growing long bones, hypertrophic chondrocytes produce
angiogenic factors, including VEGF [125]. New blood vessels
grow from the underlying bone into channels created by the
chondrocytes. In turn, arrest of late chondrocyte differentiation
may be overcome by factors produced by vascular endothelial
cells, including proteases and bone morphogenic proteins [125,
128, 129]. Vascular invasion of articular cartilage may, therefore,
further stimulate chondrocyte differentiation with a switch to
collagen I and X production [122]. Chondrocytes induce vascular
invasion, and vascular invasion is a prerequisite for new bone
formation. Inhibition of endogenous angiogenic factors, VEGF
for example, impairs endochondral ossification, resulting in
hypertrophy of the cartilaginous growth plate [130].

Fibrovascular channels within the articular cartilage are
typically cuffed with bone, although their tips may be in direct
contact with the cartilage. It is likely that this new bone
formation at the osteochondral junction recapitulates, in some
respects, endochondral ossification in the growth plate and that
the new blood vessels contribute to bone formation [127]. The
articular cartilage in OA becomes thinner, therefore, not only by
loss of articular surface but also through an advancing wave of
ossification at the osteochondral junction.

The growth of osteophytes at the joint margin also occurs
through the process of endochondral ossification [131] (Fig. 1).
Cartilaginous extensions of the articular surface become invaded
by blood vessels, and bone extends from the subchondral
structures. The bony core of the fully developed osteophyte
contains trabeculae and marrow cavities that are continuous
with the adjacent subarticular bone, with no clear boundary
between the two [131].

Angiogenesis and the sensory nervous system

Angiogenesis and pain

Whereas a contribution of angiogenesis to inflammation is by
now generally accepted, the role of angiogenesis in pain remains
less well established. As discussed above, any facilitation of
inflammation may itself contribute to the symptoms of pain.
New vessel formation may, in addition, facilitate pain through
structural reorganization of the joint.

Capillary growth can occur over a period of days and
differentiation of blood vessels into arteries and veins occurs
over days or weeks. Innervation is a more protracted process.
Peripheral nerves do not proliferate, but rather grow by neurite
extension or arborization. Growth of fine unmyelinated sensory
nerves follows angiogenesis in a wide variety of tissues [94, 120].
Sensory nerves can be localized within polyether sponges
approximately 2 weeks after subcutaneous implantation in rats
[120]. Full-thickness skin grafts in man, however, may remain
only partially innervated many years after grafting [132].
Growing and damaged peripheral nerves display sensitization,
and are associated with increased pain sensation [93]. It is likely,
therefore, that the neo-innervation that follows from angiogen-
esis may itself contribute to the pain experience during chronic
synovitis.

Some articular structures are not normally innervated, for
example articular cartilage and intervertebral discs [60]. In
OA, the articular cartilage becomes vascularized, and these new
vessels may be associated with new sensory nerves [133] (Fig. 1).
Osteophytes are new bony structures that develop by endochon-
dral ossification at the borders of the osteoarthritic joint [131].
Angiogenesis is an essential stage in endochondral ossification
and sensory innervation of the osteophyte may in part explain
the association between radiological osteophytosis and pain
reporting. In so-called degenerative disc disease, intervertebral
discs are invaded by blood vessels which themselves may be
accompanied by sensory nerves [134, 135]. High compressive
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forces, hypoxia and acidosis within the articular cartilage and
intervertebral disc may stimulate these new nerves, thereby
contributing to persistent pain even after inflammation has
subsided.

Sensory nerves as mediators of angiogenesis
and inflammation

Fine unmyelinated sensory nerves not only respond to inflam-
mation; they may also initiate or facilitate inflammation through
the release of vasoactive substances into the joint (Fig. 1).
Neuropeptides such as SP and CGRP are released into periph-
eral tissues, where they act on specific cell surface receptors
localized to blood vessels. SP enhances plasma extravasation
through interaction with the neurokinin NK1 class of G protein-
coupled receptor, and CGRP is a potent vasodilator [136–138].
Activation of sensory nerves causes the classic wheal and flare
responses of acute neurogenic inflammation [96]. More recently,
evidence has accumulated that persistent activity in fine unmye-
linated nerves is accompanied by cellular infiltration (‘neurogenic
chronic infiltration’) [139]. Furthermore, SP and CGRP can
enhance endothelial cell proliferation, migration and capillary
tube formation in vitro, and angiogenesis in vivo [140–142].
Recent work with specific NK1 receptor antagonists has revealed
that endogenously released SP contributes to the early stages of
angiogenesis in capsaicin- and carrageenan/kaolin-induced syno-
vitis [143, 144]. Neuropeptides interact with other acute inflam-
mogens such as bradykinin during the initiation of angiogenesis
in acute inflammation [144].

Therapeutic implications

Pharmaceutical agents designed to modify the progress of
inflammation in rheumatological conditions have largely been
developed for RA. The intensive search for anti-angiogenic
agents has been driven by therapeutic potential in oncology.
The mechanisms of inflammation and angiogenesis may differ
between OA, RA and cancer but this need not exclude the
application of existing therapies to diseases that were previously
thought of as ‘degenerative’. Perhaps the greatest therapeutic
potential, however, will come from finding mechanisms of inflam-
mation and angiogenesis that are disease-specific. Drugs that
broadly inhibit inflammation or angiogenesis may have limited
applicability to OA because of the potential toxicity that follows
the inhibition of such biologically important processes. Patients’
desire to take medications is often determined by short-term
gains, and targeting inflammation may be attractive in OA if, in
addition to retarding disease progression, it relieves symptoms
of pain and stiffness. Treatments that only improve long-term
prognosis may yet be desirable to patients even in the absence of
short-term symptomatic benefits. This is particularly the case
when rapid determination of efficacy is possible, as with anti-
hypertensive therapies and cholesterol lowering agents. Angio-
genesis inhibitors could fall into this group for OA if biomarkers
can be identified that predict long-term success in clinical trials.

The testing of potentially disease-modifying agents in OA
requires large numbers of patients studied for years due to
the normally slow progression of the disease and the relative
insensitivity to change of existing radiological outcomes. It is
understandable, therefore, if pharmaceutical companies are only
willing to undertake such studies when there is good preclinical
evidence of likely efficacy. Much has been learnt over the past
few years on the characteristics of inflammation and angiogenesis
in human OA. Animal models of OA, however, have often been
developed with cartilage pathology in mind, and the roles of
angiogenesis and inflammation in these models remains
uncertain. Further studies over the next few years are likely to

overcome many of these technological difficulties, raising the
hope of therapeutic advance in the foreseeable future.

Conclusion

Osteoarthritis is a group of chronic, disabling conditions of com-
plex aetiology that affect the synovial joints. It is a major public
health issue with a substantial economic impact, and is expected
to increase as the population ages. At present, treatment is
centred on relief of pain through analgesic and anti-inflamma-
tory agents, with total joint replacement surgery rescuing those
in whom conservative management has failed. Angiogenesis and
inflammation are important processes in the pathophysiology
of osteoarthritis (Fig. 2). They can contribute to joint damage
by stimulating MMP production and endochondral ossification.
Pain, the major symptom of OA, can be caused or enhanced
by inflammation and angiogenesis. Angiogenesis may introduce
sensory nerves into the aneural cartilage, and inflammation can
sensitize nerves present in the joint. Angiogenesis, inflamma-
tion and innervation are highly interconnected, and each may
up-regulate the others. Inhibition of inflammation and angio-
genesis may provide effective therapeutics for the treatment of
OA by improving symptoms and retarding joint damage.
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Key messages

� Angiogenesis and inflammation can
contribute to disease progression and
pain in OA.

� Understanding the molecular mechan-
isms of angiogenesis and inflammation
in OA should lead to the development
of new therapeutic agents.

Angiogenesis

Inflammation

Innervation

Pain

Damage

FIG. 2. Summary of the relationship between inflammation,
neurovascular plasticity and the symptoms of osteoarthritis.
Inflammation can stimulate angiogenesis, and angiogenesis can
facilitate inflammation. These two processes can contribute to
damage of the osteoarthritic joint through cartilage degradation
and osteophyte formation. Angiogenesis can also lead to
innervation of the articular cartilage that could be a source of
pain in OA. The sensitization of sensory nerves by inflammatory
mediators is also a source of pain, and sensitized nerves can
cause neurogenic inflammation and initiate new vessel growth.
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