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Abstract

RA is a debilitating disorder that manifests as chronic localized synovial and systemic inflammation leading

to progressive joint destruction. Recent advances in the molecular basis of RA highlight the role of both

the innate and adaptive immune system in disease pathogenesis. Specifically, data obtained from in vivo

animal models and ex vivo human tissue explants models has confirmed the central role of Toll-like

receptors (TLRs) in RA. TLRs are pattern recognition receptors (PRRs) that constitute one of the primary

host defence mechanisms against infectious and non-infectious insult. This receptor family is activated by

pathogen-associated molecular patterns (PAMPs) and by damage-associated molecular patterns (DAMPs).

DAMPs are host-encoded proteins released during tissue injury and cell death that activate TLRs during

sterile inflammation. DAMPs are also proposed to drive aberrant stimulation of TLRs in the RA joint

resulting in increased expression of cytokines, chemokines and proteases, perpetuating a vicious inflam-

matory cycle that constitutes the hallmark chronic inflammation of RA. In this review, we discuss the

signalling mechanisms of TLRs, the central function of TLRs in the pathogenesis of RA, the role of

endogenous danger signals in driving TLR activation within the context of RA and the current preclinical

and clinical strategies available to date in therapeutic targeting of TLRs in RA.

Key words: Toll-like receptors, rheumatoid arthritis, damage-associated molecular patterns, therapies

RA

RA is a chronic autoimmune disease that can affect mul-

tiple joints of the hands and feet simultaneously. It results

in pain, stiffness and progressive destruction of bone and

cartilage, leading to significant disability and deformity,

often with extra-articular manifestations such as vasculitis

and scleritis [1]. RA is prevalent in �1% of the population

and its association with increased mortality and shortened

lifespan imposes vast socio-economic costs [2].

RA is characterized by persistent inflammation of the

synovial membrane. Fibroblast proliferation and infiltra-

tion of inflammatory cells including T cells, B cells and

macrophages [3] lead to pannus development, which

invades joint tissue [4, 5]. These cell types release

pro-inflammatory cytokines and chemokines that induce

degrading enzymes such as matrix metalloproteinases

(MMPs) and osteoclast activation, resulting in further car-

tilage degradation and bone erosion [6]. Biological agents

targeting some of these cytokines such as TNF-a, IL-1�

and IL-6 show significant clinical benefit and halt radio-

graphic progression, confirming the key role of these

innate inflammatory mediators in RA [3, 7]. In addition,

adaptive immunity is also pivotal in RA pathogenesis.

Abundant activated T cells exist in rheumatoid synovium

[8]. Disruption of T-cell co-stimulation using soluble

cytotoxic T-lymphocyte antigen (CTLA)-4 fused with

immunoglobulin improves clinical outcomes in RA

patients [9]. IL-17-producing Th cells have also been

detected in RA synovium, and targeting this cytokine

using soluble antibodies has proven beneficial [10, 11].

Additionally, B-cell therapy utilizing mAbs targeting cluster

of differentiation 20 (CD20) has been efficacious in treating

RA patients [12]. However, despite the success of these

treatments, only a proportion of RA patients respond well.

Adverse side effects are associated with global suppres-

sion of immunity, and most patients suffer disease recur-

rence [13]. One of the major obstacles to finding a cure for

RA is that the factors that drive persistent cellular activa-

tion and inflammatory mediator synthesis remain elusive.
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Although there have been great advances in understand-

ing the cellular and molecular mechanisms that drive inflam-

mation in RA, the aetiology of this disease is still a mystery.

RA is a multifactorial disease in which genetic and environ-

mental factors have been implicated. Since the identification

of HLA-DRB1 as a susceptible gene in RA, more than 30

other loci have been shown to exhibit genetic variants that

predispose to the disease, including PADI4, PTPN22 and

FCRL3 (reviewed in [14]). Epidemiological studies also

propose cigarette smoking as a major environmental trig-

ger for RA, especially in genetically predisposed individ-

uals [15], which is supported by data from animal models

[16, 17]. In addition, infection and tissue injury have also

been implicated in triggering inflammation in RA. Over the

past decade, Toll-like receptors (TLRs), central players in

sensing infection and injury, have been proposed to drive

inflammation in RA. Here we review the evidence sur-

rounding the emergence of these pattern recognition re-

ceptors (PRRs) in RA disease pathogenesis.

TLRs

TLRs are a family of evolutionarily conserved single-span

transmembrane receptors that exhibit high homology with

the Toll gene in Drosophila melanogaster [18]. With the

addition of newly identified murine TLR13 [19], 14 mam-

malian TLRs have been reported, with 10 subtypes in

humans. TLRs are expressed on many different cell

types, including myeloid cells, fibroblasts, epithelial and

endothelial cells. TLRs sense pathogen-associated mo-

lecular patterns (PAMPs) derived from viruses, bacteria,

protozoa and fungi, with each TLR recognizing a specif-

ic subset of ligands (reviewed in [20, 21]). TLR4, the

receptor for bacterial lipopolysaccharide (LPS), was the

first human TLR identified [22] and remains the best char-

acterized to date. It utilizes myeloid differentiation protein

2 (MD2), CD14 and LPS-binding protein (LBP) as acces-

sory molecules for LPS recognition [23]. TLR1, TLR2 and

TLR6 detect bacterial lipoproteins and dimerization of

TLR2 with either TLR1 or TLR6 confers ligand specificity.

TLR5 senses flagellin, TLR9 recognizes unmethylated

C-phosphate-G (CpG) bacterial DNA and TLR3, TLR7

and TLR8 bind to viral nucleic acids. The subcellular

localization of TLRs corresponds well to the nature of

their pathogenic ligands; TLR1, TLR2, TLR4, TLR5 and

TLR6 are expressed on the cell surface and detect patho-

genic surface elements, whereas TLR3 and TLR7�9 are

found primarily in the intracellular endosome and detect

internalized ligands. The exact function of TLR10 remains

largely unexplored due to the fact that it is not present in

mice, though a recent study indicates that TLR10 might

cooperate with TLR2 in detecting lipoproteins [24, 25].

More recently, TLRs have also been found to sense

endogenous danger signals or damage-associated mo-

lecular patterns (DAMPs) (Table 1). These include intracel-

lular molecules released during cell necrosis [26], such as

cytosolic HSPs and nuclear high mobility group box 1

(HMGB1). DAMPS also comprise extracellular matrix (ECM)

molecules such as versican, biglycan, fibrinogen, fibro-

nectin extra-domain A (EDA) and tenascin-C that are

specifically up-regulated in response to tissue injury, and

low molecular weight fragments of the ECM, such as HA

and heparin sulphate, that are generated by tissue

damage. TLRs also exhibit specificity for DAMPs, with

cell surface family members detecting protein, proteogly-

can and fatty acids and endosomal TLRs sensing en-

dogenous nucleic acids. DAMPS are vital for the

initiation of inflammation during tissue injury in the ab-

sence of infection, but have also been implicated in vari-

ous pathophysiological conditions that are characterized

by sterile chronic inflammation (Fig. 1) such as tumouri-

genesis, stroke, cardiovascular and autoimmune diseases

(reviewed in [27�31]).

TLR-mediated signalling pathways

Each TLR consists of amino-terminal leucine-rich repeats

(LRRs) that comprise the ligand-sensing domain and a

carboxy-terminal Toll/IL-1 receptor (TIR) signalling domain

(reviewed in [82]). The overall sequence homology among

the TLRs is low, but the TIR domain that is essential for

downstream signalling is highly conserved [83, 84]. Ligand

binding induces receptor conformational changes and

results in the recruitment and/or activation of adaptor

molecules that initiate a cascade of inflammatory signal-

ling events. These are reviewed extensively elsewhere

[20, 21, 85�87] and are summarized in Fig. 2.

PAMPs vs DAMPs: mechanism of ligand recognition
and downstream signalling

Recent crystallographic structures of PAMP-TLR ectodo-

main complexes have disclosed a common m-shape

configuration of TLR dimers [90�94]. Pam3CSK4 binding

to TLR1�TLR2 facilitates receptor heterodimerization via

hydrophobic interactions [90] and two phenylalanine resi-

dues in the TLR2�TLR6 heterodimer are important for lipo-

peptide docking and binding specificity [91]. Crystal

structures of several pathogen-derived TLR2 agonists

have also been reported, including PorB [95], NapA [96],

lipoprotein A [97] and LprG [98]. TLR3 interacts with

dsRNA through the cationic surface of the receptor, while

the receptor dimer is held in place by intermolecular

forces within TLR3 [93]. In contrast, LPS binding to MD2

results in the formation of a multimer composing two units

of the TLR4�MD2�LPS complex [92, 94]; multifaceted

interactions within this complex mediate hydrophobic and

hydrophilic bonding between TLR4 and MD2, as well as to

the overhanging sixth acyl chain of LPS [94]. Thus, al-

though TLRs display similar scaffold structures, distinct

binding mechanisms exist to facilitate recognition of lig-

ands derived from diverse origins.

While the mode of PAMP activation of TLRs is

being elucidated, very little is known about the mode of

TLR activation by DAMPs. To date, no direct interaction of

a DAMP with its cognate TLR has been described. Little

structural information about endogenous TLR ligands ex-

ists, except a recent study that described the crystal struc-

ture of pancreatic adenocarcinoma up-regulated factor

(PAUF) and confirmed its role as a novel endogenous

TLR2 and TLR4 agonist [44]. Accumulating evidence has
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suggested significant disparity in the ligand recognition

mechanism for PAMPs and DAMPs (reviewed in [99]).

Endogenous ligands might occupy or bind different sites

on TLR. For example, mutation of asp299 and/or thr399 in

TLR4, which are important for receptor dimerization, ren-

dered the receptor unresponsive to LPS, but stimulated

fibrinogen-mediated TLR4 activation [100]. Additionally,

DAMPs appear to employ distinctive combinations of

co-receptors and accessory proteins to mediate receptor

activation (Table 2). Interestingly, certain DAMPs seem to

be involved in novel signalling paradigms; for example,

biglycan stimulates the NLRP3/ASC inflammasome via

TLR2/TLR4 and purinergic P2X4/P2X7 receptors [101],

and PAUF signals through a TLR2/CXC chemokine

receptor 4 (CXCR4) complex [44].

It seems logical to envisage that the signalling out-

comes of DAMPs might be distinct from PAMP. This is

supported by several lines of evidence. For example, gene

expression profiles induced by hyaluronan and tenascin-C

are significantly different from that induced by LPS [47,

103, 111]. Genes such as MMP13 and suppressor of cyto-

kine signalling 3 (SOCS3) were specifically induced by

hyaluronan but not LPS [103]. Tenascin-C did not induce

IL-8 in synovial fibroblasts, contrary to the effect of LPS

[47]. Interestingly, PAUF-stimulated mitogen-activated

protein kinase (MAPK) signalling pathways, in contrast to

LPS, did not activate nuclear factor kappa B (NF-kB), but

instead cooperate with CXCR4 to inhibit TLR2-mediated

NF-kB activation [44].

Evidence has emerged that some endogenous ligands

such as HSPs, HMGB1 and surfactant protein A also pos-

sess the ability to bind LPS and/or sensitize the cells to

LPS stimulation, raising the possibility that these mol-

ecules also behave as accessory proteins in LPS signal-

ling (reviewed in [1]). For instance, HMGB1 mediates the

transfer of LPS to CD14, thereby augmenting TLR4 acti-

vation [112, 113]. While low concentrations of Gp96 did

not elicit any response on their own; co-incubation with

TLR2 or TLR4 agonists resulted in potentiation of TLR re-

sponse [114]. Taken together these data indicate that

DAMPs exhibit intricate differences to PAMPs in terms

of receptor activation and type of immune response

induced, ranging from the utilization of specific co-

receptors and, adaptor molecules to activation of

signalling cascades and the resultant gene expression

pattern.

The role of TLRs in RA

Elevated levels of TLR expression in human RA joints

A number of different studies provide compelling evidence

for the presence of TLRs in human synovial tissues. TLR3

and TLR4 are highly expressed in human synovial fibro-

blasts, even in the early stages of RA [115]. Abundant

expression of TLR2 was detected at sites of cartilage

and bone erosion [116]. The expression of TLR2, TLR3

and TLR7 was significantly up-regulated in RA synovial

fibroblasts (RASFs) compared with healthy controls or

FIG. 1 Release of DAMPs during tissue injury and cell damage activate TLRs—a vicious inflammatory cycle. Binding of

DAMPs to TLRs leads to receptor activation and downstream signalling stimulation, resulting in translocation of

transcription factors into nucleus and up-regulation of pro-inflammatory mediators such as cytokines, chemokines

and MMPs. This in turn perpetuates the inflammatory responses and results in chronic inflammation.

10 www.rheumatology.oxfordjournals.org

Fui G. Goh and Kim S. Midwood
D

ow
nloaded from

 https://academ
ic.oup.com

/rheum
atology/article/51/1/7/1774106 by guest on 10 April 2024



patients with non-inflammatory arthritis [117�120]. In add-

ition to RASFs, increased expression and activity of TLR2

and TLR4 has also been detected on macrophages iso-

lated from RA synovium [117]. Stimulation of cultured

RASFs with TLR3 and TLR7 ligands resulted in significant

up-regulation of chemokines, cytokines, metalloprotei-

nases and type I IFNs [115, 119, 120]. Similarly, TLR2,

TLR3 and TLR4 activation in RASF results in osteoclasto-

genic activity, MMP release and up-regulation of vascular

adhesion molecule-1 [118,121�123]. Notably, while

FIG. 2 Overview of TLR signalling pathways. Cell surface TLRs are TLR1/6 with TLR2, TLR4 and TLR5 (not shown).

Endosomal TLRs are TLR3 and TLR7�9 (not shown). MyD88 is an adaptor protein associated with all TLRs, with the

exception of TLR3. TLR1, TLR2, TLR4 and TLR6 require an additional protein, TIRAP, for MyD88 recruitment, whereas

TLR5, TLR7 and TLR9 can bind MyD88 directly. TLR3, together with TLR4, utilize TRIF to mediate signal transduction.

TRIF-related adaptor molecule (TRAM) is another adaptor molecule associated with TLR4, necessary for the interaction

with TRIF [88]. Generally, activation of the MyD88-dependent pathway leads to activation of signalling intermediaries

such as IRAK, TRAF-6 and TANK-binding kinase (TBK)-1 proteins, MAPKs and transcription factor NF-kB [89]. Activation of

NF-kB results in increased expression of various pro-inflammatory cytokines such TNF-a, IL-6 and chemokines. Stimulation of

the MyD88-independent TRIF-dependent pathway leads to activation of the transcription factor IRF proteins and IFN

response. Recruitment of IRF3 to the respective DNA binding site initiates the transcriptional activation of IFN-� and IFN-

stimulated genes. ERK: extracellular-signal regulated kinase; JNK: c-jun N-terminal kinase; AP-1: activating protein-1;

MyD88: myeloid differentiation primary response protein 88.
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stimulation of TLR3 and TLR8 increased TNF-a release in

RA membrane cultures, activation of TLR7 or TLR9 did

not, suggesting that TLR3 and TLR8 may be of more im-

portance [124]. Inhibition of myeloid differentiation primary

response protein 88 (MyD88) and TIR domain-containing

adapter protein (TIRAP), the adaptors for TLR2 and TLR4,

reduces cytokine synthesis in RA membranes, indicating

that these TLRs also play a key role [122]. A recent study

that utilizes double immunostaining of various cell types

derived from human RA joints showed that TLRs 1�6,

TIRAP and TIR domain-containing adapter-inducing

IFN-� (TRIF) are most strongly expressed in dendritic

cells, followed by macrophages and the least in fibro-

blasts [125]. Collectively, several cell types in human RA

joints express high levels of functional TLRs.

Evidence from animal experimental models

Many experimental models of arthritis require TLR ligand

administration for disease induction; for example, bacter-

ial DNA, streptococcal cell wall, zymosan and the use of

complete Freund’s adjuvant (CFA) in CIA [126�128].

Therefore disease amelioration in animals lacking specific

TLRs and adaptor molecules is perhaps not unanticipated

[129�131]. Nevertheless, the use of models not reliant on

TLRs for disease induction supports the role of TLRs in

persistent inflammation. In a serum-transfer model,

disease duration was shortened in TLR4 null mice [132].

Mice lacking IL-1RA develop spontaneous arthritis due to

increased production of IL-17 [133, 134]. Significantly

reduced disease severity was observed in IL1-RA�/�

and TLR4�/� double-knock-out mice and in the presence

of a TLR4 antagonist [135]. TLR4 is postulated to be the

upstream driving force of IL-17 production in this model.

Intriguingly, IL-1RA�/� and TLR2�/� double-knock-out

mice showed increased disease severity, casting doubt

on the pro-inflammatory role of TLR2 in this context,

while TLR9 did not affect disease development [135].

Interestingly, repeated in vivo low-dose administration of

synthetic TLR7 ligand, which resulted in the tolerance of

TLR2, TLR7 and TLR9, suppressed joint inflammation in a

serum-transfer arthritis model [136]. Taking into account

the results obtained from TLR2 and TLR9 knock-out

models, TLR7 may play a key role in this context.

Another recent study proposed TLR3 as the central

player in the pristane-induced arthritis rat model; receptor

expression was significantly up-regulated during early dis-

ease stages, disease augmentation occurred upon TLR3

stimulation, and small interfering RNA (siRNA) targeting

TLR3 in vivo reduced disease severity [137].

Although TLR8 is up-regulated in human RA tissues,

little information has been derived from animal studies.

Unlike its phylogenetically related TLR7 and human

TLR8, murine TLR8 is not activated by its natural ligand

viral ssRNA, leading to the general belief that TLR8 is bio-

logically dysfunctional in mice [138]. Similarly, TLR10 is

not present in mice [24]. Moreover, the intrinsic details

of TLR signalling and activation of target genes is species

specific. For example, TLR4 and TLR3 stimulation in mur-

ine cells leads to NF-kB activation and TNF-a and IL-6

synthesis, while in human cells this is only observed with

TLR4, but not TLR3 engagement [139, 140]. Interestingly,

nickel-induced contact hypersensitivity, mediated via

TLR4 activation, is a phenomenon specific to humans,

as murine TLR4 is not activated by nickel [141]. These

data highlight the fact that cross-species data extrapola-

tion should be undertaken cautiously.

Endogenous TLR activators in the pathogenesis of RA

Infection has long been speculated to be an underlying

factor in RA pathogenesis. Early studies reported the pres-

ence of peptidoglycan, bacterial and viral DNA in joints of

RA patients, implicating PAMP activation of TLRs as a

potential driver of disease [142, 143]. However, this

theory remains controversial, as pathogenic molecules

are also found at comparable levels in the joints of healthy

individuals [144]. A large body of evidence has docu-

mented the presence of endogenous TLR ligands in RA

tissues, predominantly TLR4 and/or TLR2 agonists. These

include HSPs, fibrinogen, fibronectin EDA, HMGB1,

tenascin-C and serum amyloid A (reviewed in [99]).

Moreover, administration of exogenous DAMPs induces

TABLE 2 The co-receptors and accessory proteins utilized

by DAMPs to bind to respective TLRs

TLR2

CD14/MD2 HSP60 [102], HSP70 [33],
biglycan [73]

CD14 Surfactant protein A [39, 48],
surfactant protein D[40]

MD2 Gp96 [34], HMGB1 [36]

P2X4/P2X7 Biglycan [101]
TLR6/CD14 Versican [74]

CD44/MD2 HA fragments [103]

CXCR4 PAUF [44]

TLR4
CD14 / MD2 HSP60 [102], HSP70 [33], oxidized

LDL [70], S100A8, S100A9,
biglycan [73]

CD14 Lactoferrin [59], surfactant protein
A [48], surfactant protein D [40]

MD2 GP96 [34], HMGB1 [36], fibronectin
EDA [45], saturated fatty
acids [71]

P2X4/P2X7 Biglycan [101]

CD44/MD2 HA fragments [103]

TLR6/CD36 Serum amyloid A [104], oxidized
LDL [104]

TLR7
LL37 ssRNA [105]

BCR RNA-associated autoantigens [106]

TLR9

LL37 dsRNA [107]
BCR IgG-chromatin complexes [108]

CD32 DNA-containing ICs [38, 109]

IgM IgG-chromatin complexes [81]
RAGE/HMGB1 DNA-containing ICs [110]

TLR8

LL37 ssRNA [105]

RAGE: receptor for advanced glycation endproducts.
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joint inflammation in vivo. For example, intra-articular (IA)

injection of fibronectin EDA resulted in joint swelling [145].

We have also shown that injection of tenascin-C induced

joint inflammation, while mice deficient in tenascin-C

exhibited rapid inflammation resolution [47]. Moreover,

tenascin-C stimulated the release of pro-inflammatory

mediators in explant cultures from RA patients.

Interestingly, necrotic cells from SF of RA patients stimu-

lated release of cytokines in RASFs through TLR3 ligation

[119]. RA SF and serum also stimulated Chinese hamster

ovary (CHO) and human embryonic kidney (HEK)-293 cells

overexpressing TLR4 in an LPS-independent manner

[120,135]. Notably, IC-containing citrullinated fibrinogen

augmented TNF-a release from macrophages via

co-stimulation of TLR4 and fragment crystallisable

gamma receptor (FcgR) in vitro, providing insights into

how citrullination could potentiate the pro-inflammatory

effects of DAMPs [146].

Therapeutic targeting of TLRs

The clinical efficacy of classical RA treatment regimens

has significantly improved patient care, but is limited to

certain subsets of patients. Moreover, disease remission

remains rare and biologic agents are expensive. Thus

there is an urgent need for more effective, cheaper thera-

peutics [147]. Given the evidence supporting a role for

TLRs in RA pathogenesis, these receptors may represent

good targets for therapeutic intervention.

Several strategies exist to ablate TLR-triggered inflam-

matory responses (Fig. 3). Modulation of receptor/ligand

interaction can be mediated by soluble decoy receptors

and neutralizing antibodies. As DAMPs have been impli-

cated in TLR activation in RA, preventing the release of

endogenous ligands is also an option. Additionally,

down-regulation of TLR expression may be useful, and

the in vivo application of siRNA targeting TLR3 has been

recently demonstrated [137]. Receptor dimerization is a

prerequisite for TLR activation, thus offering another

potential approach. Also, molecules serving as interme-

diatory proteins downstream of TLR signalling may be

good targets. Therapeutic targeting of TLRs for several

pathological conditions, including oncogenesis, infection

and autoimmune diseases, has been reviewed elsewhere

[148�152]. This review section focuses on the recent

advances in inhibiting TLR activation in RA, including

FIG. 3 Site of action for antagonists of TLR signalling pathways and endogenous activators. Potential strategies to block

DAMP-induced inflammatory responses both intracellularly and extracellularly are indicated. TLR4 is shown here as an

example of cell surface TLRs. The nature of intervention and the type of inhibitor are indicated.
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preclinical and clinical studies. A summary of compounds

targeting TLRs that are currently being developed by

pharmaceutical companies is listed in Table 3.

Targeting TLR4

Natural TLR antagonists and soluble TLRs (sTLRs) can

suppress TLR-mediated inflammation [160�166]. For ex-

ample, LPS from Bartonella quintana and ST2 protein

expressed by mast cells and Th cell type 2 (Th2) inhibit

TLR4-mediated signalling in experimental models of arth-

ritis, resulting in disease amelioration [160,161]. Other nat-

urally occurring molecules include single-immunoglobulin

IL-1 receptor related (SIGIRR) and HSP10/chaperonin

10 [162,167]. SIGIRR, a negative regulator of TLR4 signal-

ling, suppresses cytokine production in cells derived from

RA synovium [162]. The recombinant analogue of chaper-

onin 10, XToll, is now being tested in a Phase II clinical trial

for RA treatment given by subcutaneous injection. The

adipocytokine C1q/TNF-related protein-3 (CTRP-3) has

been shown to inhibit the binding of LPS to TLR4 [166].

Interestingly, a plant derivative, RSCL-0520, when admin-

istered in vivo, reduced paw swelling in rats [168]. A small

carbohydrate molecule developed by the same group

specifically inhibits TLR2 and TLR4 [169]. sTLR4 has

been reported by several groups to inhibit LPS signalling,

but the effects of these soluble receptors have yet to be

demonstrated in vivo [163�165].

The crystallographic structure of LPS/MD2/CD14 inter-

acting with TLR4 has facilitated the synthesis of inhibitory

molecules interrupting this binding, such as MD2 mimetic

peptides and a cationic amphiphile compound, the effects

of which remain to be determined in vivo [170, 171].

Sulforaphane and OSL07, an oxazolidinone derivative,

prevent dimerization of TLR4 and suppress downstream sig-

nalling activation; the former exhibiting anti-inflammatory

properties in vivo [172, 173]. mAb NI-0101/a, developed

by NovImmune, has also been found to inhibit TLR4

activation [154].

Targeting TLR2

Soluble forms of TLR2 have been found in human plasma,

breast milk and amniotic fluid [174, 175]. Significantly,

sTLR2 is a competent modulator of TLR2-mediated re-

sponses in an experimental model of peritoneal inflamma-

tion without affecting the host’s ability to fight bacterial

infection [176]. Opsona Therapeutics is currently develop-

ing antibodies targeting TLR2: OPN-305, which abrogates

cytokine release [155], and OPN-301, which inhibits spon-

taneous cytokine release in human RA explant cultures as

efficaciously as anti-TNF-a antibody [177].

Targeting TLRs 3/7/8/9

Several drugs possess off-target effects on endosomal

TLRs 3/7/8/9 in addition to their classical mechanisms of

action. The anti-malarial drug chloroquine and related

derivatives have long been used as anti-inflammatory

drugs in various disorders, including SLE, psoriasis and

RA (reviewed in [178]). The underlying mechanism is attri-

buted to the ability of these drugs to suppress the activa-

tion of endosomal TLRs, presumably by suppressing

endosomal acidification, a fundamental prerequisite for

the activation of endosomal receptors. New evidence

has also suggested that these drugs might act by binding

directly to nucleic acid ligands, thereby masking the

receptor-binding domain [179]. Small molecules such as

mianserin and imiquimod inhibit the production of TNF-a
from human RA synovial membranes; the former inhibits

TLRs 3, 7, 8 and 9 while the latter targets TLR8 [124].

VTX-763 is a small molecule inhibitor targeting TLR8 that

is being developed by VentiRx Pharmaceuticals; it is

currently in the preclinical phase [158]. Interestingly, it

has also been recently reported that anti-depressant

drugs fluoxetine and citalopram inhibit the endosomal

TLRs in addition to their ability to interfere with the sero-

tonin re-uptake process [180]. These psychotropic drugs

improved disease outcome in a CIA model and reduced

cytokine release from human RA synovial membranes.

However, it will be a challenging task to incorporate

these drugs into monotherapy applications for autoim-

mune diseases due to the high doses required and

associated adverse effects.

Short DNA oligodeoxyribonucleotides (ODNs) called

immunoregulatory sequences (IRSs) also inhibit endoso-

mal TLRs [181�183]. Prophylactic administration of ODNs

in CIA and CpG-induced arthritis abrogated disease

progression [184, 185]. Idera is now developing a novel

DNA-based TLR7/9 antagonist, IMO-3100, that has

shown promising results in vivo for several autoimmune

disease models. Phase I clinical trials involving healthy

subjects are under way and so far IMO-3100 is reported

to be well tolerated with no major adverse effects, in add-

ition to reducing the release of cytokines such as TNF-a
and IL-1� in these subjects. Idera is also exploring the

possibility of IMO-3100 for the treatment of RA, SLE and

TABLE 3 Clinical and preclinical candidates available in inhibiting TLRs for the treatment of RA

Compound Target Drug class Clinical status Company Reference

Chaperonin 10/XToll TLR4 Protein Phase II Cbio Ltd [153]

NI-0101/a TLR4 Antibody Preclinical NovImmune [154]

OPN-305 TLR2 Antibody Preclinical Opsona [155]
IMO-3100 TLR7/9 DNA-based Phase I Idera Pharmaceuticals [156]

DV-1179 TLR7/9 DNA-based Preclinical Dynavax [157]

VTX-763 TLR8 Small molecule Preclinical VentiRx Pharmaceuticals [158]
SB-681323 p38MAPK Small molecule Phase I GlaxoSmithKline [159]
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psoriasis. DV-1179 is another DNA-based compound,

developed by Dynavax, for TLR7/9 inhibition [157].

Targeting downstream signalling mediators

Another approach undertaken to inhibit TLR-mediated re-

sponses is to target downstream signalling mediators.

Several attempts have been made to inhibit MAPKs in

inflammatory diseases, and data obtained from animal

studies showed promising results. However, undesirable

toxicity revealed during clinical trials rendered these in-

hibitors impractical as therapeutic agents (reviewed in

[186]). Papamimod, a selective p38 MAPK inhibitor, halts

disease progression in arthritis animal models, and

showed tolerable adverse effects compared with inhibi-

tors of the same kind, but was less efficacious than

MTX and without added benefit for patients when given

as part of a combination therapy [187, 188]. SB-681323, a

p38 MAPK inhibitor developed by GlaxoSmithKline, is

currently undergoing trials for the treatment of RA [159].

Newer p38 inhibitors such as PF-3644022 and DBM1285

have recently been reported to be efficacious in several

arthritis models, although their clinical application remains

to be determined [189, 190].

As part of the NF-kB pathway, intense efforts have also

concentrated on targeting I-kappa B kinase � (IKK�). MLN-

0415 is one such compound developed by Millenium

Pharmaceuticals Inc. that entered Phase I clinical trial, but

was discontinued due to adverse side effects. Several

other IKK� inhibitors that have been reported to date

include ML-120B, SPC-839, DHMEQ and fasudil, all of

which have been shown to inhibit the NF-kB pathway

and ameliorate disease progression in vivo [191�194].

The adaptor proteins that lie upstream of TLR-induced

signalling cascades may be better candidates. MyD88

and TRIF lie in closer proximity to the receptor; this

might minimize undesirable off-target effects. Although it

has yet to be demonstrated in RA, such an approach

holds some promise in reducing inflammation. RDP-58,

a decapeptide that disrupts TNF-a receptor-associated

factor 6 (TRAF6)/MyD88/IL-1R-associated kinase (IRAK)

complex formation, exhibits anti-inflammatory properties

in several autoimmune disease models [195�197] and has

entered Phase II clinical trials for Crohn’s disease and ul-

cerative colitis [198]. Similarly, ST2825, which prevents

homodimerization of MyD88, resulting in reduced NF-kB

activation and cytokine release in mice [199], suppresses

antibody secretion in B cells from SLE patients [200].

Targeting endogenous activators

Given the aberrant expression of DAMPs in human RA

tissues, one potential therapeutic approach may be to di-

rectly modulate their activity. Neutralizing antibodies to

HMGB1 reduced inflammation in experimental CIA [201],

as did a truncated HMGB-1 containing only the A-box

region. A low molecular weight compound, SNX-4414,

which was developed as an HSP90 inhibitor, completely

suppressed collagen-induced rat paw swelling in vivo

[202]. Another approach may be to limit expression

levels of these endogenous ligands. This requires a

good understanding of the molecular mechanism under-

lying the induction and release of DAMPs. For example,

there exist two modes of HMGB1 release from host cells:

it may be liberated passively from necrotic cells, or

actively secreted by various stimulated cells including

monocytes, macrophages, dendritic cells and synovial

fibroblasts (reviewed in [203, 204]). A wide range of com-

pounds such as the neurotransmitter acetylcholine [205],

plant-derived flanovoid quercetin [206] and phospholipid

stearoyl lysophosphatidylcholine [207] suppress the

release of HMGB1 in experimental sepsis. The exact in-

hibitory mechanisms of these molecules are still unclear,

and whether they are effective in arthritis models remains

to be elucidated.

Fragments of ECM components also constitute DAMPs.

Inhibiting the mobilization of these endogenous molecules

by targeting the proteolytic enzymes that create them may

be therapeutically useful. Heparan sulphate proteoglycan

is liberated from intact matrices by neutrophil elastase

(NE); and in vivo administration of NE-induced septic

shock in mice via TLR4, resembling the effect of direct

heparan sulphate injection [208]. Moreover, an NE inhibi-

tor, ONO-5046, improves disease outcome in CIA animal

models [209] and alpha-1 anti-trypsin, which also inhibits

NE, greatly suppressed disease onset and progression in

mice [210].

Targeting regulation by microRNAs

MicroRNAs are endogenous RNAs that post-transcriptionally

modulate gene expression (reviewed in [211]). MicroRNAs

are important immune regulators; each is able to modulate

up to several hundreds of inflammatory mediator targets

[212, 213]. Not surprisingly, regulation of gene expression

by microRNAs has also been extended to the TLR signal-

ling paradigm (reviewed in [214]). MicroRNAs impose

several levels of regulation on the TLR signalling axis, for

example, miR-155, miR-21 and miR-147 regulate the

expression of TLRs 2�4, downstream signalling mediators

such as MyD88 and TRIF, as well as transcription factors

NF-kB and IFN response factor 3 (IRF3) (reviewed in

[214]). Conversely, miR-21 is a key regulator of inflamma-

tory gene synthesis downstream of LPS activation of

TLR4 [215]. Recent studies have reported that miR-155,

miR-146a and miR-203 are up-regulated in RASFs,

resulting in altered cytokine and MMP synthesis

[216�218]. These insights may create a novel approach

to limiting excessive TLR activation during inflammation.

Conclusions and future perspectives

Evidence from animal models and human explants high-

lights a role for TLR2, TLR3, TLR4 and TLR8 in the patho-

genesis of RA. Effective targeting of these TLRs will be

facilitated by greater knowledge of the biochemical prop-

erties and precise molecular interactions between recep-

tor and agonist. This may be helped by computational

homology modelling in the absence of many crystal struc-

tures [219]. The identity of key pathogenic DAMPs also

remains unclear and it is not known how each or all con-

tribute to RA. It will be essential to elucidate if targeting
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one specific DAMP will suffice for disease amelioration or

if it is more appropriate to target downstream signalling

pathways shared by many DAMPs. We also require in-

depth knowledge of the molecular interaction of DAMPs

with their respective TLRs, in addition to the adaptor pro-

teins and the signalling cascades involved.

It is also tempting to speculate to what extent TLRs

might interact or work cooperatively with each other during

RA. Some TLRs cooperate with each other in a context-

specific manner, resulting in enhanced production of

selective downstream target genes [120, 220, 221]. For

example, co-stimulation of TLR2 and TLR4 in murine

dendritic cells (DCs) leads to enhanced production of

IL10, but not TNF-a [220]. Up-regulation of TNF-a and

IL-6 expression was observed during combined stimula-

tion of TLR2 and TLR3, while stimulation of TLR2 sup-

presses the induction of type I IFN-stimulated genes by

TLR3 [221]. Co-stimulation of DCs from RA patients with

TLR4 and TLR3�7/8 agonists results in synergistic cyto-

kine release [120]. TLRs may also be involved in heterol-

ogous receptor activation. For instance, TLR4 interacts

with a G protein-coupled receptor, proteinase-activated

receptor (PAR)-2 [222]. PAR-2 has been implicated in sev-

eral diseases, including joint inflammation (reviewed in

[223]). Stimulation of PAR-2 results in NF-kB activation,

and in the presence of TLR4 agonist the response is

enhanced, leading to synergistic cytokine expression

[222, 224]. Further studies showed that such cross-

regulation might extend to TLR3 and downstream

IRF and signal transducer and activator of transcription

(STAT) signalling [225]. Strikingly, in TLR4�/� and

MyD88�/� mice, PAR-2 agonist-induced footpad

oedema was significantly reduced compared with con-

trols [225]. This provides an in vivo correlation of TLR4

and PAR-2 signalling in the context of joint inflammation.

Thus TLRs may be involved in distinct novel signalling

paradigms, which still remain largely elusive.

Great advances in the past decade have increased our

understanding of the role of TLRs in RA pathogenesis.

Although there are still substantial gaps in our knowledge,

targeting TLRs or their activation by endogenous danger

signals represents an attractive therapeutic option. RA is a

heterogeneous disorder associated with an unpredictable

pattern of therapy response. With the aid of robust

biomarkers and molecular signatures, pharmacogenetic

identification leading to personalized medicine and effec-

tive drug-targeting disease remission might be possible.

Rheumatology key messages

. TLR activation drives persistent inflammation in RA.

. Endogenous molecules generated upon tissue
damage may drive TLR activation in RA.

. Targeting TLR activation could provide novel strat-
egies to treat RA and improve patient care.
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