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Abstract

Biotherapies have revolutionized the treatment of RA. However, much work is needed to understand all

the mechanisms of these biotherapies, and alternatives are needed to circumvent adverse effects and the

high cost of these long-lasting treatments. In this article we outline some of the approaches we have used

to target monocytes/macrophages as major components of inflammation and bone homeostasis. We also

discuss how anti-TNF-a antibodies target monocytes/macrophages in the complex mechanisms contri-

buting to inhibition of inflammation.
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Introduction

RA presents with multiple manifestations of inflammation

that are due to complex causes [1]. Many different cell

components are involved in the development of inflamma-

tion, including neutrophils, mastocytes, T and B lympho-

cytes, and monocytes/macrophages. Activation of these

cells leads to the production of cytokines and mediators

responsible for inflammation. TNF-a has been shown to

be the master element of inflammation in RA [2, 3]. Accor-

dingly, therapies aimed at blocking this cytokine have

emerged as a major tool in the treatment of RA [1]. Bio-

therapies have thus revolutionized the treatment of RA [4].

MAbs and soluble receptors are targeting major inflamma-

tory cytokines [5] as well as T- and B-cell populations of

the immune system, thus inhibiting inflammation [6].

Monocytes/macrophages are central to the pathophysi-

ology of inflammation [7] as well as atherosclerosis [8].

More specifically, they have been found to be activated

in RA [9, 10] and to massively infiltrate inflammatory sites

[11], i.e. synovial membranes in RA [12, 13] and produce

TNF-a [13]. This activation has led to the identification of

genes activated in monocytes from RA patients [14].

There is an increase of CD14+/CD16+ monocytes in

blood from RA patients [15]. Whether this increase reflects

or contributes to the pathogenesis of monocytes/macro-

phages is unknown. But the increase of soluble CD14 in

RA relates to the activation of monocytes/macrophages

[16, 17]. The depletion of monocytes using specific anti-

bodies [18] can prevent their presence in the pannus [19]

and thus attenuate inflammation.

In addition to their central role in inflammation, mono-

cytes/macrophages are at the origin of pathological bone

erosion in RA due to their excessive differentiation into

osteoclasts (OCs), which are the only cells specialized in

bone resorption [20]. Their differentiation is mediated by

two major cytokines, M-CSF and RANKL (receptor activa-

tor of nuclear factor kB ligand). M-CSF binds to its receptor

c-FMS, (cellular-feline McDonough strain sarcoma virus

oncogene homologue, or CSF-1 receptor, or CD115),

which in turn induces the expression of RANK on mono-

cytes. RANKL expression by synovial fibroblasts is induced

by pro-inflammatory cytokines such as TNF-a, IL-1, IL-6

and IL-17 [21]. Thus bone homeostasis is modulated by

inflammation and immunological events. The concept of

osteoimmunology emerged a few years ago to account

for the interplay between the bone and immune systems

[20, 22]. Monocytes/macrophages are thus ideal targets

to influence osteoclastogenesis in inflammation.

Complex cell interactions are involved in all immunolo-

gical processes. Cytokine stimulation of T lymphocytes
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regulates the production of TNF-a by monocytes/macro-

phages and modulates their plasticity [23�25]. This may

have significance in RA pathogenesis due to the import-

ance of T-cell activation [26]. For example, in RA, mono-

cytes/macrophages from inflamed joints have been

shown to induce the development of Th17, thus contribut-

ing to the amplification of inflammation [27], and

T-monocyte contact is involved in cartilage destruction

[28]. These studies exemplify the importance of targeting

T-monocyte/macrophage interaction [29]. In this respect,

as monocytes/macrophages are considered to be antigen

presenting cells, CTLA4-Ig (abatacept) acts by blocking

this interaction [26, 30].

Blocking TNF-a was shown to result in the inhibition of

IL-1b, IL-6 and IL-8 production, thus putting TNF-a centre

stage of inflammatory cytokine regulation and thus provid-

ing a rationale for the use of anti-TNF reagents [3, 31].

TNF-a is a transmembrane protein that needs cleavage

by TNF-a converting enzyme (TACE) to be released as a

soluble cytokine [32�34]. In monocytes/macrophages, re-

verse signalling occurs through transmembrane TNF-a
(tmTNF-a) and regulates cell�cell interaction [35]. This re-

verse signalling may also explain some of the effects of

anti-TNF drugs [36]. Thus, in addition to blocking soluble

TNF-a, anti-TNF reagents may act through the interaction

with tmTNF-a [37].

While TNF-a is produced in large quantities by mono-

cytes/macrophages and is a direct effector of inflamma-

tion, it can also activate cytosolic phospholipase A2a
(cPLA2a) [38]. This enzyme is strongly expressed in mono-

cytes/macrophages and hydrolyses phospholipids into

arachidonic acid with subsequent activation of

cyclo-oxygenase and PG synthases [39]. This pathway

generates lipids such as PGs and leucotrienes that have

been shown to induce and maintain inflammation. Besides

inflammation, cPLA2a is an important regulator of bone

resorption [40].

Targeting monocytes/macrophages should be a power-

ful way of inhibiting inflammation and bone erosion in arth-

ritis. Their plasticity is a major property that helps the

switch from a pro-inflammatory phenotype (M1) to an

anti-inflammatory state (M2) [41]. In this review we high-

light some of approaches we have used to target mono-

cytes/macrophages and treat experimental arthritis, as

well as potential consequences of anti-TNF biotherapy

on monocyte/macrophage inflammation and osteoclasto-

genesis. Identifying molecular targets within this cell

population will help in creating new therapeutic solutions.

Inhibition of cPLA2a in monocytes/
macrophages using lipoplexes as siRNA
vectors

Recently a new generation of vectors that target the

mononuclear phagocyte system has been developed

[42�45]. These vectors, called lipoplexes, allow for the

delivery of small interfering RNA (siRNA) specific for var-

ious molecular targets. Lipoplexes, as well as other tech-

niques, have been used for the silencing of inflammatory

cytokines [42, 46]. Our approach was to target a specific

cytosolic phospholipase A2, cPLA2a, in order to inhibit the

cascade involved in the production of PGs in monocytes/

macrophages [47]. Among the huge family of phospholi-

pase A2 enzymes, cPLA2a is one of the most expressed

and active in monocytes/macrophages [48]. Several

papers have pointed out the increase in cPLA2a in sys-

temic inflammation and cancer [49, 50]. Inhibiting its activ-

ity with small synthetic molecules has helped in finding the

importance of cPLA2a in arthritis [51] and experimental

autoimmune encephalomyelitis [52].

In our published experiments [47], the cPLA2a siRNA

distribution was associated with a reduced cPLA2a ex-

pression and activity within spleen monocytes/

macrophages and inflamed joints, and pro-inflammatory

cytokines such as TNF-a and IFN-g were also attenuated.

Histology showed that there was a near-complete inhibi-

tion of cell infiltration in joints from mice treated with

cPLA2a lipoplexes. This resulted in a significant reduction

of arthritis as measured by paw swelling as well as arthritis

score. Fig. 1 depicts the lipoplex�siRNA approach.

The gene knock-out approach showed that mice defi-

cient in cPLA2a are resistant to CIA [53]. Antisense oligo-

nucleotides have also been used [54]. However, knocking

out genes without cell targeting implies blocking specific

gene expression in all cells, whatever the cell lineage is

[55]. Thus silencing a key producer of pro-inflammatory

lipid mediator within a specific cell type such as mono-

cytes/macrophages may help to focus on key effectors

FIG. 1 Targeting monocyte using lipoplexes.

siRNAs are incorporated into lipoplexes combined with

plasmid DNA as a carrier. siRNAs are then associated with

the Risc complex, leading to degradation of specific

mRNA. Specific cPLA2a inhibition is depicted.
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and avoid potential side effects by excluding the targeting

of other cell types.

Monocyte/macrophage tmTNF-a as
a target of biotherapy

The use of anti-TNF reagents as a biotherapy has mas-

sively reduced the burden of inflammation and bone ero-

sion in good responders [56]. However, a proportion of

patients remain resistant to anti-TNF treatments [50].

Three major types of anti-TNF drug have been developed:

antibody (fully human or humanized), soluble receptor and

single immunoglobulin chain [57]. All (infliximab, etaner-

cept, adalimumab, certolizumab pegol, golimumab) bind

to soluble TNF. It is generally admitted that blocking solu-

ble TNF-a is the major mechanism for decreasing inflam-

mation. However, since TNF-a exists also as a

transmembrane protein, blocking its soluble part may

not be the only way to block functional activity of TNF-a
with antibodies.

Soluble TNF-a is released from tmTNF-a through clea-

vage by the enzyme TACE [34]. Processing of the cyto-

plasmic portion of TNF-a also occurs through protease

SPPL2b in dendritic cells [58�60]. The intracellular part

of TNF-a migrates to the nucleus, probably due to its

putative nuclear localization sequence and signals that

involve Ca++ [58]. Again, those signals may be different

depending on the anti-TNF. Numerous reports have indi-

cated that tmTNF-a can transmit signals to monocytes/

macrophages [37, 58, 59, 61�63]. This is called reverse

signalling. Thus therapeutic antibodies can block soluble

TNF-a as well as participate in cell signalling through bind-

ing to tmTNF-a [64�66].

We have shown that anti-TNF reagents induce an

increase of CD36 in monocytes/macrophages.

The mechanism involves redox signalling via NADPH oxi-

dase activation [62]. Since CD36 is a scavenger receptor

involved in the transport of cholesterol, this increase is

relevant to the development of atherosclerosis as a com-

plication of RA [75, 76]. This increase may be related to

the lower incidence of atherosclerosis in RA patients trea-

ted with anti-TNF [77, 78]. How the increase of CD36 par-

ticipates in the pathophysiology of atherosclerosis in RA

will require clinical studies. Although we have concen-

trated on CD36, several other markers may be modified

in monocytes/macrophages by reverse signalling. This is

being investigated in our laboratory. Differences in reverse

signalling with anti-TNF drugs may be due to structural

differences of various anti-TNFs and may explain dispa-

rate adverse effects regarding tuberculosis [79�81] and

disparate efficacy in inflammatory bowel disease [36,

63]. These differences could also modulate inhibition of

nuclear factor-kB (NF-kB) and suppression of IL-1b
responses in monocytes/macrophages [37], as well as

induction of Tregs by dendritic cells [82]. A schematic

description of various anti-TNF and reverse signalling is

depicted in Fig. 2.

Thus targeting monocytes/macrophages with various

anti-TNF reagents will result in different outcomes.

Predicting these outcomes and understanding how anti-

TNF drugs target monocytes/macrophages and orient

them towards specific phenotypes may help choose the

most appropriate and most beneficial treatment for the

patient.

However, cells other than monocytes/macrophages can

express tmTNF-a. On T cells, tmTNF-a signalling has

been shown to induce E-selectin expression [63, 83, 84].

FIG. 2 Illustration of reverse signalling by anti-TNF drugs.

Inhibition of soluble TNF-a as well as of tmTNF-a: induction of CD36 expression as an illustration of reverse signalling

through tmTNF-a induced by antibodies (remicade, adalimumab, golimumab) as well as by soluble receptor (etanercept)

and pegylated Fab fragment (certolizumab pegol). CK-1: creatine kinase 1; ROS: reactive oxygen species.
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On the other hand, blocking tmTNF-a on T cells decreases

TNF-a production by monocytes/macrophages [84]. Thus

the tmTNF-a pathway is most suitable for the inhibition of

monocyte activation.

Inhibition of c-FMS in monocytes/
macrophages using phosphorus-based
dendrimer

Dendrimers are highly branched tree-like polymers, with

precisely defined structure and molecular weight. Their

surface multivalency allows for polyvalent interactions

with cellular and molecular targets. Phosphorus-based

dendrimer aminobisphosphonate (ABP) has been

described to possess anti-inflammatory properties

[85�87].

The main cellular target of dendrimer ABP has been

found to be monocytes/macrophages [88]. Internalization

of dendrimer occurs through a rapid process whose mole-

cular mechanism is not yet deciphered. Although the

receptors of dendrimer ABP are as yet unknown, some

of its molecular targets have been identified [85, 88]. Inter-

action of dendrimer with monocytes/macrophages

induces a decrease of c-FMS cell surface expression as

well as mRNA expression [85]. PU.1 expression, which

controls c-FMS, is also decreased. Inflammation, arthritis

score paw swelling and bone resorption were dramatically

reduced in two experimental models, IL-1 ra�/� and K/

BxN serum-induced arthritis [85]. More targets are prob-

ably to be identified, but the decrease of c-FMS expres-

sion can explain at least part of the effects of dendrimer

ABP observed on osteoclastogenesis and inflammation.

The interaction of M-CSF with its receptor c-FMS

induces a cascade of signals that is indispensable for

osteoclastogenesis [89]. RANK expression is induced by

the interaction of M-CSF with its receptor c-FMS, leading

to subsequent recruitment of TRAF6 [20]. These signalling

events ultimately lead to NF-kB and nuclear factor of acti-

vated T cells (NFATc1) activation mediating inflammation

and osteoclastogenesis [20]. Thus targeting c-FMS may

be a good way to reduce both inflammation and

osteoclastogenesis.

To this end, multiple reagents have been developed:

inhibitor of c-FMS kinase imatinib has been shown to pro-

mote bone growth in experimental arthritis [90] and bone

loss in chronic myeloid leukaemia [91, 92], but it targets

platelet-derived growth factor receptor (PDGFR) as well

as c-FMS. This may have adverse consequences. Other

inhibitors of kinases have been reported [93�95].

An antibody specific for c-FMS has been used in an

experimental model of TNF-a-induced bone erosion [96]

in lipopolysaccharide-induced osteoclastogenesis [97]

and in mouse models of RA [98]. However, other antibo-

dies directed towards c-FMS have been shown to either

block inflammation [99] or not [100] in models of peritonitis

and lung inflammation. This may depend on the type of

mAb. Neutralizing mAb specific for M-CSF reduced the

severity of established CIA, and M-CSF-deficient op/op

mice were resistant to CIA induction [101]. These reports

argue strongly in favour of the importance of the M-CSF

pathway in inflammation and osteoclastogenesis.

Targeting CSF in inflammation and autoimmunity has

been considered [102].

A link will have to be found to connect interaction

with a putative receptor for the dendrimer ABP and with

its molecular targets. Whether dendrimer ABP modifies

the expression of other molecules in monocytes/

macrophages needs to be demonstrated. Fig. 3 depicts

FIG. 3 Inhibition of OC differentiation and of inflammation by dendrimer ABP.

Dendrimer is internalized by monocyte and inhibits the expression of c-FMS mRNA downstream to PU.1 inhibition.

Subsequently RANK and NFATc1 induction is impaired, leading to inhibition of OC differentiation. Production of

pro-inflammatory cytokines is inhibited and inflammation is reduced.
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the current view of the putative mechanism of action for

dendrimer ABP.

Discussion

Monocytes/macrophages link adaptive and innate immu-

nity. Although monocytes/macrophages are central to

inflammation, none of the current biotherapies specifically

target monocytes/macrophages in RA. Their plasticity

[41, 103] makes them an ideal target for the treatment of

inflammation, especially arthritis. We have been interested

in this cell lineage to search for possibilities for treating

arthritis.

Our work has focused on potential experimental thera-

peutics against arthritis by targeting monocytes/

macrophages cPLA2a and OC differentiation using,

respectively, lipoplexes and dendrimers. Another goal

was the understanding of the effect of currently available

drugs on reverse signalling in monocytes/macrophages

(anti-TNF). The effect of anti-TNF reagents on tmTNF-a
will have to be taken into account. Imbalance regarding

the production of cytokines by monocytes/macrophages

in response to tmTNF-a signalling could account for var-

ious phenotypes observed in patients undergoing anti-

TNF biotherapy.

Higher expression of tmTNF in monocytes from RA

patients compared with healthy donors was reported

[37]. A decrease in IL-1b production by infliximab and an

increase in apoptosis by tmTNF were observed in RA

compared with healthy donors. Thus reverse signalling is

expected to be a potent regulator of signalling in mono-

cytes from RA patients.

Reverse signalling may also explain the absence of

granulomatous infections in patients treated with etaner-

cept, whereas this is a complication of treatment with anti-

TNF antibodies [36, 58]. Another example of potential

reverse signalling is anti-inflammatory response mediated

by infliximab but not by etanercept in Jurkat T cells [63].

Gene expression in the blood and synovium from

patients treated with infliximab can also be predictive of

the response to treatment [67, 71�74]. Again, reverse sig-

nalling may account for these modifications. However, the

mechanisms responsible for response and non-response

to anti-TNF antibody treatment are not fully understood.

Anti-infliximab antibodies can be detected in the serum of

treated patients. They impair the efficiency of treatment

and may be related to the responder/non-responder

status of patients [67�70]. However, mechanisms other

than neutralization of soluble TNF-a have been suggested

to be responsible for the responder/non-responder status

[67]. These mechanisms may result from reverse signal-

ling. Experiments are under way to test for the molecular

and cellular consequences of various anti-TNF drugs.

When tested in experimental arthritis, siRNA�cPLA2a�
lipoplexes as well as dendrimers were efficient at reducing

inflammation and joint destruction. However, lipoplexes

needed to be combined to a specific inhibitory element,

siRNA [44, 104]. We used cPLA2a siRNA to specifically

target the PG pathway in monocytes/macrophages [47].

This resulted in decreased production of TNF-a and IFN-g,

but not IL-17, suggesting that the inhibition of PGE2 pro-

duction was sufficient to resolve arthritis even if IL-17 was

not down-regulated. Dendrimer ABP, however, pos-

sessed intrinsic activity and was much more effective

with regard to the inhibition of inflammatory cytokines

such as IL-1, IL-6, IL-17 and TNF-a. Dendrimer ABP

was also capable of blocking OC differentiation in vitro

and in vivo, thus indicating that the inflammation/

osteoclastogenesis pathways were intertwined and

thus dampened together. Other types of dendrimer

have also been used as carriers of various compounds

[105, 106], but their most remarkable properties rely in

directly targeting and modulating the function of cell

populations [85, 86] and combating viral infection [107,

108]. Although it is established that the monocyte is the

most important target cell population of dendrimer ABP,

no data are yet available regarding the cellular receptors.

Identifying a receptor may help predict some of the prop-

erties of dendrimer ABP on monocytes/macrophages.

Various therapies are targeting T-cell function (CTLA4-

Ig, [26]), B cells (anti-CD20, [109]) and cytokines such as

TNF-a, IL-6, IL-17 and IL-1. The use of anti-CD20 antibo-

dies has highlighted the role of B cells in the treatment of

RA. Its efficacy has been reported to be due at least in

part to reduction of the Th17 response [110] and the

removal of short-lived autoreactive plasma cells in a

mouse model of RA [111]. T and B cells are central to

adaptive immunity, but so far, no autoimmune-specific

antigen of these cells in RA has been used as a drug

target. In particular, although ACPAs are currently used

for the diagnosis of RA [112], and are probably involved

in the pathogenesis of RA [113], no treatment is yet aimed

at these immunological specificities.

In conclusion, although current biotherapies have chan-

ged the outcome and complications of RA, alternatives

are worth considering. In this respect, monocytes/

macrophages are strong candidates as targets in the

treatment of RA. Their central role in inflammation and

bone homeostasis as well as their plasticity makes them

suitable for modulating the cytokine environment in

systemic arthritis. Future studies will determine if this

approach can be envisaged in other autoimmune dis-

eases as well.

Rheumatology key messages

. Monocytes are strong candidates as targets in the
treatment of RA.

. Lipoplexes and phosphorus-based dendrimers
target monocytes in arthritis.

. Anti-TNF may have consequences on monocyte
biology in RA through reverse signalling.
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