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Abstract. We empirically study the economic benefits of giving investors access to index options
in the standard portfolio problem, analyzing both expected-utility and nonexpected-utility
investors in order to understand who optimally buys and sells options. Using data on S&P
500 index options, CRRA investors find it always optimal to short out-of-the-money puts
and at-the-money straddles. The option positions are economically and statistically significant
and robust to corrections for transaction costs, margin requirements, and Peso problems.
Loss-averse and disappointment-averse investors also optimally hold short option positions.
Only with highly distorted probability assessments can we obtain positive portfolio weights for
puts (cumulative prospect theory and anticipated utility) and straddles (anticipated utility).

JEL Classification: G11, G12

1. Introduction

The portfolio choice literature has grown tremendously over the past decade
and has considered a variety of extensions of existing asset allocation models,
such as the analysis of alternative preferences, different asset classes, frictions,
stochastic labor income, return predictability, learning, etc. (see e.g., Campbell
and Viceira (2002) for a survey). Surprisingly, very few papers have considered
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562 J. DRIESSEN AND P. MAENHOUT

the role of equity (index) derivatives in portfolio choice.1 This is surprising for
the following three reasons.

First, it has been shown that hedge funds feature option-like risk-return
characteristics (Fung and Hsieh (1997), Mitchell and Pulvino (2001) and
Agarwal and Naik (2004)). Similarly, so-called ‘‘structured products’’ that
embed a capital guarantee to provide portfolio insurance (typically consisting
of long positions in an equity index and an index put) have gained popularity
in recent years (Ang et al. (2005, p. 500)). Therefore, analyzing the role of
hedge funds and alternative investments in asset allocation necessitates an
understanding of portfolio choice with options.

Second, a common finding in empirical work on equity derivatives is that
index options embed large risk premia for jump and/or volatility risk.2 The
source and nature of these risk premia is not well understood and it has been
argued that the prices of these index options are anomalous and excessively
high (Jones (2006) and Bondarenko (2003a,b)). The empirical evidence of
market incompleteness and option risk premia suggests that options are
needed to complete the market (and can therefore not be treated as redundant
assets), and that they may improve an investor’s risk-return trade-off. It is
therefore of interest to study optimal portfolio demand in the presence of
equity options.

Most importantly, gaining insight about the type of equilibrium model that
could rationalize observed option prices requires an understanding of who
would optimally buy index options at these (high) prices, since options are
in zero net supply. A first fundamental question we study is which investor
optimally holds long positions in index options. Interestingly, Garleanu et al.
(2005) develop a model in which risk-averse market makers cannot perfectly
hedge a book of options, so that demand pressure increases the equilibrium
price of options. The authors document empirically that end users are net long
index options, which can explain their high prices, but the model is completely
agnostic about the source of the exogenous demand by end users. The goal of

1 Some notable exceptions are Leland (1980), Brennan and Solanki (1981), and Liu and Pan
(2003), as discussed at the end of the introduction.
2 It is now well accepted that the underlying index value is subject to stochastic volatility and/or
jumps, generating market incompleteness (see Ait-Sahalia (2002), Andersen et al. (2002), and
Eraker et al. (2003) for recent contributions). Moreover, the incompleteness seems to be priced
(Buraschi and Jackwerth (2001)). Among others, Coval and Shumway (2001) and Bakshi and
Kapadia (2003) show the presence of a negative volatility risk premium and Bates (2002) and
Pan (2002) estimate a positive jump risk premium. Ait-Sahalia et al. (2001) use option-based
trading strategies to provide evidence for jump risk premia. Jones (2006) argues that multiple
risk factors, besides the return on the underlying index, are priced. See Bates (2003) for a survey
of the recent literature documenting a variety of intriguing stylized facts about the prices of
equity index options.

D
ow

nloaded from
 https://academ

ic.oup.com
/rof/article/11/4/561/1610656 by guest on 10 April 2024



PORTFOLIO PERSPECTIVE ON OPTIONS 563

this paper, instead, is to attempt to explain the demand of end users within a
flexible and tractable portfolio choice framework.

A third motivation for including index options in the menu of available assets
stems from the recent attention given to portfolio choice with nonexpected
utility specifications, in particular loss aversion and disappointment aversion.
Besides being supported by experimental evidence, these preferences have been
applied successfully in the equity-only portfolio choice literature, explaining
for instance nonparticipation in equity markets. These same preferences could
also help to explain observed portfolio behavior when options are available
to investors, like the demand for portfolio insurance. In fact, the asymmetric
nature of the payoffs of certain derivatives (e.g., out-of-the-money (OTM)
puts) has led to conjectures in the literature that some nonexpected utility
preferences (e.g., loss aversion) are necessary to explain the demand for
options. This is another important question we address. Studying portfolio
choice with options constitutes a strong test of nonexpected utility preferences
that has not been conducted in the literature.

To answer these questions, we consider both standard and behavioral
preferences in a portfolio choice setting in which investors have access to
option-based strategies (puts and straddles3) and in which we correct for
realistic market frictions. Our analysis uses a simple and flexible framework
for empirical portfolio choice, due to Brandt (1999) and Ait-Sahalia and
Brandt (2001). The only inputs required are time series of returns on equity
index options and on the index itself. We focus on the S&P 500 index and
options on S&P 500 index futures from 1987 to 2001, thereby including the
1987 crash.

We find first of all that constant relative risk-aversion (CRRA) investors
always take economically and statistically significant short positions in OTM
puts and at-the-money (ATM) straddles, and that portfolio insurance is never
optimal. For instance, a CRRA investor with risk aversion coefficient of 2,
is willing to pay 1.23% of her wealth per month to be able to short the OTM
put and 1.93% to have access to the short straddle position. Surprisingly,
the optimality of large negative derivatives positions also holds for loss-
averse and disappointment-averse investors. Even though aversion to losses
or disappointment makes these ‘‘behavioral’’ investors avoid stock market
risk entirely in the absence of derivatives, they hold large negative derivatives
positions when OTM puts and ATM straddles are available. In fact, their
positions are often more extreme than the ones held by CRRA investors.
3 A long straddle position involves the simultaneous purchase of a call and put option on the
same underlying and with the same strike price and maturity, and benefits from unexpected
increases in volatility. Coval and Shumway (2001) demonstrate that zero-beta straddles earn
negative excess returns, which they interpret as evidence that volatility risk is a priced factor.
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In addition to their contribution to the portfolio choice literature,
these findings also have fundamental implications for attempts to develop
heterogeneous-agent equilibrium models in which options play a nontrivial
role: if an equilibrium model is to produce option prices and risk premia that
are in line with the challenging historical data, at least some investors must
have a positive demand for these assets, since they are in zero net supply.4 In
fact, we show that standard expected-utility investors and commonly studied
behavioral investors never have a positive demand for straddles and OTM puts
given observed prices. Therefore, generating similar prices in equilibrium (with
some positive demand by at least some investors) will require the inclusion of
rather different and nonstandard preferences.

As examples of these nonstandard preferences, we show as a second
contribution that cumulative prospect theory, which combines loss aversion
with distorted probabilities, and anticipated utility (preferences with rank-
dependency) can potentially generate positive put and straddle holdings.5 In
the case of cumulative prospect theory, the positive put weights coexist with
highly levered equity positions. For anticipated utility we show that positive
derivatives holdings requires not only an upward distortion of the probability
of poor portfolio outcomes, but especially of favorable outcomes. The latter
induces a preference for positive skewness, which makes portfolio insurance
and especially long straddle positions attractive. In particular, we find that
distorting only the left tail of the portfolio return probability distribution does
not result in strictly positive portfolio weights for puts or straddles.

Our results do not require (costly) continuous trading and are remarkably
robust to a variety of extensions like transaction costs, margin requirements,
and crash-neutral derivatives strategies, as well as to the choice of sample
period and return frequency. Our findings provide strong evidence that the
jump and volatility risk premia documented in the option pricing literature are
economically substantial. It is worth emphasizing that although our empirical
framework is cast in discrete time, it is meaningful to talk about (the effect
of) jump risk and jump risk premia. This is because the option returns
faced by the investor reflect key properties of the underlying continuous-time
price process, like the presence of priced jump risk. To substantiate this
claim we show that an investor facing discrete-time option returns generated
from a complete-market Black-Scholes model (rather than empirical option

4 We should emphasize that this paper is not a search for a representative agent that would price
derivatives correctly. Recent contributions to the representative-agent option pricing literature
include Ait-Sahalia and Lo (2000), Brown and Jackwerth (2001), Liu et al. (2005), Rosenberg
and Engle (2002), and Bliss and Panigirtzoglou (2004).
5 A first exploration of heterogeneous-agent equilibrium option pricing with nonstandard
preferences can be found in Bates (2002).
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PORTFOLIO PERSPECTIVE ON OPTIONS 565

returns) effectively ignores derivatives. This implies that our results can only
be explained by economically important deviations from the complete-market
paradigm where only one factor (market risk) is priced.

Few papers have included options when studying portfolio choice. The
seminal work of Leland (1980) and Brennan and Solanki (1981) studies
the demand for derivatives for portfolio insurance purposes in a complete-
market setting. Liu and Pan (2003) are the first to add nonredundant options
to a dynamic asset allocation problem, using continuous-time dynamic
programming. Our paper differs from Liu and Pan in several ways. First,
our modeling approach is different. While their approach generates intuitive
closed-form solutions for the optimal derivatives demand, it requires specified
price dynamics and risk premia. Also, their quantitative examples specialize
to either a pure jump risk or a pure volatility risk setting, so that a single
derivative completes the market. Using instead the approach of Brandt (1999)
and Ait-Sahalia and Brandt (2001), we need not impose specific price dynamics
or a pricing kernel, or take a stand on prices of risk or on the number of
nonspanned factors. Secondly, our approach is empirical in nature, while
they analyze the quantitative implications of a theoretical model for different
parameter settings. The portfolio weights they report depend crucially on
the choice of parameters. For instance, they consider 24 different parameter
sets that all imply a positive jump risk premium and obtain 13 positive put
weights and 11 negative ones. Instead we directly estimate the optimal portfolio
weights for different preferences and obtain unambiguous conclusions. We
incorporate realistic frictions like transaction costs and margin requirements,
and account for Peso problems. A final important difference is that we study
nonexpected-utility investors in addition to standard preferences.

The organization of the paper is as follows. Section 2 introduces the model
that is used to obtain optimal derivative portfolios, and Section 3 describes
the data. The benchmark results for expected utility are given in Section 4.
Section 5 presents the results for a variety of nonexpected-utility preferences.
Robustness checks and sensitivity analysis are reported in Section 6. In
Section 7 we estimate the economic value of having access to derivatives
in terms of wealth certainty equivalents. The analysis is extended by allowing
for multiple nonspanned factors in Section 8, before concluding in Section 9.

2. Model

We consider an investor with utility from end-of-period wealth and access to
the riskfree asset, an equity index (which may be implemented using an index
futures contract to enable easy short-selling), and a derivative on the index
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566 J. DRIESSEN AND P. MAENHOUT

futures contract. We study optimal portfolios for a variety of preferences
and derivative contracts. As emphasized before, market incompleteness is
fundamental to the analysis, but we want to remain agnostic about the
precise nature of the incompleteness and in particular about the risk premia
associated with any nonspanned factor(s). Essentially, options are treated like
any other asset and we ‘‘let the data speak’’ about the importance of options in
completing markets and in improving the risk-return trade-off for investors.

Denoting the fraction of wealth invested in equity by αE and the fraction of
wealth invested in the derivative by αD, the investor solves:

max
αE,αD

E [U (WT )] (1)

Given initial wealth W0 and denoting the return on asset i by Ri (where Rf is
the gross return on the riskless asset), we have

WT = [
Rf + αE

(
RE − Rf

) + αD

(
RD − Rf

)]
W0. (2)

In the absence of market frictions and for a differentiable utility function U(.),
the first-order conditions for i ∈ {E,D} are:

E
[
U ′ ([Rf + αE

(
RE − Rf

) + αD

(
RD − Rf

)]
W0

) (
Ri − Rf

)
W0

] = 0.

(3)

This asset allocation problem can be solved without imposing any parametric
structure on the return dynamics and risk premia by using the methodology
developed in Brandt (1999) and Ait-Sahalia and Brandt (2001). When returns
are stationary, the conditional expectations operator in the Euler equations
associated with the portfolio problem can be replaced by the sample moments
and the optimal portfolio shares are estimated from the first-order condition
in GMM fashion. We analyze unconditional portfolios, assuming returns
are i.i.d.6 The number of parameters (unconditional portfolio weights) and
Euler restrictions coincide and exact identification obtains. In the case of
market frictions or a nondifferentiable utility function, we directly replace
the expectation in condition (1) by its sample counterpart and maximize this
expression over the portfolio weights, given possible constraints due to market
frictions.

This approach presents the following major advantages. First, the
nonparametric nature of the method is particularly appealing when including

6 It is straightforward to allow for conditioning information and time-varying portfolio weights.
Unreported results (available upon request) show that this has no impact on the findings, since
the slope coefficients in portfolio rules that are affine functions of an instrument (based on
option prices) are not statistically significant.
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PORTFOLIO PERSPECTIVE ON OPTIONS 567

derivatives in the investment opportunity set given the difficulties in identifying
risk premia reflected in option prices. Second, the approach is sufficiently
general to allow for numerous extensions. Subsequent to the benchmark
analysis, we will consider different types of nonexpected-utility preferences
and introduce realistic transaction costs. Third, in addition to point estimates,
the methodology also produces standard errors of the portfolio weights since
the portfolio weights are parameters that are estimated using a standard
GMM setup. Formal tests can then be conducted to determine whether
the demand for options is significantly different from zero and whether the
inclusion of derivatives in the asset space leads to welfare gains as measured
by certainty equivalents. Finally, the approach can accommodate situations
where markets remain incomplete even after the introduction of nonredundant
derivatives.

While our framework is cast in discrete time, it is clear that, given an
underlying continuous-time model, both stochastic volatility and jumps
have an important impact on discrete-time equity and option returns. In
particular, jumps and stochastic volatility generate higher-order dependence
between the discrete-time equity and option returns. In addition, the risk
premia for both sources of risk obviously modify the risk-return trade-
off. Both effects are present in our analysis and turn out to play a
major role. In Section 6.3 we explicitly demonstrate that without these
effects the introduction of derivatives is quantitatively irrelevant. More
precisely, with Black-Scholes generated option returns, the option would
be redundant in continuous time and only matters in discrete time to
the extent that it improves spanning. The latter effect is shown to be
insignificant.

For the benchmark results and for most of the subsequent analysis, we
implement the model using monthly returns for an investor with a one-month
horizon, thus focusing on the static portfolio problem. While this ignores
the intertemporal Merton-style hedging demands, it provides a very useful
benchmark.7 Furthermore, the theoretical examples in Liu and Pan (2003)
show that the direct intertemporal hedging demands for derivatives are small.
A more subtle aspect of intertemporal hedging demands for options concerns
the fact that options represent dynamic trading strategies, so that an investor
who would like to rebalance (e.g., because returns are not i.i.d.), but is not
allowed to do so, may have a hedging demand for options. We show that this
effect is quantitatively small in our set-up (Section 6.3) and unlikely to explain
our results.

7 Clearly, the multiperiod dynamic setting in which intertemporal hedging demands play a role
is an interesting extension for future work.
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3. Data Description

The empirical analysis is based on time series of returns on a riskfree asset,
an equity index and associated index options. For the riskfree asset we use
1-month LIBOR rates, obtained through Datastream. Datastream is also used
for S&P 500 index returns, which include dividends. We construct both weekly
and monthly returns for these assets.

The option data consist of S&P 500 futures options, which are traded on the
Chicago Mercantile Exchange. Although futures options are American-style
options, they are used in many recent studies because of data availability
and a number of other advantages over index options (issues related to
liquidity, dividends and nonsynchronicity for index options, as discussed in,
e.g., Bondarenko (2003b, page 5)). The dataset contains daily settlement prices
for call and put options with various strike prices and maturities, as well as the
associated futures price and other variables such as volume and open interest.
The sample runs from January 1987, thus including the 1987 crash, until June
2001. We apply the following data filters to eliminate possible data errors.
First, we exclude all option prices that are lower than the direct early exercise
value. Second, we check the put-call parity relation, which consists of two
inequalities for American futures options. Using a bid-ask spread of 1% of the
option price and the riskfree rate data, we eliminate all options that do not
satisfy this relation. In total, this eliminates less than 1% of the observations.

Since these options are American with the futures as underlying, we apply
the following procedure to correct the prices for the early exercise premium.
We use a standard binomial tree with 200 time steps to calculate the implied
volatility of each call and put option in the dataset. Given this implied
volatility, the same binomial tree is then used to compute the early exercise
premium for each option and to deduct this premium from the option price.
By having a separate volatility parameter for each option at each trading day,
we automatically incorporate the volatility skew and changes in volatility over
time. On the basis of this procedure, the early exercise premia turn out to
be small (about 0.2% of the option price for the short-maturity options we
analyze). Compared to options that have the index itself as underlying, these
early exercise premia are small because the underlying futures price does not
necessarily change at a dividend date. Therefore, even if the model used to
calculate the early exercise premia is misspecified, we do not expect that this
will lead to important errors in the option returns that are constructed below.

To convert the option price data into monthly option returns we follow
a similar procedure as in Buraschi and Jackwerth (2001) and Coval and
Shumway (2001). First, we fix several targets for the strike-to-spot ratio: 92,
96 and 100%. At the first day of each month, we select the option with
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strike-to-spot ratio closest to the target ratio. We exclude options that mature
in the same month (on the third Friday of that month). Next, we calculate the
monthly return on the selected options up to the first day of the subsequent
month. In this paper, we focus on the short-maturity options that have about
7 weeks to maturity at the moment of buying and at least 2 weeks to maturity
when the options are sold. These options typically have the largest trading
volume and we exclude in this way automatically options with very short
maturities, which may suffer from illiquidity (Bondarenko (2003b)).8 In the
end, this gives us time series of option returns for several strike-to-spot ratios.

The procedure discussed above implies that we do not hold options to
maturity. The advantage of our procedure is that it yields equally spaced
return series. In addition, the constructed option returns are more sensitive to
changes in volatility and jump probabilities than returns on options that are
held to maturity. This is crucial here, since the analysis focuses exactly on the
role of options as vehicles for trading volatility and jump risk.

We do not allow the investor to choose from all available options
simultaneously, since our investors may then exploit small in-sample
differences between highly correlated option returns, leading to extreme
portfolio weights (see, e.g., Jorion (2000) for a discussion of this issue).
Instead, we focus on a number of economically intuitive derivative strategies
that are often used in practice. In particular, we focus on two benchmark
strategies:

• A (short-maturity) OTM put with 96% moneyness (strike-to-spot ratio)

• A (short-maturity) ATM straddle.

Both strategies have remaining maturities between 8 and 2 weeks, as described
above. OTM puts and ATM straddles with these characteristics in terms
of moneyness and maturity are known to be very liquidly traded (see e.g.,
Figure 1 in Bondarenko (2003b)) and have been analyzed extensively in the
recent option pricing literature, making both obvious choices as benchmark
strategies. In addition, we consider a number of alternative strategies:

• A “crash-neutral” OTM put, consisting of a long position in the 96%-
OTM put option and a short position in the 92%-OTM put option

• A “crash-neutral” ATM straddle, consisting of a long position in the
ATM straddle and a short position in the 92%-OTM put option.

The crash-neutral put and straddle have also been studied by Jackwerth (2000)
and Coval and Shumway (2001), respectively. By adding an opposite position
8 We construct weekly option returns in a similar way, each week selecting the appropriate
strike prices and switching to the next delivery month at the beginning of each month.
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Table I. Summary statistics

This table reports mean, standard deviation, Sharpe ratio, skewness and the correlation
with S&P 500 index returns for monthly returns on several S&P 500 futures option
strategies over our January 1987–June 2001 sample. The benchmark option strategies
are an OTM put with 0.96 strike-to-spot ratio and an ATM straddle. The ‘‘crash-
neutral’’ (CN) OTM put (and ATM straddle) consists of a long position in the 0.96
OTM put (ATM straddle) and a short position in the 0.92 OTM put. The options are
short-maturity and have about 7 weeks to maturity at the moment of buying and at least
2 weeks to maturity when the options are sold. We use 1-month LIBOR for the riskfree
rate.

Strategy Mean Std. dev. Sharpe Skewness Corr. index

Equity 0.013 0.044 0.176 −0.826 1.000
0.96 OTM put −0.406 1.110 −0.370 5.452 −0.759
ATM straddle −0.130 0.360 −0.375 2.074 −0.071
CN OTM put −0.314 1.080 −0.295 2.440 −0.515
CN ATM straddle −0.074 0.370 −0.213 1.070 0.386
0.92 OTM put −0.480 1.760 −0.275 10.458 −0.610

in a deep OTM put option, a short position in the straddle (or the 96%-OTM
put option) is protected against large crashes.9 These strategies are studied in
Section 6.

Table I provides summary statistics of the data. Most striking are the
negative average returns on long positions in all option strategies. In terms of
Sharpe ratios, a short position in each option strategy outperforms the equity
index. Especially, a short position in the OTM put and ATM straddle perform
extremely well with a monthly Sharpe ratio of about 0.37, implying an annual
Sharpe ratio of around

√
12 × 0.37 = 1.28. It should immediately be pointed

out that Sharpe ratios can be highly misleading when analyzing derivatives
(Goetzmann et al. (2002)). For example, it is clear that the skewness of the
return on the option strategies is also much larger than for the equity index.
These summary statistics are comparable to the ones reported in Coval and
Shumway (2001) and Bondarenko (2003b).

4. Benchmark Results: Expected Utility

As a benchmark, we consider an investor with CRRA and a one-month
horizon, facing frictionless markets. Initial wealth W0 is normalized to one

9 Note that the crash-protection is only approximate since the positions are not held till
maturity and because the size of a crash or downward jump may be stochastic.
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without loss of generality. The values for the coefficient of relative risk aversion
γ are 1

2 , 1, 2, 5, 10 and 20.

4.1 NO DERIVATIVES

It will prove useful to analyze the demand for equities (αE) in the absence
of derivatives (αD ≡ 0). The portfolio weights in Table II are significantly
different from zero and roughly proportional to risk-tolerance. Only for low
risk aversion does the investor choose levered positions in equity. For γ = 5,
the equity weight is more moderate and drops below 75%. This highlights the
fact that our analysis is partial equilibrium: extreme levered equity portfolios,
often viewed as the portfolio or partial-equilibrium consequence of the equity
premium puzzle, only show up for risk-tolerant investors. Simultaneously
however, even very risk-averse investors hold equity positions, so that CRRA
preferences fail to explain the participation puzzle. It will be useful to keep these
results in mind when studying the demand for derivatives with nonexpected-
utility preferences.

4.2 OTM PUTS

When considering OTM puts (with 0.96 moneyness), the investor is better able
to trade jump and (to a lesser extent) volatility risk than with equities only.
The optimal put weights give insight into the extent to which these risks are
spanned by derivatives but not (optimally) by equity markets and especially
into the attractiveness of the risk premia associated with these risks.

The main result from the middle panel of Table II is that all portfolio
weights, both for equity and for the OTM put, are negative. The negative put
weights reflect the high market price of the risk factors present in option returns
as documented in the empirical option pricing literature. Liu and Pan (2003)
demonstrate that the optimal portfolio weight in puts is positive whenever
jump risk is not priced. The negative weights obtained here are therefore
strong evidence for a nontrivial jump risk premium. These put weights are also
strongly statistically significant. This may perhaps be surprising given that the
sample includes both the 1987 and the 1990 crash (invasion of Kuwait).

Turning to the effect of the introduction of the derivative on the demand for
equity, the positive correlation between the return on the short put position
and the index return plays an important role. A short put position can
be hedged partially by a negative equity weight. In other words, a short
put position has a positive delta, so that delta-hedging requires a short
equity position. The equity premium obviously makes this hedge expensive.
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Table II. Portfolio weights for CRRA preferences

This table reports the optimal portfolio weights αE (equity) and αD (derivative
strategy) and their standard errors for a CRRA investor with risk aversion γ obtained
by estimating (3) with GMM over our January 1987–June 2001 sample. The derivative
strategies are a (short-maturity) OTM put with 0.96 strike-to-spot ratio and a (short-
maturity) ATM straddle, using S&P 500 futures options. The implied equity weight
corresponding to each αD is calculated by multiplying the optimal put (straddle) weight
with the empirical beta of the put (straddle).

γ 0.5 1 2 5 10 20

No derivatives

αE 4.2805 3.0458 1.7145 0.7208 0.3653 0.1838
SE 0.5489 1.1541 0.8035 0.3587 0.1841 0.0931

OTM put

αE −4.5063 −2.6977 −1.5418 −0.6790 −0.3512 −0.1787
SE 4.1646 2.3900 1.2708 0.5313 0.2702 0.1363

αD −0.2086 −0.1535 −0.1001 −0.0477 −0.0253 −0.0130
SE 0.0969 0.0581 0.0370 0.0192 0.0106 0.0056
Implied equity 3.9762 2.9259 1.9080 0.9092 0.4822 0.2478

ATM straddle

αE 0.4765 0.5189 0.4924 0.2731 0.1503 0.0787
SE 1.0803 1.0539 0.7360 0.3511 0.1852 0.0950

αD −0.5756 −0.4709 −0.2932 −0.1318 −0.0683 −0.0348
SE 0.0646 0.1112 0.0859 0.0421 0.0223 0.0115
Implied equity 0.3302 0.2702 0.1682 0.0756 0.0392 0.0200

In Table II, αE is nonetheless negative for all coefficients of risk aversion,
although not statistically significant. Note that the term hedging is used in a
static sense, since the static portfolio problem we focus on excludes Merton-
style intertemporal hedging, as discussed at the end of Section 2. The notion
of hedging is closely related to delta-hedging. However, since perfect delta-
hedging requires continuous trading and complete markets, and is in practice
infeasible, the term hedging (or risk-diversification) seems more appropriate.

To shed more light on the economic significance of the portfolio weights
in derivatives, Table II also reports the implied equity weights corresponding
to each αD. Keeping in mind that options are not redundant and cannot be
perfectly replicated, the implied equity weights are calculated by multiplying
the optimal put weights with the empirical beta of the put (−19.0612). This
reveals the empirical equity exposure that investors optimally hold in the form
of derivatives. The implied equity weights are very large and range from 398%

D
ow

nloaded from
 https://academ

ic.oup.com
/rof/article/11/4/561/1610656 by guest on 10 April 2024



PORTFOLIO PERSPECTIVE ON OPTIONS 573

for γ = 1
2 to 25% for γ = 20. If derivatives were redundant and only reflected

stock market risk, the introduction of puts would not affect the total amount of
equity exposure that investors optimally take. For instance, the γ = 2 investor
would still hold a total implicit equity weight of 171%. Instead we find that this
investor chooses a total implicit equity weight of only 37% (191% through the
short put and −154% through the short equity). This finding illustrates once
more that options are not redundant, but reflect economically important risk
premia, which allow the investor to achieve a substantially superior risk-return
trade-off than can be achieved in the equity market. The investor is better off
by giving up exposure to stock market risk in exchange for exposure to the
jump and volatility risk factors in put options. The certainty equivalent wealth
gains associated with this are quantified in Section 7.

4.3 ATM STRADDLE

While the OTM put can be thought of as mainly giving exposure to jump risk,
an ATM straddle allows the investor to trade volatility risk. The empirical
option pricing literature has documented a negative volatility risk premium. In
our portfolio setting, this manifests itself in the form of large negative optimal
straddle positions in Table II.

The portfolio weights are much larger than for the OTM put and grow
to almost −50% for γ = 1 (−58% for γ = 1

2 ). The weights become more
reasonable as risk aversion grows, but remain very statistically significant.
Even though an ATM straddle is close to delta-neutral (more precisely, the
correlation between straddle returns and equity returns is only −0.071) and
the (static) hedging demand for equity is therefore expected to be small, the
equity weight is substantially affected by the introduction of the straddle.
Investors hold long equity positions due to the positive equity risk premium,
but since the risk-return trade-off presented by the straddle is superior, the
equity position is much smaller than when derivatives are not available. In
fact, the equity position is no longer significant.

Even though the straddle portfolio weights are roughly three times the put
weights, the implied equity positions for straddles (obtained by multiplying
the optimal straddle weights with the empirical beta of the straddle (−0.5737))
are substantially smaller. This is not surprising, since the straddle combines a
call and put with equity exposures of opposite signs. However, as for puts, it
is still the case that the optimal portfolio weights with the straddle represent
an important deviation from the amount of equity exposure taken when
derivatives are absent. For example, the γ = 2 investor has a total implicit
equity exposure of only 66% (49% through equity directly and 17% through
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the straddle), compared to 171% in the top row of Table II. The investor is
willing to sacrifice exposure to stock market risk in order to take on volatility
risk instead, attracted by the large volatility risk premium.

4.4 EQUILIBRIUM IMPLICATIONS

The results for standard expected-utility CRRA investors have important
equilibrium implications. We find that all investors optimally hold short
positions in puts and straddles that are economically and statistically
significant. Because equity derivatives are in zero net supply, the important
question is which investors would optimally hold the other side of
these contracts. For option markets to clear at historically observed
prices (i.e., consistent with the empirically observed option returns),
the large negative demands of CRRA investors must be offset by
positive demands of other market participants. This is one of the
motivations of the analysis of nonexpected utility preferences in the next
section.

When markets are complete and derivatives are redundant, the negative
demands of some investors can easily be offset by positive demands of other
investors, who would simply ‘‘undo’’ their position in derivatives by shorting
the replicating portfolio, that is by appropriately adjusting their holdings of
the underlying (equity index) and riskfree asset. However, our findings provide
strong evidence against the ability of investors to undo any option holdings
through their equity and bond portfolio. This can be understood by recalling
the large impact of the introduction of derivatives on the total implicit equity
exposure chosen by CRRA investors. In a complete market where only stock
market risk is priced, the demand for options is not identified and the investor
only cares about the total implicit equity exposure. For example, whether
derivatives are available or not, the γ = 2 investor would always optimally
hold the equivalent of 171% total equity exposure in a complete market setting.
Instead, we find that this investor shifts to 37% total exposure when puts are
available and to 66% with straddles. Put differently, Section 7 will demonstrate
that the optimal short positions we obtain represent very large welfare gains
to investors relative to when αD = 0. Correspondingly, when being forced to
hold positive amounts of puts or straddles, the same investor would suffer a
major welfare loss, even when he is able to optimally adjust his equity and
riskfree asset holdings. The economic reason is market incompleteness and
the fact that jump and volatility risk constitute additional priced risk factors
beyond stock market risk, which investors cannot fully trade through the
equity market alone.
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5. Nonexpected Utility

In this section, we examine whether the large short positions in derivatives
chosen by expected-utility investors also obtain for different specifications
of nonexpected utility.10 This is important since some of these (behaviorally
motivated) preferences have been suggested in the literature as explanations
for the equity premium puzzle and the participation puzzle.

5.1 PROSPECT THEORY

Prospect Theory, as introduced by Kahneman and Tversky (1979), is based
on experimental evidence against expected utility and has allowed numerous
researchers to explain a variety of empirical regularities and phenomena that
are puzzling from the point of view of expected utility.11 Loss aversion is
the feature of (Cumulative) Prospect Theory (Tversky and Kahneman (1992))
that has received most attention in the finance literature and that is crucial in
explaining well-documented behavior. Three deviations from expected-utility
decision-making lie at the heart of Prospect Theory. First, individuals derive
utility from losses and gains X (relative to a reference level) rather than from
a level of wealth W . Second, marginal utility is larger for infinitesimal losses
than for tiny gains so that investors are loss averse. Note that loss aversion
generates first-order risk aversion (Segal and Spivak (1990)). Third, the value
function exhibits risk aversion in the domain of gains, but is convex in the
domain of losses. A typical specification for the value function V (X) of a
loss-averse investor is:

V (X) =
{

Xγ̂

γ̂

−λ(−X)γ̂

γ̂

for
X ≥ 0
X ≤ 0 (4)

The parameter λ controls the degree of first-order risk aversion and makes
the value function kinked at zero. Tversky and Kahneman (1992) suggest
λ = 2.25. In the portfolio choice problem solved below, we also use λ = 1.25
and λ = 1.75 to allow for smaller first-order risk aversion. The curvature
parameter γ̂ is constrained to belong to the interval [0, 1] and is estimated
at 0.88 by Tversky and Kahneman (1992).12 Barberis et al. (2001) use γ̂ = 1,

10 We also analyzed expected-utility mean-variance preferences, which differ from CRRA in
discrete time. Since mean-variance preferences do not ‘‘punish’’ negative skewness, we find even
more negative option weights in general.
11 For an excellent survey, see Barberis and Thaler (2003).
12 The curvature parameter γ̂ in Prospect Theory should not be confused with the coefficient
of relative risk aversion γ in the expected-utility analysis.
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which proves very tractable in their equilibrium setting. We also include this
specification in our analysis and consider γ̂ ∈ {0.8, 0.9, 1.0} .

It is important to point out that Kahneman and Tversky first formulated their
theory in an atemporal setting and focused on experiments where subjects faced
gambles with two possible nonzero outcomes (Barberis and Thaler (2003)).
Bringing this theory to a temporal setting with gambles characterized by a
richer support—a typical setting in financial economics—requires therefore
that one imposes more structure on the dynamics of the reference point.
Issues related to narrow framing or mental accounting and the updating
of the reference point (‘‘intertemporal framing’’) become crucial elements
of the analysis (see e.g., Benartzi and Thaler (1995) and Barberis et al.
(2006)). The evolution of the reference point may prove particularly important
when considering put options. A reasonable assumption seems to be to
have the reference level equal to initial wealth grown at the riskless rate:
X ≡ WT − Rf W0.

A second implementation issue that arises in a portfolio setting relates to
the convexity of the value function over losses. Risk-seeking behavior when
facing losses is a robust finding in experiments when the losses are small.
However, there seems to be far less consensus among decision scientists for
large losses as some evidence suggests concavity (Laughhunn et al. (1980)).
In the finance literature, Gomes (2005) argues that having marginal utility
decrease as wealth approaches zero is unappealing. This is especially relevant
in our setting where investors have access to derivative-based returns with
unusually asymmetric distributions. Risk-seeking behavior becomes extreme
and investors mainly take on positions for which the nonnegativity constraint
on wealth becomes binding. Rather than imposing default penalties to avoid
these extreme positions, we follow Gomes and have the value function become
concave again for substantial losses, consistent with Laughhunn et al. (1980).
We set the inflection point at 50% of initial wealth and use logarithmic
utility from there onwards. Ait-Sahalia and Brandt (2001) impose portfolio
constraints to rule out extreme positions due to the convexity of the value
function. These constraints are often binding. In our setting, however, leverage
constraints are less meaningful since derivative strategies per definition allow
for leverage.

Finally, a last ingredient of (Cumulative) Prospect Theory as formulated in
Tversky and Kahneman (1992) makes decision-makers transform probabilities
in a nonlinear way when taking expectations of the value function. In
particular, the probabilities of extreme outcomes are distorted upwards
by taking probability mass away from outcomes with moderate losses or
gains. For ease of exposition, we first present results without the nonlinear
probability transformation and thus focus on the part of prospect theory
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that is most commonly studied in the finance literature, namely loss aversion.
Subsequently (Section 5.1.2) we additionally introduce probability distortions.
This will prove of great importance in the context of derivative portfolios.

The empirical methodology is similar to the expected utility case, but
with three differences. First, we replace the utility function in (1) by the
value function V (.). Second, we directly optimize the expression in (1) (after
replacing the expectation by the sample counterpart), because the value
function is not differentiable at the ‘‘kink’’. Finally, standard errors for the
portfolio weights in this subsection are not computed for the following reason.
If the optimal portfolio weights are equal to zero, the value function (evaluated
at the observed portfolio returns) is not differentiable for all observations, so
that smoothing will give essentially arbitrary results. If the optimal portfolio
weights differ from zero, it may still be the case that some of the observed
portfolio returns are close to the ‘‘kink’’ in the value function, so that even in
this case the calculated standard errors would be sensitive to the smoothing
method chosen.

Loss aversion

First, when derivatives are not available, loss aversion produces nonparticipa-
tion for λ = 1.75 and λ = 2.25, that is for sufficient first-order risk aversion.
When λ = 1.25, however, the positions are highly levered and more extreme
than for the logarithmic expected-utility investor. The convexity of the value
function in the domain of losses is not innocuous and in fact makes the
positions more extreme relative to the linear case γ̂ = 1.

Adding a put option with 0.96 moneyness has dramatic effects in Table III.
All preference parameters result in large negative equity and put positions.
These results are quite strong and surprising in light of the nonparticipation
obtained when derivatives are absent. For λ > 1.25, loss-averse investors
completely ignore the equity premium and invest nothing in equities. When
puts are available however, these same loss-averse investors find it optimal to
short the options and to simultaneously short the equity index. In fact the short
put position is almost as large as the one chosen by a relatively risk-tolerant
logarithmic investor (Table II). The risk premia priced in derivatives are too
substantial to be ignored, unlike the equity premium, which is ignored by most
loss-averse investors. These results are striking if one thinks of loss-averse
investors as potentially having an obvious demand for portfolio insurance
and hence for protective put positions. The same insight can be gained from
the implied equity positions: for example, the linear λ = 2.25 investor holds a
total implicit equity position of 98% with puts, while not participating in stock
market risk when derivatives are not accessible.
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Table III. Portfolio weights for loss aversion

This table reports the optimal portfolio weights αE (equity) and αD (derivative strategy)
for a loss-averse investor with value function (4) over our January 1987–June 2001 sample,
obtained by replacing the expectation in (1) by its sample counterpart and maximizing
over the portfolio weights. The derivative strategies are a (short-maturity) OTM put with
0.96 strike-to-spot ratio and a (short-maturity) ATM straddle, using S&P 500 futures
options. The implied equity weight corresponding to each αD is calculated by multiplying
the optimal put (straddle) weight with the empirical beta of the put (straddle).

λ 1.25 1.75 2.25

γ̂ 0.8 0.9 1 0.8 0.9 1 0.8 0.9 1

No derivatives

αE 3.706 3.657 3.595 0 0 0 0 0 0

OTM put

αE −1.218 −1.694 −3.087 −1.164 −1.306 −1.620 −1.148 −1.169 −1.247
αD −0.125 −0.135 −0.164 −0.123 −0.124 −0.129 −0.121 −0.119 −0.117
Impl. eq. 2.383 2.573 3.126 2.345 2.364 2.459 2.306 2.268 2.230

ATM straddle

αE 0.495 0.363 0.322 0.867 0.942 0.901 1.544 1.500 1.399
αD −0.517 −0.524 −0.528 −0.471 −0.459 −0.448 −0.369 −0.361 −0.355
Impl. eq. 0.297 0.301 0.301 0.270 0.263 0.257 0.212 0.207 0.204

It is worth pointing out that the suboptimality of protective put strategies
(long equity combined with a long put position) does not result from some
particular features of our setup, such as the assumed evolution of the reference
point or the fact that puts are not held until maturity. While both features
do play a role in determining whether or not losses can be avoided with
certainty, loss-averse investors also take the risk-return trade-off into account.
Before demonstrating this in more detail, it is useful to explain why these
features may play a role. First, recall that options are not held till maturity
when we construct option returns. Even a deep OTM put does then not
necessarily provide a guaranteed floor. Second, whether protective puts allow
the investor to avoid losses actually depends on the evolution of the reference
point (and on the strike price chosen for the put). We follow the literature here
and let the reference point grow at the riskfree rate. In that case, nontrivial
portfolios (αi �= 0) cannot avoid losses with certainty (returns bounded from
below by Rf ) unless arbitrage opportunities exist. Only if the investor has a
sufficiently low reference point (e.g., at 0.95 of initial wealth W0) or ‘‘positive
surplus wealth’’ could losses be avoided by an investment strategy based on a
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put option with a specific strike price (struck sufficiently above the reference
point since the put premium needs to be paid).13 To demonstrate now that
the suboptimality of portfolio insurance is not driven by these properties
of the setup, we simply remove them. In particular, we consider the asset
allocation problem of a loss-averse investor who can invest in put-protected
equity (equity plus put), and in the put. The puts are ATM and held until
maturity, and the reference level is chosen to equal the minimum wealth level
guaranteed by a put-protected equity position (a reference level of around
0.97 × W0). For all parameter values, the loss-averse investor actually shorts
both assets. Even though put-protected equity can now literally guarantee
that no losses are incurred, it is still suboptimal in terms of risk-return trade-
off, highlighting once more the very negative average return on puts in our
sample.

As a further robustness check, we also consider an alternative reference
level, namely initial wealth grown at the optimal equity portfolio return
without derivatives, rather than initial wealth grown at the riskless
rate. The idea is that the equity-only portfolio can be viewed as a
benchmark for investors who gain access to derivatives. Note that this
reference level endogenously coincides with the previous specification
(initial wealth grown at Rf ) in cases of nonparticipation (λ > 1.25 in
Table III). Unreported results show that this alternative specification does
not alter the conclusion of the optimality of short derivatives positions
and has in fact a very small impact on the size of the optimal portfolio
weights.

Finally, considering straddles in Table III, even stronger results are
obtained than for put options. Again nonparticipation disappears for all
parameter values and the optimal portfolio always involves extremely
large negative straddle positions, worth at least one third of initial
wealth. The option portfolio weights become more extreme as the first-
order risk-aversion parameter λ decreases. When λ equals 1.25, the
optimal short straddle position is even larger than for logarithmic
expected utility. As for expected utility, the optimal equity weights are
positive.

To summarize, nonparticipation results typically obtained with loss aversion
disappear as soon as derivatives are introduced. In fact, even loss-averse
investors find it optimal to not only participate, but, more strikingly, to hold
short positions in either puts or straddles.

13 Assuming prices generated by a complete-market model, Siegmann and Lucas (2002)
demonstrate theoretically that loss-averse investors may optimally invest in nonlinear (option-
like) securities, depending on their surplus wealth.

D
ow

nloaded from
 https://academ

ic.oup.com
/rof/article/11/4/561/1610656 by guest on 10 April 2024



580 J. DRIESSEN AND P. MAENHOUT

Cumulative prospect theory

Cumulative Prospect Theory adds probability distortions according to a
nonlinear transformation to the loss-averse preferences of the previous
subsection. In particular, the expectations in (1) are based on transformed
probabilities (‘‘decision weights’’), which overweight both extremely positive
and extremely negative outcomes of the optimal portfolio.

The distorted probabilities or decision weights are obtained from the
objective probabilities as follows. States or outcomes are ordered from worst to
best according to the endogenously chosen portfolio by the investors and are
labeled accordingly: R1 ≤ · · · ≤ Rk ≤ Rf ≤ Rk+1 ≤ · · · ≤ RN . Denoting the
objective probability of portfolio outcome n by pn, its subjectively distorted
probability πn is obtained as follows:

πi = w (p1 + · · · + pi) − w (p1 + · · · + pi−1) for 2 ≤ i ≤ k (5)

πi = w (pi + · · · + pN) − w (pi+1 + · · · + pN) for k + 1 ≤ i ≤ N − 1

where

w (p) = pc[
pc + (1 − p)c

]1/c
(6)

and π1 = w (p1) , πN = w (pN) . The nonlinear transformation function w(.)

was proposed in Tversky and Kahneman (1992), who suggest c = 0.65 on
the basis of experimental evidence. Note that c = 1 brings us back to the
previous subsection without distortions. We also consider an intermediate
parameter value for c of 0.8. Figure 1 illustrates the probability distortion for
both parameter values.

Even though the probability distortion is considered by decision scientists to
be a fundamental ingredient of prospect theory (see e.g., Abdellaoui (2000)),
it has been ignored by financial economists. In fact the only other application
in finance of cumulative prospect theory that we know of is Polkovnichenko
(2005), who studies diversification issues. We will show that this feature of
prospect theory is absolutely essential to our analysis. Bondarenko (2003a,b)
demonstrates that historical put prices cannot be rationalized by any model
within the broad class of models with a path-independent pricing kernel and
rational updating of beliefs. Cumulative prospect theory falls outside this class,
since the beliefs are not only biased, but furthermore not updated (rationally):
Bondarenko’s results go through with biased beliefs as long as investors learn
rationally.14 A final motivation for distorting the probabilities of extreme

14 While the issue does not arise here directly, it is in fact not obvious how the decision weights
or distorted probabilities are to be updated. Even when updating rationally, convergence may
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Figure 1. Ratio of distorted to actual probabilities in cumulative prospect theory.
This figure shows the ratio of distorted to actual probability in cumulative prospect
theory with weighting function w(p) = pc

[pc+(1−p)c]1/c (Section 5.1.2) for c = 0.65 and

c = 0.8.

portfolio outcomes for an investor who is long the market, is that it can
be seen as a (partial) justification for the crash-aversion preferences in Bates
(2002). Bates solves a heterogeneous-investor equilibrium model and generates
a number of challenging stylized facts in options markets, but needs to impose
that some investors are crash-averse.15

When derivatives are not available (top panel of Table IV), the effect of
c < 1 is to push the portfolio demands for equity towards zero. For λ = 2.25,
we already obtained nonparticipation without the probability distortion. For
λ = 1.25, nonparticipation results if the probability distortion is sufficiently
severe (c = 0.65 as suggested by Tversky and Kahneman), but not for
moderately nonlinear probability transformations (c = 0.8). Therefore the
distortion acts as a substitute for a high degree of first-order risk aversion.
Even when first-order risk aversion is moderate, the fact that extreme portfolio
outcomes are overweighted makes the investor sufficiently worried about

be slow since the events concerned are extreme and may occur infrequently. An alternative
interpretation is that the decision-maker is well aware of the actual probabilities, but nonetheless
distorts them for the purpose of utility evaluation and decision-making, in which case the issue
of learning becomes moot.
15 Liu et al. (2005) study the equilibrium option pricing implications of robustness for investors
that are averse to model uncertainty concerning rare events. This can be viewed as an alternative
approach to generating effective crash aversion.
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Table IV. Portfolio weights for cumulative prospect theory

This table reports the optimal portfolio weights αE (equity) and αD (derivative strategy)
for cumulative prospect theory (value function (4) and distorted probability assessments
according to (5) and (6)), over our January 1987–June 2001 sample, obtained by replacing
the expectation in (1) by its (distorted) sample counterpart and maximizing over the
portfolio weights. The derivative strategies are a (short-maturity) OTM put with 0.96
strike-to-spot ratio and a (short-maturity) ATM straddle, using S&P 500 futures options.
The implied equity weight corresponding to each αD is calculated by multiplying the
optimal put (straddle) weight with the empirical beta of the put (straddle).

λ 1.25 2.25

γ̂ 0.8 1 0.8 1

c 0.65 0.8 0.65 0.8 0.65 0.8 0.65 0.8

No derivatives

αE 0 2.279 0 2.279 0 0 0 0

OTM put

αE 0 −1.037 5.575 0.043 0 −0.676 0 0
αD 0 −0.100 0.078 −0.052 0 −0.071 0 0
Implied equity 0 1.906 −1.487 0.991 0 1.353 0 0

ATM straddle

αE 0.445 0.557 0 0.299 0 0 0 0
αD −0.282 −0.389 0 −0.360 0 0 0 0
Implied equity 0.162 0.223 0 0.207 0 0 0 0

stock market risk to ignore the equity premium: both positive and negative
returns are overweighted, but the left-hand tail of the distribution matters
more because of (even moderate) loss aversion and the negative skewness of
the equity return distribution.

Introducing OTM puts, the probability distortion has a large impact on
portfolio choice. For λ = 2.25, we find nonparticipation for all parameter
values, except for γ̂ = 0.8 and c = 0.8 (moderate distortion), where the short
put position remains optimal. The combination of loss aversion and the
large skewness of the put option return explains the effect of the probability
distortion. Interestingly, protective-put strategies are not optimal. With less
first-order risk aversion (λ = 1.25), short put positions are still optimal if
the probability distortion is moderate (c = 0.8). The weights are remarkably
smaller than in Table III though. For c = 0.65, we finally obtain a positive
put weight. However, the puts protect a levered equity position that can be
considered unreasonable. Also, the result is unlikely to be robust in light of
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the nonparticipation for λ = 2.25 or for γ̂ = 0.8. Positive put weights require
large probability distortions and moderate loss aversion. When loss aversion
becomes more pronounced, the same investor simply stops investing.

The short straddle positions we previously found would also be expected
to change and to become unattractive when extreme portfolio outcomes are
considered more likely. Table IV’s bottom panel shows a similar pattern as its
middle panel for puts. When first-order risk aversion is substantial (λ = 2.25),
investors never participate, but they continue to short straddles when both the
distortion and first-order risk aversion are moderate (c = 0.8 and λ = 1.25).
However, unlike for puts, we do not find strictly positive straddle weights:
when the distortion is pronounced (c = 0.65) and the investor is not too
loss-averse, a (smaller) short straddle position remains optimal for γ̂ = 0.8,
while the investor chooses not to participate for γ̂ = 1. The intuition for the
optimality of the long put (in contrast to a long straddle position) is that a long
put exhibits substantially more positive skewness than a straddle, as is clear
from Table I. The distortion in Figure 1 overweighs the left and right tail of
the portfolio return distribution in a symmetric fashion, which favors return
distributions with positive skewness (like the long equity plus long put).

As in the previous subsection without distorted decision weights, we also
analyze the alternative specification where the reference level equals initial
wealth grown at the optimal equity portfolio return when derivatives are not
available. This robustness check is relevant for prospect theory with rank-
dependency, since the reference level and the difference between losses and
gains not only matters for the value function in (4), but also for the distorted
decision weights in (5). As before, we obtain qualitatively and quantitatively
virtually identical results, whether the investor participates in equity markets
or not in the absence of derivatives.

The results above substantiate the claim made earlier that distorted
probabilities are an essential ingredient of prospect theory if one wants
to explain nonparticipation with loss aversion, since we found large (and
negative) portfolio weights with unbiased beliefs in the previous subsection.
Also, positive weights in derivatives can only be obtained for puts and for
particular parameter values, namely moderate loss aversion and sufficiently
large probability distortions, and are accompanied by an equity allocation
that can be considered unreasonable.

5.2 DISAPPOINTMENT AVERSION

Disappointment aversion (Gul (1991)) has recently been advocated as an
interesting alternative to prospect theory for portfolio choice problems. It
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shares with prospect theory the intuitively appealing notion of loss aversion or
first-order risk aversion (Segal and Spivak (1990)), but it is axiomatically
founded. Ang et al. (2005) first analyzed the portfolio implications of
disappointment aversion, and show how it generates reasonable equity
holdings, including nonparticipation, while having a number of modeling
advantages. In particular, the reference point is endogenous and the preferences
satisfy global concavity (this in fact by virtue of the endogenous reference
point) thus avoiding the excessive risk-taking problem for loss aversion
in the domain of losses as argued by Gomes (2005). Finally, a single
parameter controls the degree of disappointment aversion, and standard
CRRA is nested as a special case. Disappointment aversion is therefore an
interesting alternative to loss aversion. An additional reason for including
it in the current analysis is the conjectures of Pan (2002, p. 34) that
disappointment aversion (and the aversion to negative skewness it implies)
may explain the magnitude of estimated jump risk premia, and of Ang,
Bekaert and Liu (p. 500) that it may provide a rationale for the recent
popularity of put-protected products. Finally, as shown by Backus et al.
(2004), disappointment aversion can also be viewed as a class of preferences
that distorts probabilities.

A disappointment-averse investor solves (1) where U(WT ) is given by

U(WT ) =


W

1−γ
T

1−γ

W
1−γ
T

1−γ
− ( 1

A
− 1

) [
µ

1−γ
W

1−γ
− W

1−γ
T

1−γ

] for
WT > µW

WT ≤ µW
(7)

where A ≤ 1 is the coefficient of disappointment aversion, γ is the coefficient
of relative risk aversion and µW is the implicitly defined certainty equivalent
wealth, which acts as the reference point and which depends on the
endogenously chosen portfolio. A = 1 corresponds to standard expected
utility. Ang, Bekaert and Liu show that A = 0.6 generates nonparticipation
for all levels of risk aversion, while A = 0.85 leads to a reasonable 60% equity
allocation (in the i.i.d. case) for an investor with γ = 2. We consider A = 0.6
and A = 0.8. To further interpret these parameter values, it may be useful to
compare with loss aversion: the degree of first-order risk aversion is given by
A−1, so that these parameter values correspond to λ = 1.67 and λ = 1.25.16

In Table V, when the investor can invest only in the riskfree asset or the
equity index, A = 0.6 always leads to nonparticipation, in line with the results
of Ang, Bekaert and Liu. Less disappointment aversion (A = 0.8) makes the

16 We also considered A−1 = 2.25, as in Section 5.1, and obtained similar results.
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Table V. Portfolio weights for disappointment aversion

This table reports the optimal portfolio weights αE (equity) and αD (derivative strategy) for
a disappointment-averse investor with utility function (7) over our January 1987–June 2001
sample, obtained by replacing the expectation in (1) by its sample counterpart and maximizing
over the portfolio weights. The derivative strategies are a (short-maturity) OTM put with 0.96
strike-to-spot ratio and a (short-maturity) ATM straddle, using S&P 500 futures options. The
implied equity weight corresponding to each αD is calculated by multiplying the optimal put
(straddle) weight with the empirical beta of the put (straddle).

γ 1 2 5 10

A 0.6 0.8 0.6 0.8 0.6 0.8 0.6 0.8

No derivatives

αE 0 1.855 0 0.965 0 0.393 0 0.198

OTM put

αE −1.090 −1.510 −0.689 −0.991 −0.313 −0.458 −0.164 −0.241
αD −0.100 −0.121 −0.063 −0.081 −0.028 −0.038 −0.015 −0.020
Implied equity 1.906 2.306 1.201 1.544 0.534 0.724 0.286 0.381

ATM straddle

αE 0.957 0.815 0.577 0.593 0.250 0.287 0.129 0.153
αD −0.278 −0.393 −0.156 −0.234 −0.067 −0.103 −0.034 −0.053
Implied equity 0.159 0.225 0.089 0.134 0.038 0.059 0.020 0.030

portfolio weights substantially smaller than for expected utility, but seems not
sufficient to generate nonparticipation.

When the investor can also allocate wealth to OTM puts, nonparticipation
always disappears. In fact, the investor always shorts OTM puts and equity.
This is true even for the high coefficient of disappointment aversion, for
which nonparticipation is optimal for all risk aversion coefficients when
puts are absent. Similar results are obtained in Table V for straddles: all
disappointment-averse investors short straddles. Interestingly, the equity
weight actually increases in many cases relative to the expected utility results
(A = 1, Table II). This can be understood by noting that disappointment
aversion makes the investor more averse to negative skewness. For a given
risk exposure, skewness can be reduced by investing less in the straddle and
more in equity.

In conclusion, disappointment aversion leads to nonparticipation without
derivatives, but always results in participation when derivatives are
included in the menu of assets. Most importantly, the investor chooses
short positions that are economically significant. The results are in
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fact quite similar to what happens for expected utility, although the
derivatives positions are naturally somewhat smaller. This suggests that
disappointment aversion is not sufficient to explain option pricing
puzzles even though it generates stock-market nonparticipation (Ang et al.
(2005)).

5.3 ANTICIPATED UTILITY

The analysis so far has shown that highly distorted decision weights
combined with moderate loss aversion are needed to obtain positive put
weights. However, this specification leads to unreasonably levered equity
positions (when the investor chooses a long put position) and fails to
produce positive straddle weights. Moreover, cumulative prospect theory
requires assumptions about the evolution of the reference point, which
restricts its applicability in dynamic settings. For these reasons we now
consider Anticipated Utility (Quiggin (1982) and Yaari (1987)), which also
features distorted decision weights or rank dependency, but which nests
expected utility and does not require assumptions about the reference
point.17 Epstein and Zin (1990) integrate the model of Quiggin and Yaari
in a dynamic context and show that it can resolve the equity premium
puzzle.

For the static portfolio problem we study, Anticipated Utility weights
the utilities of outcomes with decision weights πn, which are based on
distorted cumulative probabilities of ranked portfolio outcomes. Denoting
the (objective) cumulative probability of outcome n by Pn ≡ ∑n

j=1 pj , the
subjectively distorted probability (or decision weight) πn is obtained as follows:

πi = w (Pi) − w (Pi−1) (8)

for a weighting function w(.). Unlike for cumulative prospect theory in (5),
the transformation function is applied uniformly for gains and losses and the
weighting does not involve ‘‘mirroring’’ around the reference level.

For the utility of outcomes we take the power specification
W

1−γ
T

1−γ
so that the

model nests CRRA expected utility for w(P ) = P . We use the functional form
suggested by Epstein and Zin (1990):

w(P ) = P α for 0 < α ≤ 1 (9)

and consider α ∈ {0.65, 0.8}. Figure 2 presents the corresponding decision
weights for our portfolio problem. Having w(P ) = P α clearly penalizes

17 We thank an anonymous referee for suggesting the analysis of Anticipated Utility.
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Figure 2. Ratio of distorted to actual probabilities in Anticipated Utility, w(P ) = P α .
This figure shows the ratio of distorted to actual probability in Anticipated Utility
(Section 5.3) with w(P ) = P α for α = 0.65 and α = 0.8.

extremely negative outcomes and would be expected to instill conservative
behavior.

Table VI shows that the overweighting of the left tail of the portfolio return
distribution generates nonparticipation without derivatives, reflecting the first-
order risk aversion exhibited by Anticipated Utility. When adding puts or
straddles, we still obtain nonparticipation if the distortion is sufficiently severe
(α = 0.65). The more moderate probabilitity distortion (α = 0.8) produces
negative portfolio weights for both derivatives strategies. In this case, the
distortion only acts to substantially decrease the size of the portfolio weights.
For both puts and straddles, the weights are roughly one third of the expected-
utility results in Table II.

It is clear from these results that ‘‘paranoia’’ alone (increasing the probability
of unfavorable portfolio outcomes) is not sufficient to generate positive demand
for puts or straddles. We therefore now analyze Anticipated Utility with the
transformation function of Kahneman and Tversky (Equation (6)). Applying
this function to cumulative probabilities of outcomes, without loss aversion or
mirroring around Rf as in (5), poor portfolio outcomes are overweighted (as
in the case of w(P ) = P α), but extremely positive portfolio outcomes are also
overweighted and in fact more so (see Figure 3). This probability distortion
therefore induces a stronger preference for positively skewed portfolio return
distributions.
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Table VI. Portfolio weights for anticipated utility, w(P ) = P α

This table reports the optimal portfolio weights αE (equity) and αD (derivative strategy)
for anticipated utility (power specification for the utility of outcomes and decision weights
according to (8) and (9)), over our January 1987–June 2001 sample, obtained by replacing
the expectation in (1) by its (distorted) sample counterpart and maximizing over the
portfolio weights. The derivative strategies are a (short-maturity) OTM put with 0.96
strike-to-spot ratio and a (short-maturity) ATM straddle, using S&P 500 futures options.
The implied equity weight corresponding to each αD is calculated by multiplying the
optimal put (straddle) weight with the empirical beta of the put (straddle).

γ 1 2 5 10

α 0.65 0.8 0.65 0.8 0.65 0.8 0.65 0.8

No derivatives

αE 0 0 0 0 0 0 0 0

OTM put

αE 0 −0.672 0 −0.373 0 −0.158 0 −0.081
αD 0 −0.062 0 −0.035 0 −0.015 0 −0.008
Implied equity 0 1.182 0 0.667 0 0.286 0 0.152

ATM straddle

αE 0 0.447 0 0.247 0 0.105 0 0.053
αD 0 −0.192 0 −0.103 0 −0.043 0 −0.022
Implied equity 0 0.110 0 0.059 0 0.025 0 0.013

The results in Table VII are interesting. Without derivatives, the distortion
of the probability of favorable portfolio outcomes breaks the nonparticipation
we found in Table VI. Not surprisingly, the weights are smaller than for CRRA
expected utility. For both puts and straddles, we still obtain negative portfolio
weights when the distortion parameter is modest. However, for c = 0.65, we
now find positive weights for puts and for straddles. For puts, the weights
are quite small, and certainly more reasonable than for cumulative prospect
theory. For instance, the logarithmic investor holds 8% of her wealth in equity
and 11% in puts. The investor buys put options attracted by their substantial
positive skewness. The straddle weights are substantially larger and accompany
levered equity positions for γ = 1 and γ = 2. The positive portfolio weight for
the straddle is also driven by the positive skewness of its return distribution.
Owing to the larger overweighting of favorable portfolio outcomes than of
unfavorable outcomes (Figure 3), the investor exhibits a strong preference for
positive skewness, and a long straddle position becomes optimal. Note that
cumulative prospect theory failed to produce positive straddle weights since
the probability distortion is essentially symmetric in that case (by virtue of the

D
ow

nloaded from
 https://academ

ic.oup.com
/rof/article/11/4/561/1610656 by guest on 10 April 2024



PORTFOLIO PERSPECTIVE ON OPTIONS 589

0 20 40 60 80 100 120 140 160 180
0

1

2

3

4

5

6

7

8

9

D
is

to
rt

ed
 p

ro
ba

bi
lit

y 
/ A

ct
ua

l p
ro

ba
bi

lit
y

Sorted portfolio returns

0.65 distortion

0.8 distortion

Figure 3. Ratio of distorted to actual probabilities in Anticipated Utility, w(P ) =
Pc

[Pc+(1−P)c]1/c .

This figure shows the ratio of distorted to actual probability in Anticipated Utility
(Section 5.3) with w(P ) = Pc

[Pc+(1−P)c]1/c for c = 0.65 and c = 0.8.

Table VII. Portfolio weights for anticipated utility, w(P ) = Pc

[Pc+(1−P)c]1/c

This table reports the optimal portfolio weights αE (equity) and αD (derivative strategy)
for anticipated utility (power specification for the utility of outcomes and decision weights
according to (8) and (6)), over our January 1987–June 2001 sample, obtained by replacing
the expectation in (1) by its (distorted) sample counterpart and maximizing over the portfolio
weights. The derivative strategies are a (short-maturity) OTM put with 0.96 strike-to-spot
ratio and a (short-maturity) ATM straddle, using S&P 500 futures options. The implied equity
weight corresponding to each αD is calculated by multiplying the optimal put (straddle) weight
with the empirical beta of the put (straddle).

γ 1 2 5 10

c 0.65 0.8 0.65 0.8 0.65 0.8 0.65 0.8

No derivatives

αE 1.811 2.074 0.961 1.106 0.396 0.456 0.200 0.230

OTM put

αE 0.082 1.980 0.036 0.969 0.013 0.378 0.006 0.187
αD 0.107 −0.003 0.048 −0.005 0.017 −0.003 0.009 −0.002
Implied equity −2.040 0.057 −0.915 0.095 −0.324 0.057 −0.172 0.038

ATM straddle

αE 3.168 0.291 1.558 0.217 0.611 0.094 0.303 0.048
αD 0.248 −0.322 0.122 −0.179 0.048 −0.076 0.024 −0.039
Implied equity −0.142 0.185 −0.070 0.103 −0.028 0.044 −0.014 0.022
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590 J. DRIESSEN AND P. MAENHOUT

mirroring around Rf in (5)) and does not induce a strong enough preference
for positive skewness.

6. Sensitivity Analysis

As a next step in the analysis, we consider a number of extensions and
sensitivity checks to study the robustness of the results. For brevity, we focus
on expected utility.

6.1 TRANSACTION COSTS AND MARGIN REQUIREMENTS

To analyze whether the results are robust to the presence of transaction costs,
we now introduce the following market frictions. A first trading cost stems
from the bid-ask spread. For equity, we follow Fleming et al. (2001) and
impose a relatively small transaction cost of two basis points round trip since
the equity position can be implemented with index futures. For the index
options, we use the information on bid-ask spreads in Bakshi et al. (1997).
Importantly, the spreads depend on the moneyness of the options and are
allowed to change for a given option as moneyness evolves from the start of
the period over which we compute the return to the end of the month. The
spreads imply average round trip costs of about 6% for OTM puts and about
4% for ATM options. These estimates are conservative and may represent
upper bounds to the extent that investors are able to trade within the quoted
bid-ask spreads, as shown for individual options in Mayhew (2002). A second
important friction comes in the form of margin requirements on short equity
and option positions. Margin requirements affect the analysis only if the
investor does not invest sufficiently in the riskfree asset, since otherwise the
riskfree asset holdings serve as margin, and if in addition the borrowing rate
exceeds the lending rate. On the basis of Hull (2003) and of the CBOE and
CME websites, the margin for short options positions is set at 15% (minus the
percentage by which the option is OTM) of the value of the underlying plus
the premium. For short equity positions, we use the margin for CME equity
index futures of almost 8% of the equity value. Initial wealth of the investor
is taken to be $100,000 and the borrowing spread is chosen to be 300 basis
points per year.

The effect of these frictions for the equity-only case in Table VIII is intuitive.
Highly risk-averse investors (γ ≥ 5) do not hold levered positions and are
therefore only affected by the bid-ask spread. Since the spread is small for equity
index futures, the portfolio weights in Table VIII are only marginally smaller
than the ones for frictionless markets in Table II. Risk-tolerant investors,
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Table VIII. Portfolio weights with market frictions

This table reports the optimal portfolio weights αE (equity) and αD (derivative strategy)
and their standard errors for a CRRA investor with risk aversion γ over our January
1987–June 2001 sample, incorporating bid-ask spreads and margin requirements as explained
in Section 6.1. The portfolio weights are obtained by replacing the expectation in (1) by its
sample counterpart and maximizing over the portfolio weights, given the constraints due to
market frictions. The derivative strategies are a (short-maturity) OTM put with 0.96 strike-
to-spot ratio and a (short-maturity) ATM straddle. The implied equity weight corresponding
to each αD is calculated by multiplying the optimal derivative weight with the empirical beta
of the derivative.

γ 0.5 1 2 5 10 20

No derivatives

αE 3.1872 2.2592 1.1974 0.7046 0.3569 0.1795
SE 0.7602 1.4377 0.8270 0.3579 0.1835 0.0928

OTM put

αE −1.7397 −1.3178 −0.8250 −0.3835 −0.2018 −0.1035
SE 2.3401 2.5339 1.2973 0.5330 0.2697 0.1358

αD −0.1499 −0.1138 −0.0767 −0.0370 −0.0197 −0.0102
SE 0.0612 0.0503 0.0328 0.0166 0.0102 0.0053
Implied equity 2.8121 2.1349 1.4389 0.6941 0.3696 0.1914

ATM straddle

αE 0.9801 0.7562 0.5398 0.3896 0.2062 0.1060
SE 1.1204 1.2506 0.7683 0.3487 0.1819 0.0928

αD −0.4591 −0.3426 −0.1989 −0.0924 −0.0478 −0.0243
SE 0.1456 0.1377 0.0874 0.0399 0.0209 0.0107
Implied equity 0.2077 0.1550 0.0900 0.0418 0.0216 0.0110

however, hold levered positions and these become substantially more expensive
with the introduction of margin requirements. The equity portfolio weights
drop substantially for γ ≤ 2 and become statistically insignificant (except for
γ = 1

2 ).
Despite the introduction of bid-ask spreads and margin requirements, the

optimal put weights are still negative and statistically significant. Comparing
Table VIII with Table II, it can be seen that market frictions actually mainly
affect the equity portfolio weights. Relative to Table II, (long) equity has
become more attractive given the lower trading cost on equity than on
options. This makes it relatively more costly to short equity to hedge negative
option positions. The decrease in the absolute value of the put weights reflects
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both the direct effect of the transaction cost and an indirect effect due to the
fact that hedging short puts with short equity is now more expensive.

Since straddles do not lead to large hedging demands for equity, only the
direct effect is at work in Table VIII’s bottom panel. The positive equity
positions increase substantially relative to Table II. The straddle weights
become smaller in absolute value but remain strongly statistically significant.
Notice that the shrinking of the straddle weights is more pronounced than
it is for puts even though straddles are only directly affected by the presence
of the market frictions. However, the expected return on short straddles is
substantially smaller than the expected return on short puts, so that a given
transaction cost affects the straddle more. Hence the larger effect on straddle
positions.

6.2 CRASH-NEUTRAL PUTS AND STRADDLES

Our analysis may suffer from a Peso problem: perhaps returns on short puts
and straddles turned out substantially higher ex post than expected ex ante by
market participants, simply because fewer stock market ‘‘crashes’’ occurred
than expected. Indeed, our sample includes one of the most impressive bull
markets of recent history. Even though the sample does contain the 1987
and 1990 stock market crashes, our analysis may so far still be vulnerable
to this criticism. In order to make our results robust to the ex post absence
of major crashes, we now consider crash-protected straddles following Coval
and Shumway (2001) and crash-neutral puts as in Jackwerth (2000). We crash-
neutralize short OTM puts with 0.96 moneyness by simultaneously going long
0.92 moneyness ‘‘deep’’ OTM puts, creating what is often referred to as a
vertical bull spread. Short ATM straddles are crash-neutralized in the same
way (a ‘‘ratio-call spread’’). It is important to realize that these strategies may
be substantially less attractive given the positive jump risk premium (and to a
lesser extent negative volatility risk premium) present in the 0.92 OTM put.
Crash-neutralizing the short positions in the put option and straddle will lower
their expected return. Simultaneously, it lowers the risk of the strategies and
in particular the likelihood of extremely negative returns.

Crash-neutralizing the OTM puts in Table IX makes the portfolio weights
for puts somewhat smaller in absolute value. This illustrates that crash-
protection, although expected to be useful given the 1987 and 1990 crashes
in the sample, does not come free and lowers the expected return of the
position. Importantly though, even with crash insurance, the optimal put
weights remain statistically significantly negative. This may be surprising if,
based on the smirk-like pattern of Black-Scholes implied volatilities for OTM
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Table IX. Portfolio weights with crash-neutral strategies

This table reports the optimal portfolio weights αE (equity) and αD (derivative strategy)
and their standard errors for a CRRA investor with risk aversion γ obtained by estimating
(3) with GMM over our January 1987–June 2001 sample. The derivative strategies are a
(short-maturity) crash-neutral OTM put and a (short-maturity) crash-neutral ATM straddle,
using S&P 500 futures options. The crash-neutral OTM put consists of a long position in the
0.96 OTM put and a short position in the 0.92 OTM put. The crash-neutral ATM straddle
consists of a long position in the ATM straddle and a short position in the 0.92 OTM put.
The implied equity weight corresponding to each αD is calculated by multiplying the optimal
crash-neutral put (straddle) weight with the empirical beta of the put (straddle).

γ 0.5 1 2 5 10 20

Crash-neutral OTM put

αE −1.5250 −1.3022 0.5050 0.1683 0.0792 0.0384
SE 1.8912 2.0562 1.0993 0.4501 0.2258 0.1130

αD −0.1366 −0.1045 −0.0718 −0.0337 −0.0177 −0.0090
SE 0.0579 0.0425 0.0348 0.0177 0.0095 0.0049
Implied equity 1.7157 1.3125 0.9018 0.4233 0.2223 0.1130

Crash-neutral ATM straddle

αE 4.4064 3.3609 2.1047 0.9484 0.4913 0.2498
SE 1.2802 1.2793 0.7965 0.3747 0.1968 0.1007

αD −0.5032 −0.3952 −0.2639 −0.1211 −0.0630 −0.0321
SE 0.1317 0.1093 0.0912 0.0459 0.0244 0.0125
Implied equity −1.6203 −1.2725 −0.8498 −0.3899 −0.2029 −0.1034

puts, one were to think of the deep OTM puts as being more ‘‘overpriced’’
than the 0.96 OTM puts, so that short crash-neutral put positions would seem
unattractive. Table IX shows that this intuition is misguided, since a much
smaller percentage of wealth is invested in the 0.92 put than in the 0.96 put.
The crash neutrality of the puts also affects the optimal equity position. First
of all, the correlation with equity of the crash-neutral put is smaller than for
the unprotected put, making the negative equity position needed for hedging
purposes smaller in Table IX than in Table II. Secondly, the optimal put
position itself changes. Both effects substantially reduce the need for hedging
with a short equity position. Except for γ ≤ 1, the optimal equity weight
actually becomes positive (but remains insignificant).

In Table IX we find negative and very significant weights for the crash
neutral straddles. The weights are slightly smaller than before. As for puts,
crash-protection involves two opposing effects. First, the correlation of a
short straddle with equity returns changes and becomes negative, so that long
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equity can be used to hedge a short position. This makes the crash-protected
straddle more attractive than the uninsured alternative. At the same time, crash
protection leads to a reduction in expected return (for a short position). The
latter effect dominates here, making, on net, the short straddle less attractive
with the crash protection and resulting in a less negative weight.

Our results are therefore robust to the Peso problem: crash-neutralizing the
puts and straddles does not qualitatively change the optimality of negative put
and straddle positions.

6.3 THE IMPACT OF DISCRETE TIME AND LACK OF REBALANCING

Our analysis studies the importance of index options for portfolio choice in
a discrete-time setting. One of the advantages of our approach is that the
attractiveness of investing in index options does not rely on the ability to
trade continuously. However, the concern may arise that the discreteness of
the time period in the analysis makes options attractive, not because of their
superior risk-return trade-off, but simply since it allows the investor to achieve
some dynamic trading strategy that could not be implemented with equities
only.18 To demonstrate that this is not driving the results, we now simulate
monthly returns from the Black-Scholes model where the risk-return trade-off
in options is, by construction, not superior, and where options would indeed
be redundant if continuous trading were allowed. This allows us to isolate
the effect of the discreteness of the trading period. Comparing the optimal
portfolios based on Black-Scholes-generated return series with the portfolios
presented before will then shed light on the validity of our claim that options
are indeed attractive investments purely because of the jump and volatility risk
premia they incorporate.

Given estimates of the riskfree rate and index volatility over our sample
period, the Black-Scholes model is used to simulate 10,000 time series of
equity and option returns, each of the same length as the empirical sample.
For each time series of returns, the optimal portfolios (αE and αD) and
associated standard errors are estimated as before. Table X presents averages
of the portfolio weights and of the associated t-ratios across these 10,000
simulations.

Interestingly, we find that the optimal put and straddle weights in Table X
are very close to zero. Not surprisingly, the optimal equity weights are therefore
very similar to the weights obtained in Table II without derivatives, except

18 Haugh and Lo (2001) analyze to what extent buy-and-hold portfolios of options allow
investors to achieve certain dynamic investment policies in an environment where markets are
otherwise complete.
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Table X. Portfolio weights with simulated Black-Scholes returns

This table reports optimal portfolio weights αE (equity) and αD (derivative strategy)
for a CRRA investor with risk aversion γ using simulated monthly returns from the
Black-Scholes model. The derivative strategies are a (short-maturity) OTM put with 0.96
strike-to-spot ratio and a (short-maturity) ATM straddle. Given estimates of the riskfree
rate and S&P 500 volatility over our sample period (January 1987–June 2001), the Black-
Scholes model is used to simulate 10,000 time-series of equity and option returns, each
of the same length as the empirical sample. For each time-series of returns, the optimal
portfolios (αE and αD) and associated standard errors are obtained by estimating (3) with
GMM. The table presents averages of the portfolio weights and of the associated t-ratios
across these 10,000 simulations.

γ 0.5 1 2 5 10 20

OTM put

αE 8.5412 4.1738 1.9296 0.7270 0.3555 0.1757
av. t 1.6561 1.4986 1.4285 1.3946 1.3842 1.3791

αD 0.0134 0.0037 −0.0052 −0.0040 −0.0023 −0.0013
av. t 0.0238 0.0052 −0.0939 −0.1363 −0.1494 −0.1559

ATM straddle

αE 8.0352 3.9668 2.0724 0.8497 0.4278 0.2150
av. t 2.6353 2.4054 2.2063 2.0886 2.0506 2.0348

αD 0.0542 0.0276 −0.0039 −0.0059 −0.0037 −0.0020
av. t 0.2592 0.1093 −0.0263 −0.0993 −0.1217 −0.1344

for γ ≤ 1. In line with Liu and Pan (2003), log investors hold small long
positions in the put or straddle, while more risk-averse investors have very
small negative portfolio weights. Most importantly though, the derivatives
weights are completely statistically insignificant. These results vindicate our
claim that options matter to investors because of the generous risk premia
embedded in their prices. The fact that the trading period is discrete is not
driving our strong results.

We also conduct an additional experiment with stochastic volatility, which
induces time variation in investment opportunities and intertemporal hedging
demands for equity (Chacko and Viceira (2005)) or for options (Liu and Pan
(2003)). Facing stochastic volatility, an investor with a multiperiod horizon
would want to rebalance his equity position. If rebalancing the equity position
is not possible, a static position in derivatives may represent a useful substitute,
as it allows the investor to indirectly implement a dynamic trading strategy.
This role of derivatives is emphasized by Haugh and Lo (2001) and ignored in
our analysis above. To quantify the importance of this effect and the extent
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to which it may alter our conclusions, we simulate a stochastic volatility
model using the parameter values of Liu and Pan (2003). The investor has a
one-month horizon and is not allowed to rebalance his equity position, but
returns are sampled at a higher frequency. Importantly, the volatility risk
premium is set to zero, so that derivatives do not carry a different risk-return
trade-off. The demand for options stems only from their ability to satisfy the
investor’s rebalancing needs. Unreported results show small positive weights
for puts and straddles, which are always statistically insignificant. The hedging
demands for options are therefore both statistically and economically small,
in line with Liu and Pan, who find that the myopic demand dominates the
hedging demand for reasonable values of the volatility risk premium. Haugh
and Lo (2001) conduct a similar experiment and find a large demand for
options despite the absence of volatility or jump risk premia. The difference
in findings can be understood from the fact that their investor has a 20-year
horizon and is not allowed to rebalance his equity position at all over this
20-year period.

We also consider additional robustness checks in the context of the
benchmark model, namely a change in the frequency of the return time-
series and the horizon of the investor from monthly to weekly, as well as a
sample split. All the results (unreported for space reasons, but available upon
request) survive and some become in fact stronger.

7. The Economic Value of Investing in Derivatives

To further quantify the economic value of including derivatives optimally in
a portfolio, we now report the certainty equivalent wealth that the investor
demands as compensation for not being able to invest in derivatives. This
summary metric can be interpreted as the maximum fixed cost that the
investor is willing to pay to gain access to derivatives. Since the investor’s
preferences are homothetic, the certainty equivalent is computed in percentage
terms. Also, this is a percentage of initial wealth over a period that corresponds
to the investor’s horizon (one month). We focus on expected utility and also
consider transaction costs and crash-neutral strategies.

We see in Table XI that the economic value of investing optimally in puts
and especially in straddles is substantial. The certainty equivalent declines as
risk aversion increases, reflecting the smaller positions in derivatives chosen
by more risk-averse investors. It is important to keep in mind that these are
certainty equivalents for investors with a one-month horizon. An investor with
$100,000 of investable wealth and risk aversion coefficient of 10, is therefore
willing to pay $330 per month to be able to short puts and $450 per month to
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Table XI. Monthly certainty equivalent wealth of investing in derivatives

This table shows the monthly certainty equivalent wealth, which is the percentage of
initial wealth needed to compensate the CRRA investor with a one-month horizon
and risk aversion γ when derivatives are not available, and which reflects the optimal
portfolios of Table II (put and straddle), Table VIII (put and straddle with transaction
costs) and Table IX (crash-neutral put and straddle).

γ 0.5 1 2 5 10 20

Put 0.0186 0.0172 0.0123 0.0061 0.0033 0.0017
Straddle 0.0413 0.0314 0.0193 0.0086 0.0045 0.0023
Put (tr. cost) 0.0178 0.0149 0.0091 0.0040 0.0022 0.0011
Straddle (tr. cost) 0.0181 0.0140 0.0081 0.0042 0.0022 0.0011
Crash-neutral put 0.0173 0.0141 0.0087 0.0039 0.0020 0.0010
Crash-neutral straddle 0.0341 0.0244 0.0150 0.0067 0.0034 0.0017

access straddles. For a lower risk aversion of two, these numbers grow to $1230
and $1930, respectively. When transaction costs and margin requirements are
added, the certainty equivalents become smaller, but remain very large,
again keeping in mind that these are monthly numbers. While the certainty
equivalent is higher for straddles than for puts without transaction costs,
the put has slightly more economic value than the straddle when transaction
costs are taken into account. With crash insurance, puts and straddles become
somewhat less valuable, reflecting of course the change in optimal weights due
to crash protection discussed in Section 6.2. The economic value of being able
to invest in derivatives remains substantial however.

8. Multiple Nonspanned Factors

The analysis throughout the paper indicates that jump risk and volatility
risk are priced rather generously and that this has significant implications
for portfolio choice. In particular, most preferences lead to substantial short
positions in straddles and in puts. While it is intuitive that OTM puts load
mainly on jump risk and ATM straddles mainly on volatility risk, it remains
to be seen whether there is portfolio evidence for the existence of multiple
nonspanned factors.19 Including the ATM straddle and OTM put that we
have been considering so far simultaneously in the portfolio problem may
be problematic given the high correlation between the returns on these assets
(0.587). Therefore in an attempt to disentangle exposure to volatility risk and

19 Jones (2006) estimates a general nonlinear latent factor model for put returns. He shows that
allowing for a second priced factor reduces mispricing, but adding a third factor seems to make
mispricing worse.
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Table XII. Equity, OTM put and CN-ATM straddle weights

This table reports the optimal portfolio weights αE (equity), αPut ((short-maturity) OTM
put with 0.96 strike-to-spot ratio), αStraddle ((short-maturity) crash-neutral ATM straddle
consisting of a long position in the ATM straddle and a short position in the 0.92 OTM
put), and their standard errors for a CRRA investor with risk aversion γ , obtained by
estimating (3) with GMM over our January 1987–June 2001 sample. The implied equity
weight is calculated by multiplying the optimal derivative weight with the empirical beta of
the derivative.

γ 0.5 1 2 5 10 20

αE −1.2401 −0.6397 −0.3171 −0.1318 −0.0678 −0.0345
SE 2.4521 2.5981 1.4415 0.6373 0.3311 0.1689

αPut −0.1474 −0.1271 −0.0831 −0.0390 −0.0205 −0.0105
SE 0.0690 0.0658 0.0428 0.0213 0.0115 0.0060
Implied equity 2.8096 2.4227 1.5840 0.7434 0.3908 0.2001

αStraddle −0.2893 −0.2390 −0.1706 −0.0803 −0.0419 −0.0213
SE 0.1035 0.0983 0.0927 0.0507 0.0276 0.0144
Implied equity −0.9315 −0.7696 −0.5493 −0.2586 −0.1349 −0.0686

to jump risk, we consider the crash-neutral straddle (ATM straddle insured
by a 0.92 put) along with the 0.96 OTM put from the benchmark analysis.
The idea is that these assets are economically meaningful factor-mimicking
portfolios that load mainly on volatility risk and jump risk, respectively. The
correlation between the returns on these assets is indeed much lower and close
to zero (−0.025).

There is fairly strong evidence for the existence of at least two nonspanned
factors in Table XII. The optimal investment strategy consists of short
positions in both puts and crash-neutral straddles. Both weights are statistically
significant, except for high risk aversion. The equity weight is negative, but
insignificant.

Table XIII considers the same portfolio problem, but now incorporating the
bid-ask spreads and margin requirements of Section 6.1. Adding transaction
costs naturally reduces the derivatives portfolio weights. Even with transaction
costs and costly margin requirements, all investors hold short positions in both
derivatives, although the statistical evidence of multiple nonspanned factors
weakens.

Finally, we report in Table XIV the certainty equivalent wealth levels in
order to shed light on the economic importance of accessing both derivatives
simultaneously, without and with frictions. Without frictions, these certainty
equivalents can be compared with the results for the put only or for the
crash-neutral straddle only, i.e., Table XI. Adding a short put to a portfolio
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Table XIII. Equity, OTM put, and CN-ATM straddle weights, with transaction costs

This table reports the optimal portfolio weights αE (equity), αPut ((short-maturity) OTM
put with 0.96 strike-to-spot ratio), αStraddle ((short-maturity) crash-neutral ATM straddle
consisting of a long position in the ATM straddle and a short position in the 0.92 OTM put),
and their standard errors for a CRRA investor with risk aversion γ (as in Table XII), but
now incorporating the bid-ask spreads and margin requirements of Section 6.1. The implied
equity weight is calculated by multiplying the optimal derivative weight with the empirical
beta of the derivative.

γ 0.5 1 2 5 10 20

αE −0.0000 −0.0000 −0.0349 −0.0471 −0.0307 −0.0173
SE − − 1.4419 0.6326 0.3282 0.1674

αPut −0.1141 −0.1050 −0.0685 −0.0324 −0.0172 −0.0088
SE 0.0698 0.0615 0.0402 0.0202 0.0110 0.0057
Implied equity 2.1405 1.9698 1.2851 0.6078 0.3227 0.1651

αStraddle −0.1764 −0.1892 −0.1172 −0.0504 −0.0255 −0.0128
SE 0.1103 0.1014 0.0912 0.0477 0.0258 0.0134
Implied equity −0.5063 −0.5430 −0.3364 −0.1446 −0.0732 −0.0367

Table XIV. Monthly certainty equivalent wealth of investing in both derivatives strategies

This table shows the monthly certainty equivalent wealth, which is the percentage of
initial wealth needed to compensate the CRRA investor with a one-month horizon
and risk aversion γ when derivatives are not available, and which reflects the optimal
portfolios of Table XII (benchmark, i.e., put and crash-neutral straddle) and Table XIII
(put and crash-neutral straddle with transaction costs).

γ 0.5 1 2 5 10 20

Benchmark 0.0442 0.0329 0.0212 0.0097 0.0050 0.0026
Transaction costs 0.0303 0.0229 0.0129 0.0054 0.0028 0.0014

that already includes a short straddle is still very valuable and increases the
certainty equivalent by about 50%. This strongly suggests both nonspanned
factors are important economically and that at least two derivatives are needed
to complete the market. With frictions, adding an optimal short crash-neutral
straddle position to a short put position is also economically valuable, but
mainly for relatively risk-tolerant investors.

9. Conclusion

Adding OTM index put options and ATM index straddles to the standard
portfolio problem has dramatic effects. Expected-utility investors hold
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statistically and economically significant short positions in these derivatives
in order to exploit the sizeable premia for jump risk and volatility risk
priced in these assets. This result is robust to a number of extensions and
sensitivity checks like trading costs, margin requirements and Peso problems.
Negative optimal derivatives positions also obtain for the nonexpected-utility
specifications that have previously been proposed to explain zero equity
holdings: loss-averse and disappointment-averse investors who ignore the
equity premium and do not participate in equity markets, hold short positions
in puts and straddles when these assets become available. Remarkably, positive
put holdings that would implement portfolio insurance are never optimal
given historical option prices, even when investors are extremely loss-averse
or disappointment-averse.

Only for investors using sufficiently distorted probabilities do we find positive
derivatives weights, in some specific cases. Cumulative prospect theory results
in positive put weights (but never in positive straddle weights) when investors
have moderate loss aversion. However, these puts protect highly levered equity
positions. Anticipated utility is able to generate a strictly positive demand for
puts and straddles, but only when the distorted decision weights induce a
sufficiently strong preference for positive skewness, namely by distorting the
probability of extremely favorable portfolio outcomes even more than the
probability of unfavorable portfolio outcomes.

This makes it challenging to explain the popularity of put options and
of put-protected strategies: long positions seem anomalously suboptimal in
our portfolio choice problem. Simultaneously however, certain institutional
investors are often described as buying index puts for portfolio insurance
purposes (see e.g., Bates (2003, p. 400) and Bollen and Whaley (2004, p.
713)). Agency problems in portfolio delegation may be responsible for this.
Analyzing the agency problem further and studying optimal contract design
in this context are interesting topics for future research.
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