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Abstract

Unhealthy weight gain relates, in part, to how people make decisions based on prior experience. Here we conducted post hoc
analysis on an archival data set to evaluate whether individual differences in adiposity, an anthropometric construct
encompassing a spectrum of body types, from lean to obese, associate with signatures of asymmetric feedback learning
during value-based decision-making. In a sample of neurologically healthy adults (N = 433), ventral striatal responses to
rewards, measured using fMRI, were not directly associated with adiposity, but rather moderated its relationship with
feedback-driven learning in the Iowa gambling task, tested outside the scanner. Using a biologically inspired model of basal
ganglia-dependent decision processes, we found this moderating effect of reward reactivity to be explained by an
asymmetrical use of feedback to drive learning; that is, with more plasticity for gains than for losses, stronger reward
reactivity leads to decisions that minimize exploration for maximizing long-term outcomes. Follow-up analysis confirmed
that individual differences in adiposity correlated with signatures of asymmetric use of feedback cues during learning,
suggesting that reward reactivity may especially relate to adiposity, and possibly obesity risk, when gains impact future
decisions more than losses.
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Introduction
The rates of obesity, defined as having a body mass index (BMI) of
30 kg/m2 or higher, has increased over the last two decades in the
USA such that over a third of the adult population is considered
obese and another third is overweight (25 < BMI < 30; Ogden et al.,
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2010, 2014; Flegal et al., 2016; Hales et al., 2018), putting sub-
stantial strain on the US healthcare system for treating obesity-
related illnesses (Cawley and Meyerhoefer, 2012). The speed of
this population-level change in unhealthy weight gain suggests
that the so-called ‘obesity epidemic’ may be driven, at least in
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part, by behavioral responses to altered environmental condi-
tions (e.g. altered eating habits and activity patterns), rather than
inherent changes in peripheral physiology (e.g. metabolic func-
tion). Based on the latter premise, how people make decisions
may thus explain some of the variation across individuals in
unhealthy weight gain.

Indeed, obesity has been associated with cognitive efficiency
in a number of domains (for review, see Farruggia and Small,
2019), including executive control ability (Davis et al., 2004; Ned-
erkoorn et al., 2006; Pignatti et al., 2006; Gunstad et al., 2007;
Weller et al., 2008; Duchesne et al., 2010; Mobbs et al., 2011;
Hendrick et al., 2012), mental flexibility (Cserjési et al., 2007, 2009;
Boeka and Lokken, 2008) and learning and memory (Duchesne
and Ratelle, 2010) (for review, see Fitzpatrick et al., 2013). These
cognitive alterations often correspond to obesity-related vari-
ability in cortico-basal ganglia pathways that support decision-
making and reward processing. For example, obesity is associ-
ated with reduced D2-receptor binding (Volkow et al., 2008b; de
Weijer et al., 2011), altered reactivity to food cues in ventral and
dorsal striatal regions (Stice et al., 2008, 2010; Burger and Stice,
2012), modified corticostriatal connectivity (García-García et al.,
2012; Marqués-Iturria et al., 2015), and individual differences
in genetic markers of dopamine availability (Noble et al., 1994;
Nisoli et al., 2007; Stice et al., 2008). These observations have led
to the hypothesis that risk for obesity may be engendered by a
cluster of neurobiological phenotypes associated with addiction,
mediated by hypersensitive mesolimbic dopaminergic pathway
(Volkow et al., 2008a, 2012; Tomasi and Volkow, 2013).

Dopamine, however, has a complex influence on the cortico-
basal ganglia networks that guide value-based decisions. A key
architectural feature of these networks is the dueling influ-
ence of the direct (behavior promoting) and indirect (behavior
suppressing) striatal pathways (Alexander et al., 1986). Theo-
retical models have proposed that decisions are encoded as a
dynamic competition between these two pathways (Dunovan
et al., 2015; Dunovan and Verstynen, 2016; Mikhael and Bogacz,
2016; Bariselli et al., 2019), with the strength of evidence for
a given action computed as the likelihood ratio of a hypothe-
sis to ‘execute’ (direct pathway) vs a hypothesis to ‘suppress’
(indirect pathway). During learning, phasic dopamine responses,
thought to reflect reward prediction errors (Schultz et al., 1997),
have opposing influences on the direct and indirect pathways,
depending on the action that they represent and the nature of
the feedback signal (i.e. gain or loss) (Bogacz and Larsen, 2011;
Gurney et al., 2015; Vich et al., 2020). Specifically, if direct pathway
neurons, with D1 receptors, are eligible for plasticity when a
phasic dopamine response occurs (i.e. their firing contributed
to the selected action), the likelihood of the actions encoded by
those neurons increases. If, however, indirect pathway neurons,
with D2 receptors, are eligible for plasticity during a phasic
dopamine response, then the likelihood of actions encoded by
those neurons decreases.

Thus how reward feedback impacts future decisions
depends, in large part, on the relative sensitivity of these
two competing striatal pathways to phasic dopamine signals
(Cools et al., 2009; Frank and Hutchison, 2009). Indeed, recent
computational theories (Morimura et al., 2010; Bellemare et al.,
2017; Dabney et al., 2018), supported by emerging neurophys-
iological evidence (Dabney et al., 2020), suggest that the value
of potential actions are represented as a distribution, with
different populations of striatal pathways reflecting degrees
of optimism or skepticism for the value of any given action. This
distributional form of reinforcement learning is thought to arise
in basal ganglia pathways due to asymmetries in the relative

plasticity of coupled direct and indirect pathways (Dabney et al.,
2020), with ‘skeptics’ (i.e. pathways representing low value for
an action) having higher sensitivity to errors than successes and
vice versa for ‘optimist’ representations. The overall distribution
of ‘skeptics’ and ‘optimists’ for any given action determines
how an agent uses feedback to guide future decisions. This
means that differences in relative learning from positive (i.e.
increasing D1 synaptic efficacy of direct pathways) and negative
(i.e. increasing D2 synaptic efficacy of indirect pathways) reward
feedback might explain individual differences in value-based
decisions that, in turn, associate with decision-mediated health
outcomes.

These insights from the computational neurobiology of adap-
tative decision-making suggest that if variation in obesity is
driven by differences in value-based decision-making, then body
type should covary with both reward reactivity and asymme-
tries in how gains and losses impact future decisions. Here we
leveraged archival analysis on a previously published data set
to evaluate how individual differences in adiposity—a general
anthropometric construct that encompasses facets of body habi-
tus, fatness, and obesity—associates with ventral striatal reward
reactivity, measured using fMRI responses to monetary wins vs
losses, and feedback-driven learning using a popular reinforce-
ment learning task. In subsequent computational modeling, we
used a biologically inspired model of basal ganglia-dependent
decision processes to identify a signature of asymmetric use
of feedback (gains vs losses) that could be used to confirm
whether individual differences in adiposity associate with asym-
metries in feedback learning that are moderated by reward
reactivity.

Materials and methods
Participants

Data for the present study were derived from the University of
Pittsburgh Adult Health and Behavior project, Phase II (AHAB-II).
AHAB-II is a registry of behavioral and biological measurements
in a sample of community dwelling adults, aged 30–54-years
old and recruited via mass-mail solicitation from communities
of southwestern Pennsylvania, USA. General inclusion and
exclusion criteria for recruitment are described elsewhere
(Gianaros et al., 2014; Marsland et al., 2015). Informed consent
was obtained in accordance with approved protocol guidelines
of the University of Pittsburgh Internal Review Board. Of the
full sample of 490 individuals, only individuals who were
tested on the Iowa gambling task (IGT), had reliable imaging
data to assess ventral striatum (VS) reactivity (see below),
and had all relevant anthropometric measures were included
for analysis. This resulted in a final analytical sample of 433
adults. Demographics of the sample are described in Table 1. All
archival analysis procedures were approved by both the Carnegie
Mellon University and University of Pittsburgh Internal Review
Boards.

Adiposity score

Of the original sample of 490 participants, four participants were
missing body fat values. Rather than rely on individual proxy
measures of obesity and adiposity, that each have their own
unique limitations (e.g. BMI is confounded by overall body size),
we created a composite variable that captures common variance
across multiple measures of body type. A composite adiposity
score was constructed from the remaining 483 participants using
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Table 1. Demographics and key analysis variables. See main text for descriptions of variables

Mean STD Range

Age 42.76 7.35 (30, 54)
Female 52.19%
Caucasian 82.91%
Education (years) 16.96 2.85 (9, 24)
Adiposity 0.003 1.00 (−2.26, 2.72)
BMI 26.73 4.96 (17.50, 45.10)
Waist circumference (in) 35.54 5.48 (24.50, 52.00)
Payoff (P) 16.16 29.97 (−92, 96)
Sensitivity (Q) 31.55 25.21 (−46, 86)
VS reactivity 0.11 0.17 (−0.54, 0.85)

three indicators: percentage of total body weight that is fat (FAT),
BMI and waist circumference (WST; log transformed) (Figure 1A,
Table 1). In order to meet the assumptions of principal compo-
nent analysis (PCA), FAT was square root transformed and WST
was natural log-transformed indicators to achieve normality.
No outstanding multivariate outliers were identified using the
Mahalanobis distance statistic. Box-Cox tests and collinearity
statistics (VIFs) were less than 10, suggesting the absence of
multi-collinearity. Indicators were sufficiently correlated, hav-
ing a Kaiser–Meyer–Olkin measure of 0.538 and Bartlett’s test
of sphericity chi-square of 922.791. A single-factor, adiposity
composite score was extracted using PCA-regression, explain-
ing 76.89% of the shared variance across variables (Figure 1B).
Standardized factor loadings (or beta weights) for WST, BMI
and FAT were 0.880, 0.962 and 0.779, respectively. Normality of
the extracted factor scores was examined by the Kolmogorov–
Smirnov (K–S) test, with scores being normally distributed (K–S
value = 0.037). Three outliers were identified with values greater
than three standard deviation from the mean and removed from
analysis. Analysis was performed using SPSS v21.

Iowa gambling task

To measure the efficiency of adaptive decision-making, we used
a computerized version of the IGT (Figure 1C; Bechara, 2007), that
has a high reliability and construct validity across both normal
and clinical populations (Buelow and Suhr, 2009) (though see also
Lin et al., 2013). The computerized IGT consists of four decks of 60
cards each, where choosing decks A and B results in short-term
gains but long-term losses, and decks C and D the reciprocal.
Decks A and C result in higher frequency losses and decks B
and D result in lower frequency losses. Participants start with
a virtual amount of $2000 and are instructed that the goal is to
maximize winnings and that some decks are better than others.
Once a card is chosen, a message is revealed indicating that the
player has won some money, lost some money or a combination.
The total amount of money won or lost is then indicated by addi-
tion or subtraction from the starting amount. The order of the
cards in each deck is the same for each participant. The task lasts
for 100 trials although the participant is told that the game may
end at any time. Payoff is calculated by subtracting the number
of times a short-term payoff deck was selected from the number
of times a long-term payoff deck was selected: Payoff = (C + D)
– (A + B); while a participants’ sensitivity to frequency of pun-
ishment and reward is calculated as the difference between the
high and low frequency loss decks: Sensitivity = (B + D) – (A + C)
(Stocco et al., 2009; Figure 1D).

VS reactivity task

Ventral striatal reactivity was measured using a standard mon-
etary gain task that has been shown to have the sensitivity to
capture individual variability in reward sensitivity (Hariri et al.,
2006; Gianaros et al., 2011; Luking et al., 2017) The task was made
up of a total of 45 trials, split up into 9 blocks with 5 trials each.
The subject was first shown a ‘?’ in the center of a card for 3 s.
This indicated that the subject would need to guess whether
the following card would be lower or higher than the number 5.
They indicated their choice by using a button pressing system.
The index finger signaled they were selecting less than five
and the middle finger signaled greater than five. The subject
was then presented with a card indicating the number the
computer selected. This was presented for 500 ms, followed by
500 ms of a feedback arrow depending on the correctness of
the subject’s response. The green up arrow indicated a positive
feedback and the red down arrow indicated negative. At the end
of each trial a cross hair was then presented for 1.5 s, making
the entire trial length 5.5 s. Each block was made up of five trials.
There were three different conditions: win, loss and control. The
win condition consisted of four out of five positive feedback
responses (80% correct) with one out of five having negative
feedback responses (20% incorrect), and the loss condition was
the opposite. During the control blocks, the subject was pre-
sented first with an ‘x’ for 3 s. They were instructed to press their
either index or middle finger in response to the presentation
of the ‘x.’ They then were shown an asterisk for 500 ms and a
yellow circle for 500 ms. Before the start of each block, there was
a 3 s instruction shown indicating the section to follow, ‘guess
number’ for the positive and negative feedback conditions and
‘press button’ for the control condition. The total task length was
350 s, including the first 6 s, which were removed to allow for
magnetic equilibration.

BOLD data acquisition and processing

The functional blood oxygenation level-dependent (BOLD)
images were collected on a 3 T Trio TIM whole-body scanner
(Siemens, Erlangen, Germany) using a 12-channel phased-
arrayed head coil. The functional BOLD image acquisition
parameters were: (FOV) = 200 × 200 mm, matrix = 64 × 64, rep-
etition time (TR) = 2000 ms, echo time (TE) = 29 ms and flip
angle (FA) = 90◦. Thirty-four slices were collected each 3 mm
thick with no gap in an inferior to superior direction. A total
of 172 BOLD volumes were collected throughout the duration
of the task. For spatial co-registration of the BOLD images, T2
weighted neuroanatomical images were acquired over 2 min
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Fig. 1. Anthropometric, behavioral and neural measures. (A) Whisker plots of variables used in the calculation of the adiposity score. The box range shows the 25th and

75th confidence intervals. Asterisks show outliers outside the 95th percent confidence intervals. (B) Distribution of adiposity scores across participants (see Methods).

(C) Outline of the IGT. Participants select a card from one of four decks with pre-determined gain/loss outcomes. Two decks, A and B, provide large immediate gains,

but lead to long-term losses. Two decks, C and D, provide small immediate gains, but overall lead to long-term payoffs. (D) Distributions of payoff and sensitivity scores

(see Methods) across participants. (E) Region of interest masks used in the cards task to measure reward reactivity in the VS. (F) Distribution of VS reward reactivity

scores across participants.

6 s by these parameters: FOV = 200 × 200 mm, matrix = 256 × 256,
TR = 3000 ms, inversion time (TI) = 100 ms, TE = 11/101 ms, and
FA = 150◦ (36 slices, 3 mm thick, no gap). A small mirror was
attached to the head coil to allow the subject to see the projector
placed behind them while in the scanner.

The functional BOLD images were processed using the Statis-
tical Parametric Mapping software (SPM8; Wellcome Trust Centre
for Neuroimaging, London, UK). Before analyses, BOLD images
were realigned to the first image of the series by a 6-parameter
rigid-body transformation, with the unwarp procedure in SPM
applied to adjust for geometric distortion due to movement.
Realigned images were co-registered to each participant’s T2-
weighted structural image. Co-registered images were normal-
ized by a 12-parameter nonlinear and affine transformation to

the International Consortium for Brain Mapping 152 template
(Montreal Neurological Institute; MNI). Normalized images were
smoothed by a 6 mm full-width-at-half-maximum Gaussian
kernel.

After preprocessing, linear contrast images reflecting relative
BOLD signal changes (i.e. win vs loss, loss vs win and win vs
control) were estimated for each participant. To this end, task
conditions were modeled with rectangular waveforms con-
volved with the default SPM hemodynamic response function.
Regressors were designed to model the entire win, loss or control
blocks, rather than individual trials within each block. Contrast
images were then generated by general linear model (GLM)
estimation using an explicit brain mask and incorporating out-
lier weighting using the robust-weighted least-squares toolbox
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(Diedrichsen and Shadmehr, 2005). Before estimation, low-
frequency BOLD signal noise was removed by high-pass filtering
(128 s cut-off). Finally, regression vectors derived from the
realignment step were included in the GLMs to account for
BOLD signal variance attributable to head movement. Individual
contrast images were then submitted to group-level, one-sample
t-tests. The mean BOLD contrast parameter estimates were
extracted from a predefined VS ROI (Figure 1E and F, Table 1).
Voxels within the ROI exhibited condition-specific effects at
FDR ≤ 0.05 and k ≥ 10 voxels. Bilateral (i.e. left and right VS)
parameter estimates were then averaged for further analysis.
The a priori ROI mask is available at http://bnl.pitt.edu/resource
s.html, and the steps taken to create it are described elsewhere
(Gianaros et al., 2011).

Adaptive network model

To model value-based decisions at the implementational level,
we performed simulations of the IGT using a hybridization of
accumulation-to-bound (Ratcliff, 1978) and reinforcement learn-
ing models (Sutton and Barto, 1998) informed by the archi-
tecture of cortico-basal ganglia pathways (Bogacz et al., 2006;
Caballero and Gurney, 2010; Ratcliff and Frank, 2012; Dunovan
et al., 2015, 2019; Dunovan and Verstynen, 2016; Pedersen et al.,
2016). Here the network represents four competing decisions,
one for each deck, as individual action channels that accumulate
evidence toward a decision boundary (Figure 4A). The certainty
of each action is reflected in the drift rate of the decision pro-
cess (Dunovan et al., 2015, 2019; Dunovan and Verstynen, 2016;
Mikhael and Bogacz, 2016; Bariselli et al., 2019; Dunovan and
Verstynen, 2019) reflecting the competition between an action-
promoting decision process (i.e. Go process, direct pathway), and
an action-suppressing process (i.e. No Go process, indirect path-
way). Inputs to each action channel follows a ‘center-surround’
topology (Mink, 1996), such that each deck is associated with only
one Go pathway, but multiple No Go pathways. The differential
activity of these competing processes is integrated at an output
node that accumulates to a decision boundary (Dunovan et al.,
2015), with the first output unit to reach its decision boundary
being the selected action (Dunovan et al., 2019).

The decision network specifically followed the general
structure of adaptive, multi-choice learning described elsewhere
(Dunovan and Verstynen, 2016; Dunovan et al., 2019) and the
strengths and weakness of this adaptive accumulator approach
have been described elsewhere (Ratcliff and Frank, 2012). Four
independent action channels, reflecting each deck choice, were
initiated on each trial as a competing pair of Go (G) and No Go
(N) accumulators. For each action channel j and each trial t, the
stepwise dynamics for the G and N accumulators was defined at
each time step τ (�τ = 1 ms) as

Gj,t (τ ) = Gj,t (τ − �τ) + νG
j,t�τ + εG

j (τ ) (1)

and

Nj,t (τ ) = Nj,t (τ − �τ) + νN
j,t�τ + εN

j (τ ) (2)

With νG and νN defining the drift rates of the G and N
processes, respectively. The diffusion noise on each follows a
normal distribution with variance σ 2 = 0.01.

ε
G/N
j ∼ N

(
0, σ 2) (3)

The execution process � for each action channel j is defined
as the difference between the G and N processes, such that

�j,t (τ ) = [
Gj,t (τ ) − Nj,t (τ )

] · cosh (γ · τ) (4)

The hyperbolic cosine term introduces a dynamic bias in the
signal that approximates a collapsing decision boundary (Ratcliff
and Frank, 2012; Dunovan et al., 2015) at a rate determined by the
parameter γ . Each trial simulation continues until the first deck
execution process reaches the decision boundary a.

To get the system to learn we used feedback from gains
(i.e. positive reward prediction errors; RPEs), or losses (i.e. neg-
ative RPEs) as training signals to adapt the network on a trial-
by-trial basis, in a similar way as dopaminergic signals aris-
ing from the substantia nigra pars compacta influence striatal
pathways (Schultz and Dickinson, 2000). Positive RPEs sensi-
tize D1-expressing cells of the direct pathway and depress the
D2-expressing cells of the indirect pathway. In contrast, neg-
ative RPEs have the opposite effect, enhancing the sensitiv-
ity the indirect pathway while depressing those of the direct
pathway (Gurney et al., 2015). This opposing plasticity effect
means that gains reinforce the appropriately selected action
over less rewarding alternatives and push the network into a
more exploitative state; while losses reduce the saliency of the
selected action which allows for more competition between the
action channels, pushing the network into a more exploratory
state (Cools et al., 2009; Stauffer et al., 2014; Collins and Frank,
2015; Dunovan et al., 2019; Vich et al., 2020) Because the drift rate
of individual action decisions reflects competition between the
direct and indirect pathways within an action channel (Dunovan
and Verstynen, 2016; Dunovan et al., 2019), we used positive
and negative RPEs to modulate the relative Go and No Go drift
rates of each action channel independently (Dunovan et al.,
2019)

As the network learns the value of each deck, it must decide
what to do with this information, i.e. does it simply select the
highest value deck (exploitation) or keep searching for possible
better payoffs (exploration)? For this, we simulated networks
with different levels of ‘greediness’ in their decision policy. At
the end of each simulated trial, the network received a feedback
signal, rt, reflecting the value of the card it selected. This signal
was used to update the state value of each deck, Qj,t, such
that

Qj,t+1 = Qj,t + λ
(
rt − Qj,t

)
. (5)

On trials with positive feedback (i.e. gain) λ = αG, while on
trials with negative feedback (i.e. loss) λ = αN (see also Collins and
Frank, 2014). This state value function was then used to update
the action selection probability P(j) for each deck j given by the
softmax probability function (Sutton and Barto, 1998).

P(j)t+1 = eβ·Qj,t+1

∑4
i eβ·Qj=i,t+1

(6)

where β is the inverse temperature parameter and Qj,t is the
current value estimate from equation 5. Greediness is therefore
represented by this inverse temperature parameter (β), and the
degree to which the system exploits feedback signals in order
to maximize expected gain on future trials vs taking chances
and exploring the space of decisions in order to find potential
better gains. In this case, higher β values reflect a more greedy
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or exploitative network, while lower β values reflect a more
random or exploratory network (Sutton and Barto, 1998).

Typically, P(j) is estimated for each deck and used to perform
a weighted selection from the set of possible alternatives. Here,
the change in P(j)t from the previous trial P(j)t–1 is calculated to
obtain an estimate of the change in choice probability for each
deck, δj,t

δ(j)t = P(j)t − P(j)t−1 (7)

This additional step effectively converts the Q-value update
from eq. 5 into proportional change in selection probability for
each channel. This ‘choice probability’ error signal is then used
to update the relative drift rates of the G and N processes in each
action channel accordingly:

νG
j,t = νG

j,t−1 + αG · δt (8)

νN
j,t = νN

j,t−1 + αN · −δt (9)

Each network simulation followed the same trial procedures
as participants in the IGT described above (100 total trials
with same feedback schedules as experimental subjects). The
simulation outcomes were summarized as the average results
of 140 simulated agents for each value of β, αG and αN. The
following parameters were held constant in all simulations
except those shown in Figure 4F: boundary height (a = 0.4), non-
decision time (tr = 200 ms), dynamic gain (γ = 1.5) and initial
drift-rates (e.g. prior to learning) for the Go (νG = 0.7) and No
Go (νN = 0.4) decision variables. For each combination of αG

and αN being compared in Figure 4F, a group of 100 agents
were simulated, each with randomly sampled set of model
parameters. Parameters were sampled from the following
distributions (G = gamma, N = normal, U = uniform): a ∼ G(0.35,
0.05), tr ∼ G(0.2, 0.02), γ ∼ N(0.8, 0.2), νG ∼ U(0.7, 1.0), νN ∼ U(0.3,
0.7), β ∼ U(2.5, 7.0).

Results
Adiposity, striatal reward reactivity and
decision-making

A summary of the key empirical variables is shown in Figure 1
and reported in Table 1. Relationships between all variables were
evaluated using a set of bootstrapped linear regression models,
with bias corrected and accelerated confidence intervals (Dici-
ccio and Efron, 1996; Table 2). Adiposity scores were negatively
associated with both payoff and sensitivity scores in the IGT, but
not with VS reactivity to wins over losses. In fact, of all the pair-
wise factors, the only variable that significantly associated with
VS reactivity was payoff score. VS reactivity and payoff score
were positively associated when payoff score was used as either
the predictor variable or the outcome. The positive direction of
the association between payoff score and VS reactivity suggests
that greater VS reactivity to reward in the cards task is linked
more effective value-based decision-making in the IGT.

We next modeled individual differences in adiposity using
three different models that were informed by the associations
above. In these models, we restricted analyses to payoff scores
as a measure of IGT performance because sensitivity scores did
not associate with VS reactivity. As a baseline, we tested the
simple model of regressing payoff score against adiposity (same
as reported in Table 2). We then fit a model where VS reactiv-
ity moderated the relationship between payoff and adiposity.
Finally, we fit a mediation model where VS reward reactivity

indirectly associates with adiposity through payoff scores. This
reflects an alternative hypothesis, where overall sensitivity to
rewards solely drives value-based learning that, in turn, drives
variability in adiposity. Here confidence intervals on the medi-
ation and moderation models were estimated using bootstrap-
ping approaches described elsewhere (Preacher and Hayes, 2008).
Using two different information criterion measures, we found
that the moderation model provided a substantially better fit
to the data than the simple model (Figure 2B). In contrast, the
mediation model did not outperform the simple model, once we
controlled for model complexity (i.e. number of free parameters).

To explicate the nature of this interaction effect in the
moderation model we applied a tertile split on the distribution
of VS scores, and categorized subjects as having low (N = 143),
medium (N = 144) or high (N = 146) VS reactivity. The payoff-
adiposity association was then modeled separately within each
group after accounting for age and sex. Figure 2C–E shows that
individuals with high VS reactivity had a stronger negative
correlation between payoff and adiposity scores than individuals
with lower VS reactivity.

Mechanisms of adaptive decision-making

We simulated multiple runs of the IGT under different config-
urations of our cortico-basal ganglia inspired network model
(see Methods). Our simulations show that the network is able
to use the feedback on each trial to learn to alter the state
action value for each deck (an example experimental run is
shown in Figure 3). A critical question is how learning rate
and decision policy sculpt the network’s decisions over time.
Figure 4B–D shows the output of the network with different
levels of greediness (β), learning on the Go pathway (αG), and
learning on the No Go pathway (αN). In each panel αG ranges
from 0.01 (lighter lines) to 0.4 (darker lines). When αN is high
(Figure 4B and C), increasing both the greediness of the network
and αG improves the efficiency of the network’s decision and
payoff scores increase. With a low αN (Figure 4D), however, the
performance of the network reverses such that greedier net-
works and networks with high αG both tend to produce lower
payoff scores. Thus, when the network has greater sensitivity
to positive than to negative feedback signals, it becomes reward
seeking and makes less long-term effective decisions.

Adiposity correlates with signatures of asymmetric
learning rates

The preceding analysis suggests that the general sensitivity to
feedback signals will predict either more or less effective deci-
sion strategies depending on the relative efficiency of learning
from gains (αG) relative to learning from losses (αN). We next
examined how asymmetrical learning rates would be reflected
in the empirical data. In the fMRI experiment, VS reactivity
reflects the difference in striatal response to blocks of trials
where the selected action gets more reinforced (i.e. win blocks)
vs blocks of trials where the selected action gets punished more
(i.e. loss blocks). To simulate this in the network, we calculated
�Card, which is the difference in drift rate of the Go pathway (vG)
and No Go pathway (vN) for the selected action channel on that
trial. Figure 4B shows �Card on each consecutive trial for a range
of network simulations with different degrees of learning on the
Go pathway (αG). As αG increases �Card also increases in later
trials, reflecting the facilitation of the selected action channel
with learning. Lower levels of αG result in a network with lower
overall activity across trials. Thus, �Card serves as a reliable proxy
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Table 2. Regression model parameters for all factors. Rows show individual response variables and columns show the predictor variables.
Standard deviations of parameter fits are shown in parentheses. Logistic regression was used for all models where binary factor for gender was
the outcome variable

Adiposity Payoff Sensitivity VS Age Gender

Adiposity −0.005 (0.002)∗∗ −0.005 (0.002)∗∗ −0.106 (0.284) 0.029 (0.007)∗∗ 0.045 (0.099)
Payoff −4.811 (1.388)∗∗ −0.189 (0.057)∗ 21.447 (7.619)∗ −0.337 (0.186)∗∗∗ −10.649 (2.854)∗∗
Sensitivity −3.102 (1.143)∗ −0.134 (0.043)∗ 2.824 (7.251) 0.264 (0.172) 10.063 (2.458)∗∗
VS −0.003 (0.008) 0.001 (0.0002)∗ 0.0001 (0.0003) 0.001 (0.001) −0.010 (0.016)
Age 1.543 (0.327)∗∗ −0.020 (0.012)∗∗∗ 0.0225 (0.014) 2.040 (1.982) 1.970 (0.708)∗
Gender 0.011 (0.024) −0.003 (0.001)∗∗ 0.004 (0.001)∗∗ −0.092 (0.146) 0.0091 (0.003)∗

∗P < 0.01
∗∗P < 0.001
∗∗∗P < 0.05

Fig. 2. Model comparisons. (A) Depictions of the three models evaluated. See text for details. (B) Model fits using the Akaike information criterion (AIC) and Bayesian

information criterion (BIC), shown as a difference between the moderation and mediation model fits and the simple model. (C–E) Adiposity-payoff associations for low,

medium and high VS reward responders.

for the reactivity of striatal nuclei. We used the average �Card

across all simulated trials in an experiment, μ�Card, as a proxy for
the network’s overall striatal reactivity. Using this score, we then
simulated the VS reactivity and payoff associations reported in
Table 2 by correlating μ�Card with payoff scores for groups of
simulated agents with different asymmetries in Go (αG) and No
Go (αN) learning rates (Figure 4F). To ensure that learning-rate
asymmetries could account for observed VS reactivity-payoff
associations in a large and diverse sample of subjects, each sim-
ulated agent plotted in Figure 4F was initiated with a randomly
sampled set of model parameters to simulate individual dif-
ferences in response caution, exploration–exploitation policies
and decision onset time (see Methods for details). Similar to
the color scheme used for Figure 4B–D, low, medium and high

values of αN are depicted on a red-to-blue gradient, with lighter
and darker hues corresponding to lower and higher values of
αG, respectively. Indeed, despite individual differences across all
other dimensions of the model, altering the asymmetry of αG

and αN produced systematic changes at the group level, such
that when αN is high (blue line), higher network reactivity is
associated with greater payoff scores, maximally so when αG is
also high (dark blue dots). However, when αN is low (red line) and
decisions are asymmetrically reinforced by αG, higher network
reactivity is associated with lower overall payoff scores and thus,
worse performance.

To look for this signature in the human data, we first
regressed both VS reactivity and adiposity against payoff score.
While controlling for both age and gender, we observed both
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Fig. 3. Example single network run. (A) Deck selections by the network on each trial. (B) Histogram of selections shown in (A). (C) Change in state value function (Q) on

each trial based on feedback scores. (D) Change in action policy (P) for each deck option based on changes in the state value function.

significant main effect of VS reactivity (βVS = 19.181, STD
(
βVS

)
=

7.189, P = 0.004
)

and a modest effect for adiposity (βAdiposity =
−2.632, STD

(
βAdiposity

)
= 1.620, P = 0.047

)
on payoff score, as

well as a VS reactivity and adiposity interaction (βVS×Adiposity =
−15.883, STD

(
βVS×Adiposity

)
= 6.842, P = 0.009

)
. To illustrate

this interaction, we next performed a tertile split on the
adiposity score and categorized subjects as having low (N = 153),
medium (N = 142) or high (N = 138) adiposity and the payoff-
VS reactivity association was measured separately for each
group (Figure 5A). As predicted, after controlling for age and
gender, the low (β low = 28.818, STD(β low) = 13.719, P = 0.022)
and medium (βmedium = 44.601, STD(βmedium) = 12.791, P = 0.001)
adiposity groups had positive directions in their associations
between VS reactivity and payoff whereas the high adipos-
ity group had a negative association trend (βhigh = −14.945,
STD(βhigh) = 10.583, P = 0.079). Only the low and medium groups
had a statistically significant association, however, our main
focus here relies on the direction of the associations themselves.
Figure 5B shows the mean and 95% confidence intervals
for each model shown in Figure 4A. The mean of the high
adiposity group falls well outside the lower bounds of both the
low and medium adiposity groups, highlighting a significant
negative shift in the payoff-VS reactivity association with higher
adiposity levels.

To assess the differential association between VS reactivity
and payoff score by level of adiposity at the individual level, we
created a payoff-VS reactivity covariance score for each subject.
This was done by converting the payoff and VS scores into
standard normal distributions and subtracting them. Negative
covariance scores reflect individuals who are on the higher end
of the payoff distribution (i.e. low impulsivity) but lower end of
the VS reactivity scores or vice versa. This is consistent with

an asymmetry in learning rates via low learning on negative
feedback signals. Positive covariance scores, on the other hand,
indicate participants who are in either the high or the low end of
both the payoff score and VS reactivity distributions and reflect
more symmetrical learning rates. As expected, this covariance
score was negatively associated with adiposity (βcov = −0.122,
STD(βcov) = 0.061, P = 0.033; Figure 5C), while controlling for age
and gender, meaning that a negative relationship between pay-
off score and VS reactivity predicted greater adiposity across
individuals.

Discussion
Here we found that the sensitivity of ventral striatal pathways
to reward signals (i.e. monetary wins vs losses) moderates a
relationship between value-based decision-making and adipos-
ity, the latter being a precursor to obesity and poor health.
Using a dynamic decision model with reinforcement learning,
we show the impact that reward reactivity may have on adaptive
decisions depends on the relative symmetry in how positive and
negative feedback are used to update future decisions: that is,
as reward reactivity increases, greater sensitivity to gains over
losses leads to more strictly greedy decision policies that mini-
mize long-term gains. Indeed, individual differences in adiposity
were correlated with signatures of asymmetric learning rates
in the empirical data. These results suggest that sensitivity to
feedback may characterize aspects of unhealthy decisions when
learned associations are disproportionately driven by positive,
rather than negative, outcomes.

This pattern of learning rate asymmetries on decision-
making is largely consistent with work on adaptivity in basal
ganglia mediated decisions. For example, dopamine release
in the VS is associated with a modulation of cost-benefit
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Fig. 4. Adaptive network model. (A) Design of the adaptive Believer-Skeptic model (Dunovan and Verstynen, 2016). Each deck cue sends a drift rate to the Go pathway

of a single action channel and contributes to the drift rates of No Go pathways in the remaining action channels (i.e. center-surround architecture). Within each action

channel (right inset), the Go and No Go pathway activity accumulate independently and project to a single output decision node. The output decision node takes the

difference of Go and No Go pathway activity, along with a dynamic bias that increases with time, and accumulates to a decision boundary. The network chooses the

first output node to reach its decision boundary. See Methods for details. (B–D) Simulated payoff scores for a set of networks with a range of Go pathway learning

rates (αG), between 0.01 (lighter lines) and 0.4 (darker lines), and softmax temperature parameter (β). Separate models were run with No Go pathway learning rates

(αN) of 0.4 (B), 0.2 (C) and 0.01 (D). (E) Example simulations of reactivity of the network (�Card) across trials. As learning progresses, the selected pathway becomes

more rewarded and reactivity increases. Warmer colors reflect network simulations with higher αG. (F) Relationship between network reactivity and payoff scores.

Payoff scores for 100 simulated agents were regressed on trial-averaged values of the network proxy for VS reactivity (�Card) assuming different Go (αG) and No Go (αN)

learning rates. Low (0.05), medium (0.1) and high (0.3) values of αN are denoted by red, purple and blue, respectively. The saturation of each dot denotes the strength

of αG, with low, medium and high values (same conventions as above) corresponding to light, medium and dark hues (each simulated agent had a β sampled from a

uniform distribution between 2.5 and 7.0). As αN decreases, the relationship between network reactivity and payoff score goes from a positive association to a negative

association.

estimation on future decisions (Nasrallah et al., 2011) and
phasic stimulation of D2 receptors in this region of the
striatum have been shown to reduce risk seeking behavior in
rodents (Zalocusky et al., 2016). These D2 sensitive neurons
are predominantly expressed in indirect pathway cells (Cazorla
et al., 2014; Keeler et al., 2014), suggesting that low sensitivity
of indirect pathway systems may increase impulsive or risky
decisions. Positron emission tomography and genetic analyses
have found that individuals with greater levels of adiposity have
lower D2 receptor binding than leaner counterparts (Stice et al.,
2008; Volkow et al., 2008b; de Weijer et al., 2011). This is largely
consistent with the present findings; specifically, reduced phasic

D2 in the VS should down regulate sensitivity to negative
outcomes and thus make strictly greedy decisions that limit
the ability to maximize long-term rewards. This implies that
directly linking D2 pathways and asymmetric learning dynamics
to impulsive decisions in the etiology of adiposity and risk for
obesity should be the focus of future work.

While the present findings do provide clear evidence that
adiposity may coincide with signatures of asymmetric feedback
learning during value-based decision-making, it is worth noting
aspects of the experimental design that may limit generaliza-
tion of these findings. First, the sample consisted of predomi-
nantly mid-life, Caucasian adults. Given evidence of changes in
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Fig. 5. VS reactivity vs payoff score. (A) Scatter plots of the joint distribution between VS reactivity and payoff scores for participants in the lowest (red), middle (green)

and highest (blue) tertile of the adiposity score distributions. (B) Means and 95% confidence intervals of the regression models shown in (A). (C) Joint distribution of the

covariance score of payoff vs VS reactivity and adiposity value (see text for details).

reward learning across development (e.g. Geier et al., 2010), it is
likely that the degree to which effective value-based decision-
making drives health behaviors varies over time. In addition,
individual differences in sociocultural experiences may likely
have a substantial impact on this relationship between reward
learning and health behaviors (Hanson et al., 2016). Second, this
study took advantage of an archival sample. Predicting individ-
ual differences in off-line measures of IGT performance based
on VS responses from an independent task is a coarse method
for evaluating our primary hypothesis. Follow up work should
use more targeted reinforcement learning tasks that allow for
measuring trial-wise responses in the MRI environment that will
allow for directly measuring the magnitude of learning to gains
and losses, such as the multi-armed bandit task (Sutton and
Barto, 1998). Finally, interpretations of our latent variable of adi-
posity are also limited insofar as it does not reflect the specific
pathogenic contributions of visceral adiposity (e.g. as assessed
by dual-energy X-ray absorptiometry). Visceral adiposity may
have varied across individuals in this sample, and it is possible
that it may differentially relate to reward based decision-making
processes that impact health behaviors (see Shuster et al., 2012
for review). These limitations do not necessarily negate the
conclusions drawn from the current analysis, but point to future
experimental directions to explore.
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