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Clinical and neuroimaging data support the idea that 
schizo-obsessive comorbidity (SOC), similar to obsessive-
compulsive disorder (OCD) and schizophrenia (SCZ), 
may be a distinct brain disorder. In this study, we exam-
ined the strength of resting-state functional connectivity 
(rsFC) between 19 subregions of the default mode net-
work (DMN) and whole brain voxels in 22 patients with 
SOC features, 20 patients with SCZ alone, 22 patients 
with OCD, and 22 healthy controls (HC). The main results 
demonstrated that patients with SOC exhibited the highest 
rsFC strength within subregions of the DMN and the low-
est rsFC strength between the DMN and subregions of the 
salience network (SN) compared with the other 3 groups. 
In addition, compared with HCs, all 3 patient groups 
exhibited increased rsFC between subregions of the DMN 
and the executive control network (ECN). The SOC and 
SCZ group both exhibited increased rsFC between sub-
regions of the DMN and the middle temporal gyrus, but 
the OCD group exhibited decreased rsFC between them. 
These findings highlight a specific alteration in functional 
connectivity in the DMN in patients with SOC, and pro-
vide new insights into the dysfunctional brain organization 
of different mental disorders.

Key words:   schizo-obsessive comorbidity/schizo
phrenia/obsessive-compulsive disorder/functional 
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Introduction

In 2013, the American Psychiatric Association (APA) 
officially released the fifth edition of the Diagnostic and 
Statistical Manual of Mental Disorders (DSM-5), which 
contained significant changes.1 The main focus of these 
changes is that a dimensional classification (6 psycho-
pathological dimensions: positive symptoms, disorgan-
ized speech, grossly disorganized or catatonic behavior, 
negative symptoms, affection, and cognition) is recom-
mended for the diagnosis of schizophrenia (SCZ).2,3 
This new framework conceptualizes SCZ as a psychotic 
spectrum disorder with a continuum of different deficits 
and evaluates independent and interrelated symptoms 
comprehensively.4 A number of previous studies have 
confirmed the feasibility of this framework in the clas-
sification, diagnosis, and treatment of SCZ.5–7 However, 
some other possible SCZ dimensions have been found 
in clinical studies, such as the “schizo-obsessive comor-
bidity (SOC)”.8,9 Comorbid obsessive-compulsive dis-
order (OCD) is diagnosed in 7.8%–26% of patients with 
SCZ,9–13 approximately 10-fold higher than the incidence 
of OCD in the general population.14 Patients with SOC 
features have been found to have an earlier age of onset 
and hospitalization,15 more severe and complicated symp-
toms,16 and more severe and longitudinally stable cogni-
tive deficits compared with patients with SCZ or OCD 
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alone.12 One study has reported a dual impact of OCD 
on functioning in SCZ with a gradual transition from 
an improving to a worsening effect depending on OCD 
symptoms severity.17 Neuroimaging findings have shown 
that patients with SOC could have smaller whole brain 
gray matter volume,18 smaller hippocampal volume,19 and 
enlarged anterior horn of the lateral ventricles.20 These 
results support the “double jeopardy hypothesis” of 
SOC.21,22 However, whether SOC is a distinct subtype or 
subdimension of SCZ23,24 remains controversial.

Aberrant functional integration within large-scale 
neuronal networks has been proposed as a core neural 
deficit of mental disorders.25–27 Abnormal functional 
connectivity both within the component regions of the 
default mode network (DMN) and with other networks 
such as the salience network (SN) and the central execu-
tive network (CEN) have been reported in SCZ,28 OCD,29 
autism,30,31 major depressive disorder,32,33 and post-trau-
matic stress disorder (PTSD).34,35 The DMN is involved in 
many crucial cognitive functions associated with psychi-
atric symptoms including intrinsic stimulus-independent 
thoughts,36 autobiographical memory, perspective-tak-
ing,37 monitoring internal and external environment,38 
navigating social interactions,39 consolidating past ex-
perience, adaptive pre-experience of upcoming events 
and constructing a unique, an integrated “self,”40 and 
interacting with the SN and the ECN, in relation to self-
monitoring and goal-directed behavior.41 However, little 
is known about the changes in functional connectivity at 
the DMN in patients with SOC.

Since SOC is related to both SCZ and OCD, its under-
lying DMN functional alteration may show both similari-
ties and differences with these 2 disorders. Some previous 
studies have shown that SCZ patients exhibited inappro-
priate over-activation within the DMN and decreased 
resting-state functional connectivity (rsFC) between the 
DMN and task-positive network such as the SN and the 
ECN,42–45 while others have reported different patterns 
of rsFC within the DMN,46 and between the DMN and 
other networks.40 Moreover, reduced rsFC strength within 
the DMN,47,48 and increased rsFC strength between the 
DMN and sub-regions of the SN and the ECN29,49,50 have 
been reported in patients with OCD.

In addition, investigating the rsFC between subre-
gions of the DMN and whole brain voxels and its cor-
relation with different symptoms in patients with SOC 
could identify the similarity and difference in functional 
networks between patients with SOC and patients with 
either SCZ or OCD, and could clarify the relationship 
between symptom dimensions and brain dysfunction.

In this study, we aimed to compare the rsFC changes 
between DMN subregions and whole brain voxels in 
patients with SOC, SCZ, OCD, and healthy controls 
(HCs) using resting-state functional magnetic resonance 
imaging (fMRI). Since the majority of previous studies 
in patients with SCZ showed increased rsFC within the 

DMN and the influence of SCZ symptoms on brain func-
tion generally is more severe and extensive than OCD 
symptoms,42–45,51 we hypothesized that patients with SOC 
would show similar but more severe symptoms and rsFC 
changes within the DMN than patients with either SCZ 
or OCD.

Materials and Methods

Participants

Twenty-two patients with SOC, 20 SCZ patients, and 
22 OCD patients in remission were recruited from the 
Department of Psychiatry, the Second Xiangya Hospital 
of the Central South University in Changsha, Hunan, 
China. Twenty-two healthy participants were recruited 
as controls from the local community. Consensus diag-
noses of the patients were ascertained by 2 experienced 
psychiatrists using the Structured Clinical Interview for 
DSM-IV Axis I  Disorder, Patient Edition (SCID-IV).52 
Patients with SOC met the diagnostic criteria of SCZ and 
OCD simultaneously, while SCZ and OCD patients met 
the diagnostic criteria of SCZ and OCD, respectively. 
HCs were screened using the nonpatient edition of the 
SCID-IV to confirm the absence of psychiatric disorders. 
In addition, individuals with any family history of psy-
chiatric disorder were excluded.

The exclusion criteria for all participants were a his-
tory of nicotine, alcohol, or substance dependence, 
craniocerebral trauma, serious physical illness, or neu-
rological disorders; an intelligence quotient (IQ) of less 
than 70; and contraindications for MRI scanning such 
as pregnancy, claustrophobia, and having metal dentures, 
prostheses, or pacemakers in the body. Participants who 
were uncooperative, whose head motions were greater 
than 2 mm displacement and/or 2° rotation in the x, y, 
or z axes throughout the course of the scans were also 
excluded.

The study protocol was designed in accordance with 
the Declaration of Helsinki and approved by the Ethics 
Committee of the Second Xiangya Hospital of the 
Central South University, Changsha, China. All partici-
pants provided written informed consent.

Instruments

The symptoms of SCZ were rated by trained clinicians 
using the Positive and Negative Syndrome Scale (PANSS), 
which consists of the positive, negative, and general psy-
chopathology subscales.53 Obsessive-compulsive symp-
toms were measured using the Yale–Brown Obsessive 
Compulsive Scale (Y-BOCS), which consists of the ob-
sessive thought and compulsive behavior subscales.54 The 
IQ of participants were estimated with the short-form of 
the Chinese version of the Wechsler Adult Intelligence 
Scale—Revised55 using the “common sense,” “arith-
metic,” “similarity,” and “digital span” subtests.
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Scanning Acquisition

All imaging data were acquired using a Siemens SKYRA 
3.0T MR scanner (Siemens Medical) at the Second 
Xiangya Hospital of the Central South University, 
Changsha, China. Resting-state fMRI data were acquired 
using a T2-weighted echo planar imaging (EPI) sequence; 
200 whole-brain volumes were collected with slices = 39, 
slice thickness = 3.5 mm, echo time (TE) = 25 ms, rep-
etition time (TR)  =  2500  ms, flip angle  =  90°, matrix 
size  =  64  ×  64, field of view (FOV)  =  200  mm, voxel 
size = 3.1 × 3.1 × 3.5 mm3.

High-resolution T1-weighted anatomical images 
were obtained with a magnetization prepared rapid gra-
dient echo (MPRAGE) sequence, with the following 
parameters: repetition time (TR) = 1900 ms, echo time 
(TE) = 2.01 ms, inversion time = 900 ms, field of view 
(FOV) = 256 mm, flip angle = 9°, in-plane matrix resolu-
tion = 256 × 256, slice thickness = 1 mm, slices = 176, and 
voxel size = 1 × 1 × 1 mm3.

During scanning, the participants were instructed to 
remain awake with their eyes closed. The images were 
screened by a radiologist to exclude any incidental clin-
ical abnormalities before further analysis.

Data Preprocessing

Participants’ data were preprocessed by the Statistical 
Parametric Mapping Software (SPM12, http://www.fil.
ion.ucl.ac.uk/spm) and Data Processing & Analysis for 
Brain Imaging (DPABI2.1, http://www.rfmri.org/dpabi) 
Software56 in MATLAB R2014b (MathWorks, Inc.). 
The first 10 volumes at the beginning of the resting state 
scan were discarded to ensure steady-state magnetization. 
Secondly, slice timing and head motion correction were 
performed to correct slice order and head motion effects, 
and a mean functional image was obtained for each par-
ticipant. Thirdly, the participants’ structural images were 
manually co-registered and realigned with the anterior 
commissure-posterior commissure line, and subsequently 
co-registered to the mean functional image, and seg-
mented as gray matter, white matter, and cerebrospinal 
fluid.57 Fourthly, each functional image was normalized 
to the standard Montreal Neurological Institute space 
in 3 × 3 × 3 mm3 voxel sizes with the application of the 
parameters obtained during segmentation. Fifthly, spa-
tial smoothing was performed with an 8 mm full-width 
at half  maximum. Subsequently, the linear trends were 
removed. Finally, the images were temporally band-pass 
filtered (0.01–0.1 Hz) to reduce low-frequency drift and 
high-frequency noise. The nuisance covariates, including 
head motion parameters, white-matter signal and ce-
rebrospinal fluid signal were regressed out. The global 
signal was not regressed out because doing so may intro-
duce artefactual negative correlations in rsFC analysis.58

To exclude artefacts caused by head motion, we took 
the Friston 24-parameter model as a regressor for the 

first-level analysis,59 which has been shown to be superior 
to the 6-parameter model.60 We also calculated the mean 
frame-wise displacement (FD)61 of each participant and 
took it as a covariate in the second-level analysis as sug-
gested by Yan.60

Functional Connectivity Analysis

The DMN was identified using a publicly available atlas 
of functionally defined regions of interests (ROIs), de-
veloped by the Functional Imaging in Neuropsychiatric 
Disorders (FIND) lab at Stanford University, down-
loaded at http://findlab.stanford.edu/functional_ROIs.
html. This includes 19 subregions, from dorsal region 1 
(D1) to dorsal region 9 (D9) and ventral region 1 (V1) 
to ventral region 10 (V10), mainly including the medial 
frontal gyrus (medial FG), the posterior cingulate cortex 
(pCC), the precuneus, the thalamus, the fusiform gyrus, 
the angular gyrus, the hippocampus, and the right cere-
bellum 9 region (see supplementary table S1 and supple-
mentary figure S1 of Appendix).62

To examine whether the functional connectivity of the 
DMN was altered in different disorders, 19 subregions of 
the DMN were used as ROIs to compute the voxel-wise 
rsFC analysis between the seeds and other voxels in the 
whole brain by DPABI. Firstly, the mean time series of 
the seeds were calculated and correlated with the time se-
ries of all other whole brain voxels. The correlation maps 
produced in this analysis were then converted to Z-maps 
using Fisher’s r-to-z transformation. Full factorial model 
was conducted to identify the regions that had significant 
rsFC difference within the 19 seeds among the 4 groups 
by SPM12 in the general linear model. In addition, 
according to previous studies showing the influence of 
age, gender, IQ, and mean FD on brain functional con-
nectivity,50,60,63 these 4 factors were entered as covariates 
in the analysis. The clusters were considered significant 
if  they reached a threshold of P <  .001 with alpha-sim 
0.05 correction (cluster size > 41 voxels), calculated using 
DPABI.56 The DMN, the SN, and the ECN templates 
developed by the FIND lab were used to verify whether 
the rsFC results belonged to specific brain networks. The 
SN mainly included the fronto-insular cortex, the sup-
plementary motor area (SMA), the anterior cingulate 
cortex (aCC), the parietal cortex, and the cerebellum 6 
region.62 The ECN included the dorsolateral prefrontal 
cortex (DLPFC), the angular gyrus, the parietal cortex, 
the occipital cortex, and the cerebellum crus 2 region.64 
The images were visualized with BrainNet Viewer.65

To test whether rsFC differences were correlated with 
the corresponding clinical symptoms in patients with 
SOC, the significantly different rsFC results between 
patients with SOC and HCs were selected as ROIs. The 
rsFC values of these ROIs were extracted by REST 
(http://www.restfmri.net) and partial correlation analysis 
was conducted with scores on the positive, negative, and 
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general psychopathology subscales of the PANSS, as well 
as scores on the Y-BOCS obsessive thinking and compul-
sive behavior subscales, with age, gender, IQ, and mean 
FD entered as covariates. The significance level was set 
at P < .05.66

To investigate whether rsFC differences were corre-
lated with disease dimensions across the diagnostic cat-
egories, we also conducted correlation analysis between 
the subscale scores of  the PANSS and the whole brain 
rsFC of DMN subregions in the combined SOC and 
SCZ group, between the subscale scores of  Y-BOCS and 
the whole brain rsFC of DMN subregions in the com-
bined SOC and OCD group (P < .001, cluster size > 41 
voxels).

Results

Demographics

There was no significant difference between the four 
groups in gender, age, mean FD, and PANSS and Y-BOCS 
compulsive behavior subscale scores. There was a signif-
icant difference in the Y-BOCS obsessive thinking sub-
scale scores between the SOC group and the OCD group 
(mean difference = 2.29, P < .05). The 4 groups were also 
significantly different in estimated IQ (F = 13.66, df = 3, 
P  <  .01). Post hoc analyses with Bonferroni correction 
showed that the HC group had significantly higher esti-
mated IQ than the other 3 groups (mean difference with 
SOC = 24.86, P < .01; mean difference with SCZ = 22.20, 
P < .01; mean difference with OCD = 12.09, P < .05), and 
the mean estimated IQ of OCD patients was significantly 
higher than patients with SOC (mean difference = 12.77, 
P < .05) (table 1).

Functional Connectivity Within the DMN

The results of the full-factorial model analysis showed 
that patients with SOC exhibited significantly increased 
rsFC strength within the DMN subregions relative to the 
other 3 groups. In comparison with HCs, SCZ patients 
especially exhibited increased rsFC between the thalamus 
and the left precuneus, between the right hippocampus 
(Hippo) and the right angular gyrus, between the left 
fusiform and the medial orbital frontal gyrus (medial 
oFG), between the right fusiform and the thalamus, and 
between the right mOG and the left smFG (table 2 and 
figure 1).

In addition, the rsFC between the thalamus and the 
left precuneus correlated positively with the Y-BOCS ob-
sessive thinking subscale scores (r = .59, P = .01) and the 
Y-BOCS compulsive behavior subscale scores (r  =  .57, 
P = .01). The rsFC between the left fusiform and the me-
dial oFG correlated inversely with Y-BOCS compulsive 
behavior subscale scores (r = −.58, P =  .01) in patients 
with SOC.

Functional Connectivity Between the DMN and Other 
Networks

Patients with SOC exhibited decreased rsFC strength be-
tween the DMN and the SN compared with the other 
groups, which was mainly found between the DMN sub-
regions and the SMA.

The rsFC between the DMN and the ECN was sig-
nificantly increased in patients with SOC, compared with 
HCs, especially between the DMN subregions and the 
inferior triangular frontal gyrus (itFG). The rsFC between 
the medial frontal gyrus (medial FG) and the left itFG 

Table 1.  Demographic and Psychopathological Data of Patients and HC Subjects

SOC (n = 22) SCZ (n = 20) OCD (n = 22) HCs (n = 22) F/χ2/t P

Gender (M/F) 14/8 12/8 11/11 11/11 1.29 0.73
Age (years) 22.00 (4.83) (17–36) 21.50 (3.95) (16–30) 22.41 (6.21) (16–34) 22.68 (2.30) (17–27) 0.27 0.88
IQ 96.59 (15.26) 

(79–124)
99.25 (14.87) 
(79–130)

109.36 (15.87) 
(80–136)

121.45 (10.31) 
(97–138)

13.66 0.001**

Mean FD 0.07 (0.02) 
(0.04–0.11)

0.07 (0.03) 
(0.03–0.14)

0.09 (0.05) 
(0.04–0.22)

0.07 (0.03) 
(0.04–0.15)

2.76 0.05

  PANSS positive 
symptoms

14.36 (5.06) (7–22) 16.20 (4.23) (11–25) NA NA -1.27 0.21

  PANSS negative 
symptoms

9.09 (3.02) (7–20) 8.85 (2.39) (7–15) NA NA 0.29 0.78

  PANSS general 
psychopathology

29.18 (6.71) (18–43) 30.70 (6.44) (19–43) NA NA -0.75 0.46

  Y-BOCS obsessive 
thinking

16.91 (2.97) (11–22) NA 14.50 (3.95) (8–20) NA 2.29 0.03*

  Y-BOCS compulsive 
behavior

12.68 (4.87) (5–20) NA 12.68 (3.77) (5–22) NA 0.00 1.00

Note: OCD, obsessive-compulsive disorder; SCZ, schizophrenia; SOC, schizo-obsessive comorbidity; HCs, healthy controls; IQ, 
intelligence quotient; FD, frame-wise displacement of head movement; NA, not applicable; PANSS, Positive and Negative Syndrome 
Scale; Y-BOCS, Yale–Brown Obsessive Compulsive Scale; *P < 0.05 was considered significant; **P < 0.01. Data are presented as means 
(standard deviation) (range).
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Table 2.  Notable Groups Differences of the rsFC Between DMN Subregions and Whole Brain Voxels in 4 Groups Using Post Hoc in 
Full-factorial Model Analysis (P < .001, Cluster Size > 41 Voxels)

DMN Region

Peak MNI coordinates

Voxels TX Y Z

A. SOC vs HCs
  D1 (L&R medial FG) L itFG −48 21 21 53 3.88

R SMA 9 15 57 58 −4.68
  D6 (R angular) L iTG −36 3 −42 42 5.30
  D7 (L&R thalamus) R itFG 51 33 0 95 5.43

L precuneus −15 −66 60 67 4.23
vermis 4 0 −57 −9 76 −4.80

  D9 (R Hippo) R angular 42 −69 39 44 3.82
  V3 (L fusiform) L&R medial oFG 9 54 −9 120 4.67

L&R SMA 6 3 54 45 −3.97
  V8 (R fusiform) L&R thalamus −3 −18 6 56 4.64
  V9 (R mOG) L&R smFG −3 60 36 53 4.18
  V10 (R cerebellum 9) R mTG 66 −51 12 63 4.71
B. SOC vs SCZ
  D1 (L&R medial FG) R sTG 57 −12 −9 85 4.45

L ioFG −57 12 3 63 −4.14
L mFG −27 39 30 101 −4.73
R sFG 24 54 12 108 −4.82

  D3 (R sFG) R sFG 27 63 12 123 −3.97
L mFG −27 39 30 48 −4.28

  D4 (L&R pCC) R insula 39 9 0 52 −4.33
R sFG 24 48 12 65 −3.94

  D6 (R angular) R ParaHippo 30 −18 −18 45 3.99
  D7 (L&R thalamus) L sFG −12 39 36 88 4.48

L mFG −24 −9 51 51 4.01
  D8 (L Hippo) R putamen 24 0 6 44 −4.58
  D9 (R Hippo) L&R medial oFG 0 45 −18 44 3.63

L pCC −6 −48 21 52 3.68
L cerebellum 6 −24 −63 −30 60 −4.24

  V1 (L calcarine) R insula 39 6 0 43 −3.91
  V2 (L mFG) L sTG −48 −36 15 53 −4.11
  V3 (L fusiform) L medial oFG −3 63 −3 76 4.12

R insula 33 12 3 93 −4.44
R putamen 24 3 6 64 −4.44
L ioFG −48 9 0 97 −4.03
R sTG 51 −21 21 156 −4.11

  V4 (L mOG) R insula 48 3 3 61 −3.90
  V5 (R precuneus) R ParaHippo 33 −30 −12 45 4.30

R insula 42 6 −6 75 −4.48
R mFG 30 45 15 40 −4.12

  V7 (R mFG) R cerebellum crus2 36 −84 −45 46 4.29
R sTG 57 12 −3 112 −4.30
L precentral −45 −6 42 48 −3.97
L SMA −9 0 57 46 −4.45

C. SOC vs OCD
  D1 (L&R medial FG) L mTG −54 −54 0 55 −4.28

L postcentral −30 −39 63 156 −3.90
  D3 (R sFG) R SMA 15 6 66 80 −4.72
  D4 (L&R pCC) R ParaHippo 24 −18 −18 42 4.00

R SMA 15 9 60 57 −4.10
  D5 (L&R mCC) L precentral −33 −12 39 51 −4.08

R precentral 39 −6 36 55 −4.75
  D6 (R angular) R SMA 9 0 72 66 −4.27
  D7 (L&R thalamus) R sTG 48 9 −21 81 4.88

Vermis 4 0 −57 −9 165 −5.30
  D8 (L Hippo) L&R precuneus 6 −54 27 74 3.63
  D9 (R Hippo) L&R Precuneus −3 −51 18 135 4.48

L&R pCC −3 −48 27 59 3.41
L angular −33 −75 48 83 3.89
Vermis 7 3 −69 −30 61 −4.03
L&R SMA 6 0 60 170 −4.84
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Fig. 1.  Notable group differences in rsFC between DMN subregions (as seen at the lower left sub-graph) and whole brain voxels in the 
4 groups using full-factorial model analysis (P < .001, cluster size > 41 voxels). (A) SOC vs HCs. (B) SOC vs SCZ. (C) SOC vs OCD. 
SOC, schizo-obsessive comorbidity; OCD, obsessive-compulsive disorder; SCZ, schizophrenia; HCs, healthy controls; rsFC, resting-
state functional connectivity; DMN, default mode network; medial FG, medial frontal gyrus; sFG, superior frontal gyrus; mFG, middle 
frontal gyrus; mOG, middle occipital gyrus; mCC, middle cingulate cortex; pCC, posterior cingulate cortex; Hippo, hippocampal gyrus.

DMN Region

Peak MNI coordinates

Voxels TX Y Z

  V3 (L fusiform) L&R precuneus −3 −54 12 92 3.85
L angular −30 −69 42 56 3.89

  V4 (L mOG) L&R SMA 3 6 51 49 −3.95
  V7 (R mFG) L sFG −21 −3 54 60 −4.04

R sFG 27 −3 54 46 −3.91
  V9 (R mOG) R SMA 12 3 69 61 −4.05

Note: rsFC, resting-state functional connectivity; DMN, default mode network; MNI, Montreal Neurological Institute; SOC, schizo-
obsessive comorbidity; OCD, obsessive-compulsive disorder; SCZ, schizophrenia; HCs, healthy controls; sFG, superior frontal gyrus; 
mFG, middle frontal gyrus; soFG, superior forntal gyrus, orbital part; smFG, superior medial frontal gyrus; itFG, inferior frontal gyrus, 
triangular part; ioFG, inferior frontal gyrus, opercular part; medial FG, medial frontal gyrus; medial oFG, medial orbital frontal gyrus; 
mCC, middle cingulate cortex; pCC, posterior cingulate cortex; SMA, supplementary motor area; sTG, superior temporal gyrus; mTG, 
middle temporal gyrus; iTG, inferior temporal gyrus; sPL, superior parietal lobule; mOG, middle occipital gyrus; Hippo, hippocampal 
gyrus; ParaHippo, parahippocampal gyrus; L, left; R, right.

Table 2.  Continued
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correlated positively with Y-BOCS compulsive behavior 
subscale scores (r = .51, P < .05) in patients with SOC.

We also observed increased rsFC between the DMN 
and the mTG, which does not belong to either the SN 
or the ECN in the SOC and SCZ group, compared with 
HCs (table  2 and figure  1). The OCD patients showed 
decreased rsFC between them.

In addition, compared with the HC group, SCZ 
patients exhibited increased rsFC within the DMN sub-
regions, decreased rsFC between the DMN and the SN 
subregions, increased rsFC between the DMN and the 
ECN subregions including the middle orbital frontal 
gyrus (moFG), the right itFG; and decreased rsFC be-
tween the DMN and the ECN sub-regions including the 
left middle frontal gyrus (mFG) and the right superior 
parietal lobule (sPL). OCD patients showed decreased 
rsFC within the DMN subregions, and increased rsFC 
between the DMN and both the SN and the ECN (see 
supplementary table S2 and supplementary figure S2 of 
Appendix).

Correlation Between PANSS and Y-BOCS Subscale 
Scores and DMN Functional Connectivity

In the combined SOC and SCZ group, the PANSS pos-
itive subscale scores correlated positively with the rsFC 
between DMN subregions and the left precentral gyrus 
and the right iTG. They also correlated inversely with the 
rsFC between DMN subregions and the aCC and the left 
mTG. The PANSS negative subscale scores correlated pos-
itively with the rsFC between DMN subregions and the 
right mFG. The PANSS general psychopathology subscale 
scores correlated inversely with the rsFC within the DMN 
and between the DMN subregions and the temporal gyrus.

In the combined SOC and OCD group, the Y-BOCS 
obsessive thinking subscale scores correlated positively 
with the rsFC within the DMN and between DMN sub-
regions and ECN subregions and the right cuneus. They 
also correlated inversely with the rsFC between DMN 
subregions and the left sTG. The Y-BOCS compulsive 
behavior subscale scores correlated positively with the 
rsFC between DMN subregions and SN subregions, the 
right precentral gyrus, the cerebellum, the right cuneus, 
and the left lingual gyrus. They also correlated inversely 
with the rsFC within the DMN and between DMN sub-
regions and the caudate (table 3 and figure 2).

Discussion

In this study, we compared the rsFC changes between 
DMN subregions and whole brain voxels in patients with 
SOC, patients with SCZ, patients with OCD, and HCs. 
We also investigated the relationship between PANSS and 
Y-BOCS scores and the rsFC of the DMN in patients. 
Although all patients were in remission and there was 
no significant clinical difference between patients with 
SOC and the other patient groups except the Y-BOCS 

obsessive thinking subscale scores and estimated IQ, our 
results support the hypothesis that patients with SOC 
showed increased rsFC within the DMN subregions and 
decreased rsFC between the DMN and the SN compared 
with the other 3 groups. We also found significantly 
increased rsFC between the DMN and the ECN in the 
SOC group compared with HCs.

Increased rsFC within the DMN has often been reported 
in studies of SCZ patients and has been associated with 
impaired self-related mental simulation, self-regulation 
deficits,67 chaotic autobiographical memory, unintegrated 
emotion and behavior,68 and inability in distinguish-
ing thoughts and real perceptions.43 All of these may be 
closely related to perceptual disturbances and may con-
tribute to typical SCZ symptoms such as hallucinations, 
delusions, and behavioral disturbance.67,69 The increased 
rsFC within the DMN in patients with SOC compared 
with the other diagnostic groups may be the neural sub-
strate underlying impaired cognitive functions on the one 
hand, and strengthened preferential memory of patholog-
ical thinking and behavior on the other hand, associated 
with the co-expression of both SCZ and OCD symptoms.

In addition, we found that the rsFC between the thala-
mus and the left precuneus correlated positively with the 
Y-BOCS obsessive thinking subscale scores and Y-BOCS 
compulsive behavior subscale scores in patients with SOC. 
The thalamus has been shown to be involved in reward 
expectation, attention, emotion, memory,70 and execu-
tive function.71 The precuneus is involved in visuospatial 
imagery, episodic memory retrieval, and self-centered 
mental imagery strategies.72 Our finding suggests that 
abnormal thalamic-precuneus connectivity may be a neu-
roimaging marker of the cumulative cognitive decline and 
neural abnormality of obsessive-compulsive symptoms in 
SCZ patients.73 The rsFC between the left fusiform gyrus 
and the medial oFG correlated inversely with Y-BOCS 
compulsive behavior subscale scores in patients with SOC, 
suggesting that obsessive behavior may be a reflection of 
neural adaptation, ie, a compensatory effect in patients 
with SOC.17 A similar mechanism has been found in gen-
eralized anxiety disorder and PTSD patients.74

Another important observation in this study is that 
patients with SOC exhibited significantly decreased rsFC 
between the DMN and the SN, particularly between 
DMN subregions and the SMA. The major functions of 
the SN are vigilance, orientation, execution,46 and integrat-
ing salient external stimuli and internal events.40 Previous 
studies in patients with SCZ have also reported decreased 
rsFC between the DMN and the SN.42,46 Decreased 
rsFC between the DMN and the SN in patients with 
SOC may imply the existence of a chaotic relationship 
between internal perception and external environmen-
tal surveillance and behavior, which may be associated 
with psychiatric symptoms and behavioral disturbances 
simultaneously.75–78 However, increased rsFC between 
the DMN and the SN was also found in the OCD group, 
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and the correlation analysis in the combined SOC and 
OCD group showed that the rsFC between the DMN and 
the SN correlated positively with Y-BOCS compulsive 
behavior subscale scores, together with the rsFC within 
the DMN correlating negatively with Y-BOCS compul-
sive behavior subscale scores, may reflect the complicated 
interaction of SCZ and OCD symptoms on brain func-
tion in patients with SOC.

Concerning the relationship between the subregions of 
the DMN and the ECN, we found that compared with 
HCs, patients with SOC exhibited increased rsFC between 

DMN subregions and the itFG, which was similar to the 
SCZ and OCD group. The ECN is responsible for plan-
ning, decision-making, working memory, goal-directed 
behavior, and cognitive control.28 The increased inter-
action between the DMN and the ECN may be related 
to disorganization in performing social emotion-related 
tasks,79 blurred boundaries between perceptions arising 
from imagined scenarios and those from the external 
world,39,80 imbalanced homeostasis,81 and uncontrolled 
behavioral performance,40 associated with both SCZ and 
OCD symptoms.82,83

Table 3.  Notable Correlation Between the Questionnaire Subscale Scores and the Whole Brain rsFC of DMN Subregions (P < .001, 
Cluster Size > 41 Voxels)

DMN Region

Peak MNI coordinates

Voxels rX Y Z

A. PANSS positive scores (SOC + SCZ group)
  D6 (R angular) L&R aCC 0 30 −6 77 −4.96
  D8 (L Hippo) L precentral −60 0 24 51 4.64
  V6 (L&R precuneus) L mTG −48 −48 9 53 −5.41
  V9 (R mOG) R iTG 45 −39 −12 47 6.20

L&R aCC 6 30 −3 44 −4.54
B. PANSS negative scores (SOC + SCZ group)
  V1 (L calcarine) R mFG 27 39 27 43 4.23
  V9 (R mOG) R mFG 21 39 21 41 4.03
C. PANSS general scores (SOC + SCZ group)
  V9 (R mOG) L&R smFG 0 66 6 81 −5.27

L mTG −45 −69 21 69 −4.88
R mTG 45 3 −27 47 −4.59
L sTG −33 18 −30 49 −4.65

D. Y-BOCS obsessive thinking scores (SOC + OCD group)
  D1 (L&R medial FG) R cuneus 18 −99 12 79 4.51
  D4 (L&R pCC) L cerebellum crus1 −3 −93 −21 59 4.59
  V1 (L calcarine) L&R precuneus 3 −69 54 72 4.59
  V10 (R Cerebellum 9) L sTG −39 12 −24 44 −4.27

E. Y-BOCS compulsive behaviour scores (SOC + OCD group)
  D1 (L&R medial FG) R fusiform 30 −33 −24 94 −5.61

L pCC −9 −45 24 308 −4.74
  D2 (L angular) R precentral 60 −3 39 50 5.21
  D4 (L&R pCC) L&R smFG 6 54 36 128 −4.49
  D5 (L&R mCC) Vermis 8 3 −57 −36 191 6.38

L&R smFG −15 48 15 309 −5.07
  D9 (R Hippo) L&R caudate −3 15 −3 110 −5.14
  V1 (L calcarine) R cerebellum 8 33 −48 −48 119 4.84

R medial oFG 6 18 −6 46 −4.15
L&R smFG −12 51 18 513 −5.57

  V2 (L mFG) L insula −30 −33 18 49 4.55
  V4 (L mOG) L cerebellum 6 −30 −60 −27 107 5.68

L lingual −15 −96 −15 81 4.26
  V5 (R precuneus) L&R smFG −12 54 15 323 −5.34
  V7 (R mFG) L&R aCC −6 21 12 66 −4.59
  V8 (R fusiform) R cuneus 12 −69 36 58 4.84

L sFG −18 36 39 45 −4.79
L&R medial oFG 3 18 −15 764 −5.40

Note: rsFC, resting-state functional connectivity; DMN, default mode network; MNI, Montreal Neurological Institute; SOC, schizo-
obsessive comorbidity; OCD, obsessive-compulsive disorder; SCZ, schizophrenia; PANSS, Positive and Negative Syndrome Scale; 
Y-BOCS, Yale–Brown Obsessive Compulsive Scale; sFG, superior frontal gyrus; mFG, middle frontal gyrus; medial oFG, medial orbital 
frontal gyrus; medial FG, medial frontal gyrus; smFG, superior medial frontal gyrus; aCC, anterior cingulate cortex; mCC, middle 
cingulate cortex; pCC, posterior cingulate cortex; sTG, superior temporal gyrus; mTG, middle temporal gyrus; iTG, inferior temporal 
gyrus; mOG, middle occipital gyrus; Hippo, hippocampal gyrus; L, left; R, right.
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In addition, compared with HCs, patients with SOC 
also showed significantly increased rsFC between DMN 
subregions and the mTG, which is similar to SCZ patients, 
but different from OCD patients. This may be a reflec-
tion of aberrant information transition between these 
brain regions, which may be associated with misinterpre-
tation of auditory signals as arising from the auditory 
cortex without an external stimulus.84 Previous studies in 
patients with SCZ have reported that hallucinations may 
be associated with a dysfunctional temporal gyrus.85 It 

could also be related to confusion of subjective feelings 
and bodily sensations45,86 and other positive symptoms.43

This study has several limitations. Firstly, the sample 
size for each group was small and our results require fur-
ther verification with a larger sample. Secondly, many 
patients in this study were medicated, but due to the use 
of different antipsychotics and anti-OCD medications, 
we could not reliably calculate the equivalent dosages 
for co-variation in the statistical analysis. Thirdly, we 
could not exclude the possibility that brain dysfunction 

Fig. 2.  Notable correlation between the subscale scores of the PANSS and whole brain rsFC of DMN subregions (as seen at the lower 
left sub-graph) in the combined SOC and SCZ group, between the subscale scores of the Y-BOCS and whole brain rsFC of DMN sub-
regions in the combined SOC and OCD group (P < .001, cluster size > 41 voxels). (A) PANSS positive scores (combined SOC and SCZ 
group). (B) PANSS negative scores (combined SOC and SCZ group). (C) PANSS general scores (combined SOC and SCZ group). (D) 
Y-BOCS obsessive thinking scores (combined SOC and OCD group). (E) Y-BOCS compulsive behavior scores (combined SOC and 
OCD group). SOC, schizo-obsessive comorbidity; OCD, obsessive compulsive disorder; SCZ, schizophrenia; HCs, healthy controls; 
rsFC, resting-state functional connectivity; DMN, default mode network; medial FG, medial frontal gyrus; mFG, middle frontal gyrus; 
mOG, middle occipital gyrus; Hippo, hippocampal gyrus; mCC, middle cingulate cortex; pCC, posterior cingulate cortex.
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elsewhere contributed to the observed clinical changes in 
our patients. The inclusion of additional nodes in future 
studies could address this issue. Fourthly, one recent 
study indicated that regions contributing to the DMN are 
spatially variable across individuals.87 Exploring individ-
ual differences in brain network is an important research 
direction. Fifthly, resting state fMRI has poor temporal 
resolution, and the connectome needs to be validated 
by other structural imaging findings such as the white 
matter fiber tracts. These deficiencies could be resolved 
by advanced research methods and instruments in the 
future. Moreover, the rsFC results were not associated 
with cognitive findings (eg, working memory). Hence, no 
pro-cognitive effects were in fact supported by the present 
study. Future study needs to take this into consideration. 
Finally, enhanced brain dopaminergic neurotransmission 
has been proposed to be the crucial mechanism underly-
ing SCZ.88 Using transcranial direct current stimulation 
to affect specific dopaminergic systems to alleviate psy-
chotic symptoms is a possible research direction.

Taken together, the present findings suggest that 
patients with SOC exhibit unique changes in rsFC at the 
DMN compared with patients with SCZ or OCD alone. 
These findings highlight the characteristic DMN-related 
rsFC changes in patients with SOC and provide new neu-
robiological evidence of a possible obsessive-compulsive 
dimension of SCZ.

Supplementary Material

Supplementary data are available at Schizophrenia 
Bulletin online.
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