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Abstract
Study Objectives: Actigraphy is a useful tool for estimating sleep, but less accurately distinguishes sleep and wakefulness in patients 
with insomnia disorder (ID) than in good sleepers. Specific algorithm parameter settings have been suggested to improve the accuracy of 
actigraphic estimates of sleep onset or nocturnal sleep and wakefulness in ID. However, a direct comparison of how different algorithm 
parameter settings affect actigraphic estimates of sleep features has been lacking. This study aimed to define the optimal algorithm 
parameter settings for actigraphic estimates of polysomnographic sleep features in people suffering from ID and matched good sleepers.

Methods: We simultaneously recorded actigraphy and polysomnography without sleep diaries during 210 laboratory nights of people with ID 
(n = 58) and matched controls (CTRL) without sleep complaints (n = 56). We analyzed cross-validation errors using 150 algorithm parameter 
configurations and Bland–Altman plots of sleep features using the optimal settings.

Results: Optimal sleep onset latency and total sleep time (TST) errors were lower in CTRL (8.9 ± 2.1 and 16.5 ± 2.1 min, respectively) than in ID 
(11.7 ± 0.8 and 29.1 ± 3.4 min). The sleep–wake algorithm, a period duration of 5 min, and a wake sensitivity threshold of 40 achieved optimal 
results in ID and near-optimal results in CTRL. Bland–Altman plots were nearly identical for ID and controls for all common all-night sleep 
features except for TST.

Conclusion: This systematic evaluation shows that actigraphic sleep feature estimation can be improved by using uncommon parameter 
settings. One specific parameter setting provides (near-)optimal estimation of sleep onset and nocturnal sleep across ID and controls.
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Statement of Significance

Actigraphy distinguishes sleep and wakefulness less well in insomnia disorder (ID) than in good sleepers. Evaluation of a wide range of par-
ameter settings revealed that actigraphic estimates can be improved. Optimal settings differed between people with ID and good sleepers. 
With minimal loss of accuracy, however, a single configuration can be recommended for use across good sleepers and people with ID.
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Introduction

Insomnia disorder (ID) is the second most common mental dis-
order in Europe [1] and is characterized by subjective reporting 
of difficulty initiating/maintaining sleep or early morning 
awakening despite adequate opportunity for sleep and resultant 
in daytime impairment [2, 3]. Objective estimates of sleep fea-
tures are not required for the diagnosis of ID per se, but are con-
sidered valuable in the clinic when patients do not respond to 
cognitive behavioral therapy for insomnia, or when sleep fea-
tures are required over prolonged periods [4]. In such cases, 
actigraphy could provide a more feasible and cost-effective 
method than the gold-standard polysomnography (PSG) to as-
sess sleep features [4].

Actigraphy is the continuous recording of movement, usu-
ally of the wrist. Actigraphy can be used for many purposes like 
estimating physical activity, diurnal activity rhythms, severity 
of disordered, movement, and sleep. Depending on the purpose, 
valid application requires optimization of the recording and pro-
cessing of the movement signal [5, 6]. We here address the im-
portant question of how to best use actigraphy to estimate sleep 
in ID.

The application of actigraphy in sleep research is based on 
the fact that prolonged periods of immobility are more likely 
to occur during sleep than during wakefulness. Actigraphy dis-
criminates wakefulness from sleep based on the movement of 
a limb, but cannot discriminate between different sleep stages. 
Actigraphy therefore only allows for the calculation of all-night 
sleep features such as total sleep time (TST), sleep onset latency 
(SOL), wake after sleep onset (WASO), and sleep efficiency (SE).

A recent meta-analysis of the literature on the validity of 
actigraphy in ID [7] showed that actigraphic estimates were not 
always reliable enough and, for example, failed to detect inter-
vention effects on sleep that were established by PSG. Of the 
aforementioned four common all-night common sleep features, 
only TST and SOL were considered valid features for use in clin-
ical care decisions [7]. The inconsistent validity of actigraphic 
estimates may be explained by several factors including the 
technical specification of the device, the location of the device, 
the acquisition settings, clinical features of the population being 
studied, procedures for setting rest interval and data acquisi-
tion, and the algorithm used.

The actigraphy algorithm allows for flexible parameter 
tuning to improve estimation of sleep onset and sleep–wake 
discrimination. Sleep–wake discrimination can be tuned by 
changing the wake sensitivity threshold (WST) above which re-
corded activity is scored as wake. Sleep onset estimation can 
be tuned by changing the duration of consecutive immobility or 
estimated sleep required to define sleep onset. The optimal set-
ting for sleep–wake discrimination may not necessarily be the 
optimal setting for sleep onset estimation and may moreover 
differ between populations.

Default parameters are frequently used to obtain actigraphic 
estimates sleep features in ID [8–10]. Several studies have evalu-
ated parameter settings other than the default configurations. In 
line with the principle that patients with ID may lie still in bed 
while being awake, a low WST showed better concordance with 
PSG in elderly women with ID [11]. One study suggested that a 
low WST resulted in the best concordance between actigraphy 
and PSG sleep features, but no data were presented to support 
the hypothesis [12]. In chronic obstructive pulmonary disease 

(COPD) patients with comorbid ID, the default immobility 
period duration (PD) of 10 min with a very low WST was found 
to best match simultaneously recorded PSG features [13]. In a 
large sample of people with ID and good sleepers, actigraphic 
estimates of sleep features obtained with a low WST best dis-
criminated ID from good sleepers, but no simultaneous PSG was 
recorded [14]. In contrast, a high WST was found to be most sen-
sitive in young adults with ID [15].

In most studies, the required duration of immobility to mark 
sleep onset was either not reported [9, 12, 14] or was set to the 
default of 10 min [11, 15]. Some studies evaluated how reliability 
of the actigraphic estimate of sleep onset changed across a 
range of immobility PDs. As compared to 5 and 15  min, a PD 
of 10 min resulted in optimal sleep onset estimation in COPD 
patients with ID [13]. In other populations, the influence of im-
mobility PD on sleep onset has been evaluated using several 
shorter and longer durations (3–20 min). A shorter PD of 5 min 
resulted in the best sleep onset estimation in patients with adult 
obstructive sleep apnea (OSA) [16], while medium to long PDs 
(10–20 min) were optimal in children and adolescents with or 
without OSA [17, 18].

To the best of our knowledge, no study has evaluated a wide 
range of algorithm parameters to optimize sleep onset estima-
tion and sleep–wake discrimination in ID and controls using 
simultaneously recorded PSG and actigraphy. Therefore, the aim 
of the study was to find the optimal parameters to derive esti-
mates of sleep features from actigraphy as compared to PSG in 
ID and matched good sleepers using a wide range of algorithm 
parameter settings while keeping all other factors constant.

Methods

Participants

To evaluate the agreement of actigraphic estimates of common 
sleep features with their gold-standard polysomnographic as-
sessment, we recorded actigraphy and PSG simultaneously 
during several studies in our sleep laboratory [19, 20]. The 
studies were approved by the ethics committee of the VU 
University Medical Center, Amsterdam, The Netherlands. 
Participants were recruited through advertisement and the 
Netherlands Sleep Registry (https://www.sleepregistry.org) 
[21]. Screening was performed using online questionnaires, 
telephone, and a structured interview, including the Insomnia 
Severity Index (ISI) [22]. All participants provided written 
informed consent. The inclusion criteria for the ID group 
(n = 58, age range 21–69 years) conformed to the Diagnostic and 
Statistical Manual of Mental Disorders, 5th Edition [2], International 
Classification of Sleep Disorders, 3rd Edition [23], and Research 
Diagnostic Criteria for Insomnia Disorder [24] as well as an 
ISI score of at least 10. The controls (CTRL) included age- and 
sex-matched volunteers (n = 56, age range 22–70 years) that re-
ported to have no sleep difficulties, further confirmed by an ISI 
score less than 10. Exclusion criteria for all participants were: 
(1) diagnosed sleep apnea, restless legs syndrome, narcolepsy, 
or other somatic, neurological, or psychiatric disorders; (2) use 
of sleep medications within the prior 2 months including the 
recording days. Participants showing signs of sleep apnea or 
restless legs during laboratory PSG assessments were not in-
cluded in the selected 114 participants. Table  1 summarizes 
the demographic characteristics and ISI scores of the sample.
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Protocol

People with ID and matched CTRL completed two consecutive 
nights of PSG and actigraphy in a laboratory setting. In total, 18 
of the participants (10 with ID and 8 CTRL) had missing PSG or 
actigraphy data for one night, resultant in 9% missing data and 
a total of 210 individual overnight paired observations. On the 
recording days, participants were asked to refrain from alcohol 
and drugs, as well as to limit consumption of caffeinated bever-
ages to a maximum of two cups, which were allowed only before 
noon. The lights-off and lights-on times for each participant were 
self-chosen according to individual habitual bedtime and did not 
significantly differ between the two groups (mean ± standard de-
viation: ID  =  23:23  ± 00:42, CTRL  =  23:27  ± 00:41  h, p  =  .61 and 
ID = 07:16 ± 01:03, CTRL = 07:29 ± 00:42 h, p = .16, respectively).

Polysomnography

PSG was recorded in each participant using a 256-channel LTM 
HydroCel Geodesic Sensor Net and a Polygraphic Input Box (Electrical 
Geodesics Inc., Eugene, Oregon) connected to a Net Amps 300 amplifier 
(input impedance: 200 MΩ, A/D converter: 24 bits). All PSG recordings 
were visually scored offline by experienced scorers (J.R.R. and O.L.K.) 
blind to the participants’ group classification. Inter-scorer agreement 
in our lab generally lies between 0.67 and 0.80 (mean = 0.72 and 0.76 
for ID and CTRL, respectively) [19]. Scoring of sleep stages was based 
on signals obtained from six electroencephalogram leads (electrode # 
36, 224, 72, 173, 116, 150 of the HydroCel Geodesic Sensor Net, approxi-
mately equivalent to F3, F4, C3, C4, O1, O2, respectively, in the 10–20 
system) and two electro-oculogram leads (1 cm below the left and 
above the right outer canthi) referenced to linked mastoids and one 
bipolar chin electromyogram channel. Each 30-s epoch was scored as 
wakefulness (W), stage 1 sleep (N1), stage 2 sleep (N2), stage 3 sleep 
(N3), or REM sleep (R), according to the American Academy of Sleep 
Medicine (AASM) manual [25]. The PSG recording was started at lights 
off and stopped at lights on. To calculate epoch-by-epoch agreement 
of sleep and wakefulness between PSG and actigraphy, epochs scored 
as N1, N2, N3, or R were marked as sleep and epochs scored as W were 
marked as wake.

Actigraphy

Actigraphy was recorded using a microelectromechanical 
system (MEMS) accelerometer (GENEActiv Sleep, Activinsights 

Ltd., Kimbolton, UK) at a sampling frequency of 50 Hz. The 
GENEActiv recorder contains a tri-axial MEMS accelerometer 
with a measurement range of ±8 g and a sensitivity of ≥0.004 g 
and records motion-related and gravitational acceleration. Data 
were uploaded to a PC using the GENEActiv PC software (version 
1.0, Activinsights Ltd.).

Temporal alignment

Optimal alignment of PSG and actigraphy was obtained by 
cross-correlating the binary coded sleep/wake signal from PSG 
with the binary coded immobile/mobile actigraphy signals.

Algorithm parameter settings

Sleep–wake discrimination
So-called “activity counts” were obtained using a validated 
method [26] adapted to 30-s epochs. Subsequently, each epoch 
was classified as either sleep or wake. The activity in each epoch 
was re-scored by weighing activity in the surrounding 2-min 
period. For each 30-s epoch, the activity was weighted as follows 
[27, 28]:

A0 = 0.04E−(4−3) + 0.2E−(2−1) + 4E0 + 0.2E+(1−2) + 0.04E+(3−4), 

where A0 is the total re-scored activity for the 30-s epoch of 
interest; E0 is the activity in the scored epoch; En is the activity in 
the four epochs before (E−4 to E−1) and after (E+1 to E+4) the scored 
epoch. If A0 is less than or equal to a predefined WST (A0 ≤ WST) 
the epoch is scored as sleep, otherwise (A0 > WST) the epoch is 
scored as wake (Table 2). Sleep–wake discrimination was evalu-
ated across a range of WSTs (10–100 in intervals of 10, where 20, 
40, and 80 are commonly denoted as the default low, medium, 
and high WSTs, respectively [28]).

Epoch-by-epoch agreement
Actigraphy epochs were classified as true sleep (TS), false sleep 
(FS), true wake (TW), and false wake (FW) based on their agree-
ment with the corresponding PSG epochs (Table  3). Based on 
these classification, the accuracy, sensitivity, specificity, posi-
tive predictive value (PPV or precision), negative predictive value 
(NPV), and Cohen’s kappa statistics (Table  4) were calculated 
at each WST to quantify epoch-by-epoch agreement [29, 30]. 
Agreement, sensitivity, and specificity indicate the proportions 
of all epochs correctly classified as wake or sleep by actigraphy 
compared with PSG. PPV and NPV indicate the proportion 
of sleep or wake epochs, respectively, correctly classified by 
actigraphy. Cohen’s kappa (κ) indicates agreement beyond what 
can be expected by chance alone.

Sleep onset estimation
Sleep onset defines the beginning of the assumed sleep period 
(ASP). Sleep onset can be either not estimated (none) or estimated 
by choosing one of two different methods: immobile–mobile and 
sleep–wake (Table  2). The immobile–mobile algorithm as imple-
mented in the Actiware software searches for the first immobility 
PD of X min after bedtime with no more than one epoch containing 
any activity count. The outcome only depends on the chosen par-
ameter X. In contrast, the sleep–wake algorithm searches for the 

Table 1. Demographics and polysomnographic sleep features (mean 
± standard deviation)

Characteristic Control (n = 56) ID (n = 58) P

Sex, female/male 39/17 44/14 .53
Age, years 43.2 ± 15.0 47.8 ± 14.0 .087
ISI 2.5 ± 2.5 16.8 ± 3.8 <.0001
TIB, min 482.1 ± 47.6 473.2 ± 66.1 .29
SOL, min 12.1 ± 15.9 16.9 ± 17.1 .008
TST, min 429.0 ± 47.7 392.8 ± 83.3 .0004
WASO, min 32.0 ± 24.9 52.4 ± 47.3 .002
SE, % 89.1 ± 6.8 82.4 ± 14.6 .0003

Group differences were tested with Fisher exact test for sex and by Wilcoxon 

rank-sum tests for the other variables. Bold font highlights significant group 

differences.

ISI, Insomnia Severity Index; TIB, time in bed; SOL, sleep onset latency; TST, 

total sleep time; WASO, wake after sleep onset; SE, sleep efficiency.
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first PD of X min of continuous estimated sleep after bedtime. The 
outcome therefore depends on both the chosen parameter X and 
the WST chosen to define wakefulness. Ignoring sleep onset esti-
mation (none) means the ASP is equal to the period between lights 
off and lights on. To evaluate the effects of different parameter set-
tings, sleep onset was estimated based on PDs of 3, 5, 10, 15, and 
20 min at 10 equidistant WSTs between 10 and 100.

Sleep feature calculation
Estimates of the most commonly used sleep features (Table 5)—
SOL, TST, WASO, and SE—were calculated using 150 different con-
figurations with 10 WSTs (10–100 at intervals of 10), 5 PDs (3, 5, 10, 
15, and 20 min), and 3 sleep onset algorithms (sleep–wake, immo-
bile–mobile, and none). Analyses of sleep features were performed 
using custom scripts (https://github.com/btlindert/actant-1) 
written in MATLAB 8.3 (The Mathworks Inc., Natick, MA).

Algorithm parameter tuning
Algorithm parameter tuning was performed separately for ID and 
CTRL. From each of the separate ID and CTRL datasets, 20% of the 
data were randomly selected and set apart as a holdout sample for 
final testing by splitting at the participant level. In the remaining 
data, still separately for ID and CTRL, fivefold cross-validation was 
used to find the algorithm parameter settings that resulted in the 
best agreement between PSG and actigraphy. In each of the fivefolds 
split at the participant level, a grid search on 80% of the training 
data defined the algorithm parameter combination that resulted in 
the closest match between actigraphic and PSG sleep feature esti-
mates. These settings were then applied to the remaining 20% val-
idation fold to obtain the mean absolute error (MAE) between PSG 
and actigraphic SOL or TST estimates. The MAE was calculated as:

MAE =

∑n
i=1 |PSGi − Actigraphyi|

n
,
 

where MAE is the absolute differences in sleep features (SOL 
or TST) obtained from PSG (PSG) and actigraphy (Actigraphy) for 
every night (i) averaged over all nights (n) of simultaneously re-
corded PSG and actigraphy.

The mean and standard error of the MAE were calculated 
across the fivefolds and will be denoted as “validation MAE.” The 
configuration that was optimal over the fivefolds was used to 
evaluate performance in the 20% holdout test sample for final 
validation and the resulting MAE will be denoted as “test MAE.” 
The influence of missing data was minimized by randomly 
distributing the participants with missing data across the dif-
ferent folds.

Optimal parameter set across ID and controls

In situations where the diagnosis of ID is not yet known or 
changes over time, a single configuration that achieves optimal 
results across ID and CTRL is valuable. We evaluated if the re-
sults allowed for a common optimal parameter set to be defined 
across ID and CTRL. The optimal parameter set for ID and CTRL 
was applied to all measurements to calculate all-night sleep fea-
ture agreement.

All-night sleep feature agreement

The agreement between all-night PSG-derived sleep features 
and the corresponding actigraphic estimates obtained using the 
optimal parameters across ID and CTRL was visually inspected 
with Bland–Altman (mean-difference) plots [31]. For each plot, 
an ordinary least squares (OLS) regression was used to test and 
correct for proportional or constant bias throughout the meas-
urement range [32]. Heteroskedasticity of differences over the 
measurement range was evaluated with a Breusch–Pagan test of 
the residuals. If the variance of the differences was proportional 
to the mean, the limits of agreement (LOAs) were modified using 
the slope from an OLS regression of absolute residuals multi-
plied by 1.96*√(π/2) [32].

Statistical analysis

Data preprocessing and calculation of agreement statistics 
and all-night sleep parameters were performed offline using 
custom-written MATLAB programs. All the other statistical ana-
lyses were conducted using R [33].

Table 3. Confusion matrix used in the calculation of agreement 
measures

Actigraphy

PSG

Sleep Wake

Sleep True sleep (TS) False sleep (FS)
Wake False wake (FW) True wake (TW)

Table 2. Algorithm parameters

Setting Value Description

WST 10–100 at intervals of 10 The threshold above which activity is scored as wake
PD 3, 5, 10, 15, or 20 min The duration of the period in minutes used to estimate sleep onset. Only applicable if 

the immobile–mobile or sleep–wake algorithm is used to estimate sleep onset
Sleep onset 

estimation 
algorithm

Immobile–mobile algorithm Calculates sleep onset based on the presence of movement or no movement, inde-
pendently of the sleep–wake discrimination. Sleep onset was defined using the first 
immobile period after bedtime of at least X min with no more than one epoch con-
taining any movement. The first epoch of this period was classified as sleep onset. 
Therefore, this sleep parameter was not influenced by the WST

 Sleep–wake algorithm Calculates sleep onset based on sleep–wake discrimination. Sleep onset was defined 
using the first sleep period after bedtime of at least X min with continuous sleep. 
The first epoch of this period was classified as sleep onset. Therefore, this sleep par-
ameter is influenced by the WST

 No sleep onset estimation Sleep onset is not estimated and equal to bedtime
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Results

Epoch-by-epoch agreement

We calculated epoch-by-epoch agreement at all WSTs across the 
PSG recording (Table 6). Overall, a higher WST increased the ac-
curacy, sensitivity and NPV but attenuated the specificity and 
PPV. These results are partially explained by the large propor-
tion of sleep epochs (i.e. the likelihood that an epoch is sleep is 
much higher than the likelihood that it is wake) [29]. Cohen’s 
kappa accounts for this by calculating the agreement beyond 
what can be expected by chance. Both for ID and CTRL, a WST 
of 20 provided the highest Cohen’s kappa (0.47 ± 0.15 and 0.44 ± 
0.15, respectively), for which the agreement is considered mod-
erate [34].

Optimal parameters to estimate SOL

Actigraphic estimates of SOL and TST were calculated using 150 
different configurations with 10 WSTs (10–100 at intervals of 
10), 5 PDs (3, 5, 10, 15, and 20 min), and 3 sleep onset algorithms 
(sleep–wake, immobile–mobile, and none) across 210 complete 
overnight observations of simultaneous PSG and actigraphy. For 
each configuration, the test MAE between actigraphy and PSG 
was calculated for SOL and TST, separately for ID and CTRL.

For both ID and CTRL, SOL estimation was generally better 
at high WSTs and short-to-medium PDs irrespective of the al-
gorithm used (Figure 1). The mean validation MAE was lower in 
CTRL than in ID for each combination of parameters, indicating 
better actigraphic estimation of SOL in CTRL than in ID. In con-
trast, the standard error was lower in ID than in CTRL, indicating 
that more reliable differences in SOL between actigraphic esti-
mation and PSG were obtained in ID.

In CTRL, the best estimation of SOL resulted in a validation 
MAE of 8.9 ± 2.1 min (mean ± standard error) and was achieved 

using the immobile–mobile algorithm with a PD of 10 min, con-
firming the validity of the default parameters in the Actiware 
software (Figure 1, A). The results were confirmed in the test set 
with a test MAE of 11.6 min, in line with the fact that validation 
error was trained on more data and was likely to underestimate 
the test error.

In ID, the best estimation of SOL resulted in a validation MAE 
of 11.7 ± 0.8 min (mean ± standard error) and was achieved using 
the sleep–wake algorithm with a PD of 5 min and a WST of 40 
(Figure 1, B), which is a 18% improvement compared to the de-
fault parameters. The test MAE was 11.2 min. For both CTRL and 
ID, the magnitude of the test MAEs were relatively large com-
pared to the median SOL derived from PSG (9 and 13 min, re-
spectively). Interestingly, the immobile–mobile algorithm, which is 
the frequently used default setting in the Actiware software, re-
sulted in higher validation MAEs in ID, suggesting common use 
of suboptimal settings for the actigraphic estimation of sleep 
onset in ID.

Optimal parameters to estimate TST

TST estimation was better in CTRL than in ID irrespective of the 
type of algorithm used (Figure 2). In ID, the sleep–wake algorithm, 
a PD of 10 min, and a WST of 40 achieved the lowest validation 
MAE of 29.1 ± 3.4 min (mean ± standard error; Figure 2, A). In 
CTRL, the optimal configuration to estimate TST was the sleep–
wake algorithm, a PD of 20 min, and a WST of 90 for CTRL with a 
validation MAE of 16.5 ± 2.1 (mean ± standard error; Figure 2, B). 
The test MAEs were 26.7 and 29.9 min for ID and CTRL, respect-
ively. The optimal parameters are higher than usually reported 
in the literature. For CTRL, TST estimation would benefit from a 
higher WST and a longer PD, compared to the commonly used 
default WST of 40 and PD of 10 min.

Figure 2, C shows that if reliable estimates of lights off and 
lights on can be reliably obtained (e.g. from video) and TST is the 
sole variable of interest, negligible improvement in TST estima-
tion is obtained by estimating sleep onset.

Optimal parameter set across ID and controls

In situations where the diagnosis of ID is not yet known or 
changes over time, it would be valuable to have a single con-
figuration that achieves optimal results across ID and CTRL. As 
shown above, actigraphic estimates have lower precision in ID 
than in CTRL, and the loss of precision as a result of suboptimal 
parameter selection is greater in ID than in CTRL. Therefore, 
a single optimal configuration would consist of the optimal 
parameters for ID: the sleep–wake algorithm, a PD of 5 min, and 
a WST of 40. These parameters achieve optimal results for SOL 
and near-optimal results for TST in ID. These parameters also 

Table 4. Formulas and description of the agreement measures

Measure Formula Description

Accuracy [TS+ TW/(TS+ TW+ FS+ FW)]× 100 Percentage of all epochs correctly detected as wake or sleep by actigraphy.
Sensitivity [TS/(TS+ TW+ FS+ FW)]× 100 Percentage of all epochs correctly detected as sleep by actigraphy.
Specificity [TW/(TS+ TW+ FS+ FW)]× 100 Percentage of all epochs correctly detected as wake by actigraphy.
PPV [TS/(TS+ FS)] × 100 Percentage of PSG sleep epochs correctly detected as sleep by actigraphy.
NPV [TW/(TW+ FW)]× 100 Percentage of PSG wake epochs correctly detected as wake by actigraphy.

TS, true sleep; TW, true wake; FS, false sleep; FW, false wake; PPV, positive predictive value; NPV, negative predictive value; PSG, polysomnography.

Table 5. Description of sleep parameters

Setting Description

Time in bed (TIB) Time between bedtime and get-up time
Sleep onset The time associated with the onset of sleep 

using either the immobile–mobile or sleep–
wake algorithm

ASP Time between sleep onset and final wake 
time

SOL Time between lights off and sleep onset
TST The number of epochs within the ASP scored 

as sleep multiplied by the epoch length
WASO The number of epochs within the ASP scored 

as wake multiplied by the epoch length
SE The ratio of TST to ASP multiplied by 100
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achieve near-optimal results in CTRL, while the absolute errors 
are still substantially smaller than those obtained in ID.

Bland–Altman plots

Using the single optimal set of parameters for both ID and CTRL 
just mentioned, we visually inspected the agreement of SOL, TST, 
WASO, and SE between actigraphy and PSG using Bland–Altman 
plots (Figure 3). The bias of actigraphic estimation of SOL is neg-
ligible for short SOL. However, actigraphy increasingly under-
estimates longer SOLs, by even more than half an hour at a SOL 
of an hour. In addition to the larger bias at increasing SOL, the 
estimates also become less reliable as indicated by the widening 
of the LOAs. Similar to SOL, WASO bias is near zero for very 
small WASO, but actigraphy underestimates WASO by as much 
as 100 min at a WASO of 200 min. Consequently, actigraphy only 
slightly overestimates SEs above 90% but strongly overestimates 
lower SEs, by as much as 20% at a SE of 60%. The LOAs strongly 
increase with lower SEs.

In CTRL, the bias of actigraphic estimation of TST is negli-
gible and the LOA is constant across the entire measurement 
range. In ID, actigraphy underestimates TST below a TST of 
425 min with an average bias of 50 min at 250 min, but instead 
overestimates TST above 425 min with an average bias of 25 min 
at 550  min. The reliability of the estimate improves at higher 
TST, as indicated by narrowing of the LOA.

Discussion
The aim of the present study was to define the optimal param-
eters to derive sleep feature estimates from actigraphy as com-
pared to PSG in ID and matched good sleepers. Previous studies 
have evaluated algorithm parameter tuning to improve the esti-
mation of sleep features using actigraphy [11–18]. These studies 
evaluated a limited range of parameter settings and did not in-
clude the sleep–wake algorithm for sleep onset estimation, nor 
cross-validated the suggested optimal parameters. To overcome 
these limitations, we here performed a comprehensive evalu-
ation of a wide range of parameters. We moreover also included 
the sleep–wake algorithm for sleep onset estimation, and cross-
validated the optimal parameters in independent samples.

The current findings indicate that sleep–wake discrimin-
ation and sleep onset estimation are worse in ID than in CTRL, 
and that parameters can be chosen better than the current de-
faults to improve the quality of the estimates for specific popu-
lations, especially for people with ID.

The commonly used default immobile–mobile algorithm with 
a PD of 10 min achieves optimal sleep onset estimation in good 
sleepers and suboptimal results in ID [8–11, 13, 15]. In ID, optimal 
sleep onset estimation can be achieved by using the sleep–wake 
algorithm, a PD of 5 min, and a WST of 40. This setting has not 
commonly been reported in the literature, suggesting common 
use of suboptimal parameters in studies on insomnia [11, 15]. 
A PD of 5 min has previously been found to be optimal for sleep 
onset estimation with the immobile–mobile algorithm in patients 
with OSA [16].

Our findings are also in line with the notion that ID are 
more likely than controls to be awake while lying still in bed. 
Therefore, a lower, more sensitive WST may be required for ID. 
Indeed, a WST of 40 is optimal for TST estimation in ID, com-
pared to the optimal WST of 90 in CTRL. The optimal WST for 
ID is however higher than the very low WSTs (10–20) previously 
suggested [11–14]. The optimal WST for CTRL is higher than the 
default (40) used sometimes in CTRL and ID [9], yet close to a 
WST of 80 used in young adults with ID [15].

The optimal parameters for the estimation of SOL and of TST 
are very similar in ID. In CTRL, however, the optimal estimation 
of SOL requires quite different parameters than the optimal es-
timation of TST. A single parameter configuration that achieves 
optimal estimates in ID and near-optimal estimates in CTRL 
can be used in studies where the diagnosis of ID is uncertain or 
changes over time, for example, as a result of intervention. To 
achieve optimal results within a good sleeper sample, each fea-
ture can be obtained using a distinct set of parameters. A single 
set of parameters will result in a trade-off of better estimates 
of some sleep features and worse estimates of the other sleep 
features.

Near-optimal estimates of sleep features could be obtained 
across a range of parameter configurations. Within this range, 
cross-validation errors remain within one standard error of 
the optimal configuration (Figures 1 and 2). This suggests that 
using parameter configurations within this range will minim-
ally affect the accuracy of sleep feature estimates, and that it 

Table 6. Mean and standard deviation of epoch-by-epoch agreement between actigraphy and PSG at all WSTs for ID and CTRL

WST

Accuracy  
(%)

Sensitivity  
(%)

Specificity  
(%)

PPV  
(%)

NPV  
(%)

Cohen’s  
kappa

CTRL ID CTRL ID CTRL ID CTRL ID CTRL ID CTRL ID

10 86.2 ± 5.7 84.3 ± 5.9 88.5 ± 6.3 87.9 ± 5.9 67.8 ± 17.0 68.5 ± 19.3 95.5 ± 4.1 92.7 ± 8.3 40.6 ± 18.2 49.1 ± 20.5 0.40 ± 0.15 0.44 ± 0.15
20 89.1 ± 4.7 86.5 ± 6.3 92.7 ± 4.5 92.0 ± 4.6 60.0 ± 18.6 61.2 ± 20.3 94.9 ± 4.5 91.5 ± 8.9 47.9 ± 19.6 55.9 ± 20.6 0.44 ± 0.15 0.47 ± 0.15
30 90.1 ± 4.5 87.2 ± 6.8 94.7 ± 3.5 94.0 ± 3.7 52.9 ± 19.4 55.3 ± 20.4 94.2 ± 4.9 90.7 ± 9.3 51.9 ± 20.7 59.9 ± 20.3 0.44 ± 0.16 0.46 ± 0.15
40 90.6 ± 4.5 87.5 ± 7.1 95.8 ± 2.9 95.3 ± 3.0 48.3 ± 19.5 50.8 ± 19.6 93.8 ± 5.0 90.0 ± 9.5 54.8 ± 21.3 63.0 ± 20.1 0.43 ± 0.16 0.46 ± 0.15
50 90.9 ± 4.6 87.6 ± 7.5 96.4 ± 2.6 96.1 ± 2.5 44.8 ± 19.0 46.8 ± 19.4 93.5 ± 5.2 89.4 ± 9.7 57.2 ± 21.7 65.1 ± 20.2 0.42 ± 0.16 0.44 ± 0.15
60 91.0 ± 4.7 87.5 ± 7.8 97.0 ± 2.3 96.7 ± 2.3 41.6 ± 18.6 43.3 ± 18.7 93.1 ± 5.3 88.9 ± 9.9 59.3 ± 22.4 66.9 ± 19.9 0.41 ± 0.16 0.43 ± 0.15
70 91.1 ± 4.9 87.4 ± 8.0 97.4 ± 2.1 97.1 ± 2.0 39.4 ± 18.2 40.8 ± 18.2 92.9 ± 5.5 88.6 ± 10.0 61.2 ± 22.9 68.6 ± 20.2 0.40 ± 0.16 0.41 ± 0.15
80 91.1 ± 5.0 87.3 ± 8.3 97.7 ± 1.9 97.4 ± 1.9 36.7 ± 17.5 38.3 ± 17.6 92.7 ± 5.6 88.2 ± 10.2 62.8 ± 23.0 69.4 ± 20.1 0.39 ± 0.16 0.40 ± 0.16
90 91.1 ± 5.1 87.1 ± 8.5 97.9 ± 1.8 97.7 ± 1.7 34.6 ± 17.5 36.2 ± 17.2 92.5 ± 5.7 87.9 ± 10.3 63.3 ± 24.1 70.3 ± 19.8 0.38 ± 0.16 0.39 ± 0.15
100 91.1 ± 5.2 87.1 ± 8.7 98.1 ± 1.6 97.9 ± 1.6 32.9 ± 16.9 34.6 ± 16.8 92.3 ± 5.7 87.7 ± 10.5 64.7 ± 23.8 71.7 ± 20.3 0.37 ± 0.16 0.38 ± 0.15

ID, insomnia disorder; CTRL, control; WST, wake sensitivity threshold; PPV, positive predictive value; NPV, negative predictive value.

Bold font highlights the highest agreement obtained for each of the measures.
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is reasonably safe to pool data across studies that have applied 
different parameter configurations.

Our findings can be generalized to actigraphs that use the al-
gorithm implemented in the Actiware software (like Actiwatch 
Spectrum and Light) or to actigraphs similar to the Actiwatch 
used in the validation of the conversion of accelerometry to 
activity counts. The findings likely also generalize to other 
movement recordings using MEMS accelerometers similar to 
GENEActiv for which the same conversion steps can be ap-
plied to obtain activity counts (e.g. linear accelerometry in the 
palmar-dorsal axis, with a sampling frequency >30 Hz and a 
measurement range >5 g).

Despite the fact that sleep estimates can benefit from the op-
timization of parameter configuration, the agreement between 
PSG and actigraphy is still only moderate at best, and LOAs 
are relatively wide. A recent meta-analysis of the literature on 
the validity of actigraphy in ID has provided confidence limits 
for acceptable differences between actigraphy and PSG when 
used in clinical care decisions [7]. The limits were based on the 

confidence intervals (CIs) of the differences between actigraphy 
and PSG across multiple studies, rather than the absolute dif-
ferences. Consistent differences, with small CIs, would suggest 
reliable actigraphic estimated sleep features compared to PSG. 
Differences between actigraphy and PSG with 95% CIs of 40 min 
for TST, 30 min for SOL, 30 min for WASO, and 5% for SE were 
a priori considered acceptable for use in clinical care decisions. 
A review of the studies revealed that for TST (35.12 min) and SOL 
(6.78 min), but not WASO (33.22 min) and SE (7.8%), the 95% CIs 
were small enough to prove reliable estimates compared to PSG 
[7]. These CIs, however, ignore the observation in our study that 
the bias depends on the measurement range and may there-
fore not be applicable to the entire range of measurements. 
Future recommendations may want to take this variability into 
account.

Innovative technology assessing other behavioral or physio-
logical signals may be required to achieve better sleep–wake 
discrimination, let  alone differentiation between sleep stages. 
Substantial discrepancies between actigraphy and PSG in some 
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Figure 1. The MAE and standard error of the differences between polysomnographic SOL and actigraphic estimate of SOL across parameter configurations. The MAE is 

plotted against the PD with separate colored lines indicating different WSTs used to estimate sleep onset with (A) the immobile–mobile algorithm and (B) the sleep–wake 

algorithm. Since the WST does not influence the immobile–mobile algorithm, identical results are obtained for all WSTs and plotted as a single line in (A). Results are 

plotted separately for ID (right) and matched good sleepers (CTRL, left).
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plotted against the WST with separate colored lines indicating different PDs used to estimate sleep onset with (A) the immobile–mobile algorithm and (B) the sleep–wake 

algorithm, or (C) no algorithm to estimate sleep onset. Since PD only influences sleep onset estimation, identical results are obtained for all PDs when sleep onset es-

timation is ignored and plotted as a single line in (C). Results are plotted separately for ID (right) and matched good sleepers (CTRL, left).

D
ow

nloaded from
 https://academ

ic.oup.com
/sleep/article/43/11/zsaa090/5869753 by guest on 19 April 2024



te Lindert et al. | 9

individuals at higher WASO [35] and lower TST suggest that 
actigraphy may benefit from individually tuned parameters, 
but implementation of such may be impractical because it 
requires PSG.

Some limitations deserve mention. First, our study did not 
include sleep diaries and it should be noted that the agree-
ment between sleep features may be higher than in real-life 
applications, due to the fact that self-chosen individual ha-
bitual lights-off and lights-on times were tightly aligned with 
the investigator-initiated start and end of the PSG recording. 
In clinical and ambulatory conditions, the estimation of lights-
off and lights-on times can be supported by sleep diaries or 
light sensors. In addition to providing an in-bed interval, sleep 
diaries provide clinicians with valuable information regarding 
subjective sleep experience, making sleep diaries the current 
standard for assessing sleep in clinical and especially ambu-
latory settings. Additional studies that simultaneously assess 
ambulatory PSG and actigraphy would be required to evaluate 
the validity of diaries and light sensors in defining lights-off and 
lights-on times in the field. Furthermore, recent development 
has shown promising results for estimating the in-bed interval 
using a data-driven approach [36]. It would be extremely valu-
able if these approaches could be extended to clinical popula-
tions such as people with ID.

Second, our study design did not allow us to evaluate the 
performance of the algorithms to estimate sleep end, because 
the end of the PSG recording was tightly aligned with the wake 
time of the participant, with snooze duration essentially equal 
to 0. Sleep onset and sleep end estimation use nearly identical 
algorithms (with the exception that for immobility, two epochs 
instead of one with any movement are commonly allowed). 
Studies that simultaneously assess PSG and actigraphy while al-
lowing unrestricted wake-up time would be required to evaluate 
how the currently defined optimal parameter settings perform 
in estimating sleep end.

Third, PSG suffers from suboptimal inter-rater agreement 
in sleep stage scoring. For example, microstructures from two 
or more sleep stages or wakefulness can occur within a 30-s 
epoch, and raters may differently classify the epoch depending 
on their judgment of the relative contribution of the micro-
structures within the epoch. This lack of agreement carries over 
to the comparison with actigraphy, as no higher agreement of 
actigraphy and PSG can be obtained on wakefulness and sleep 
than the agreement of two raters on wakefulness and sleep in 
PSG. Current and future development in continuous and data-
driven scoring of PSG may minimize this problem. In continuous 
scoring, no limitations are placed on the duration of an epoch. 
Instead, a stage ends when the EEG microstructure indicates a 
transition to a new stage. Data-driven scoring of PSG may lead 
to more sleep stages than defined today by the AASM [37]. Both 
may improve inter-rater reliability in PSG and potentially its 
concordance with actigraphy.

Fourth, although PSG is the gold standard for sleep evalu-
ation, it should be noted that PSG has its own limitations which 
may be of particular relevance to ID. The EEG signal used by PSG 
mostly reflects highly synchronized cortical activity. Visual or 
power spectral analysis of EEG reveals only cortical and sub-
cortical activity involving sufficient neurons with aligned di-
poles. It may not be surprising that the limited representation of 
neuronal activity provided by EEG results in a notorious lack of 
agreement with subjectively experienced sleep state and sleep 
quality, which in people with insomnia is commonly misinter-
preted as sleep state “misperception” [38].

−100

0

0 20 40 60
Average SOL (min)

D
iff

er
en

ce
 in

 S
O

L 
(m

in
)

−100

0

100

300 350 400 450 500 550
Average TST (min)

D
iff

er
en

ce
 in

 T
S

T
 (

m
in

)

−300

−200

−100

0

50 100 150 200
Average WASO (min)

D
iff

er
en

ce
 in

 W
A

S
O

 (
m

in
)

0

20

40

60 70 80 90

D
iff

er
en

ce
 in

 S
E

 (
%

)

−150

−120

−90

−60

−30

0

30

60

−150

−120

−90

−60

−30

0

30

60

90

120

150

−300

−240

−180

−120

−60

0

60

−20

−10

0

10

20

30

40

0 15 30 45 60

300 360 420 480 540

0 60 120 180 240

60 70 80 90

Average sleep onset latency (min)

Average total sleep time (min)

Average wake after sleep onset (min)

Average sleep efficiency (%)

D
iff

er
en

ce
 in

 s
le

ep
 o

ns
et

 la
te

nc
y 

(m
in

)
D

iff
er

en
ce

 in
 to

ta
l s

le
ep

 ti
m

e 
(m

in
)

D
iff

er
en

ce
 in

 w
ak

e 
af

te
r 

sl
ee

p 
on

se
t (

m
in

)
D

iff
er

en
ce

 in
 s

le
ep

 e
ffi

ci
en

cy
 (

%
)

Group CTRL ID

Actigraphy − PSG

Figure 3. Bland–Altman (mean-difference) plots for SOL (top), TST, WASO, and 

SE (bottom) estimated with the across-group optimal sleep–wake algorithm, a PD 

of 5 min, and a WST of 40. Differences between PSG and actigraphy are plotted 

against the average of the two measurements for ID (triangles) and matched 

good sleepers (CTRL; circles). The bias (dotted lines) is the mean difference be-

tween both measurements. The 95% LOAs (dashed lines) define the range within 
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difference in the scaling of the axes.
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Furthermore, our sample included people with ID that were 
off medication. In clinical practice, actigraphy may be recom-
mended for treatment-resistant patients that are on medication. 
Medications that interfere with or restrict mobility are likely to 
lead to overestimation of the amount of sleep by actigraphy due 
to immobile wakefulness classified as sleep. Unfortunately, to 
the best of our knowledge, no studies have evaluated the direct 
effects of sleep medications on the validity of actigraphy. This 
would be an important goal for future studies.

In conclusion, the current study defined optimal param-
eter settings for actigraphic estimation of polysomnographic 
sleep features in ID and good sleepers. We did so by evaluating 
a wide range of parameters, by systematically locating 
in-sample optimal settings, and by validating these optimal 
settings in independent holdout samples. The results sug-
gest that actigraphic estimates can be improved by the use of 
optimized parameter configurations. Optimized settings will 
aid the precision of sleep estimates in increasingly available 
large actigraphy datasets obtained from ubiquitous wearable 
devices [39].
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