
Syst. Biol. 52(5):649–664, 2003
Copyright c© Society of Systematic Biologists
ISSN: 1063-5157 print / 1076-836X online
DOI: 10.1080/10635150390238879

Hierarchical Phylogenetic Models for Analyzing Multipartite Sequence Data

MARC A. SUCHARD,1 CHRISTINA M. R. KITCHEN,2 JANET S. SINSHEIMER,1,2,3 AND ROBERT E. WEISS2

1Department of Biomathematics, David Geffen School of Medicine, University of California–Los Angeles, Los Angeles, California 90095-1766, USA;
E-mail: msuchard@ucla.edu

2Department of Biostatistics, School of Public Health, University of California–Los Angeles, Los Angeles, California 90095-1772, USA
3Department of Human Genetics, David Geffen School of Medicine, University of California–Los Angeles, Los Angeles, California 90095-1766, USA

Abstract.—Debate exists over how to incorporate information from multipartite sequence data in phylogenetic analyses.
Strict combined-data approaches argue for concatenation of all partitions and estimation of one evolutionary history, max-
imizing the explanatory power of the data. Consensus/independence approaches endorse a two-step procedure where
partitions are analyzed independently and then a consensus is determined from the multiple results. Mixtures across the
model space of a strict combined-data approach and a priori independent parameters are popular methods to integrate
these methods. We propose an alternative middle ground by constructing a Bayesian hierarchical phylogenetic model. Our
hierarchical framework enables researchers to pool information across data partitions to improve estimate precision in indi-
vidual partitions while permitting estimation and testing of tendencies in across-partition quantities. Such across-partition
quantities include the distribution from which individual topologies relating the sequences within a partition are drawn.
We propose standard hierarchical priors on continuous evolutionary parameters across partitions, while the structure on
topologies varies depending on the research problem. We illustrate our model with three examples. We first explore the
evolutionary history of the guinea pig (Cavia porcellus) using alignments of 13 mitochondrial genes. The hierarchical model
returns substantially more precise continuous parameter estimates than an independent parameter approach without losing
the salient features of the data. Second, we analyze the frequency of horizontal gene transfer using 50 prokaryotic genes. We
assume an unknown species-level topology and allow individual gene topologies to differ from this with a small estimable
probability. Simultaneously inferring the species and individual gene topologies returns a transfer frequency of 17%. We
also examine HIV sequences longitudinally sampled from HIV+ patients. We ask whether posttreatment development of
CCR5 coreceptor virus represents concerted evolution from middisease CXCR4 virus or reemergence of initial infecting
CCR5 virus. The hierarchical model pools partitions from multiple unrelated patients by assuming that the topology for
each patient is drawn from a multinomial distribution with unknown probabilities. Preliminary results suggest evolution
and not reemergence. [Bayes factor; Cavia; CXCR4/CCR5 coreceptor; HIV evolution; horizontal gene transfer; MCMC;
phylogeny.]

Efforts to sequence an ever-growing number of
genomes are speeding ahead. These advances are
producing larger data sets increasingly labeled with
definable substructures. A standard example of these
substructures includes the multiple genes found within
sequences from a set of taxa, defining natural partitions
of the data. As a result, phylogeneticists are confronted
with a dilemma over how to incorporate information
about these multiple data partitions in their analyses.

A long-standing debate rages over this issue (Bull et al.,
1993) with at least two opposing solutions. One solu-
tion, a strict combined-data approach, also called the to-
tal evidence approach by Kluge (1989), combines mul-
tiple partitions into a single undifferentiated partition
(Miyamoto, 1985) before phylogenetic analysis. A strict
combined-data approach ignores the partition informa-
tion, pools the data into a single sample, and infers a
single evolutionary history. This approach implies that
given the evolutionary history for the concatenated data,
results from the individual partitions are irrelevant.

The competing consensus/independence approach
takes a two stage approach (Penny and Hendy, 1986;
Miyamoto and Fitch, 1995). In the first stage of analysis,
a phylogenetic model is independently fit to each parti-
tion and used to estimate separate evolutionary histories
for each partition. The second stage forms a consensus
from the resulting topologies.

An apparent advantage of a strict combined-data
approach is that parameter estimates and inference

regarding the single evolutionary history are more robust
than those from the individual partitions, as the individ-
ual partitions are more subject to the effects of sampling
variation in their potentially sparse data. However, sep-
arate analyses yield separate insights into the histories
of individual partitions. Individual partitions may re-
construct different topologies, suggesting nonorthology
problems, gene conversion, or recombination. Also, in-
dividual partitions may evolve at substantially different
rates or under different pressures, causing the model of
evolution for one or more partitions to vary from that in
the remaining partitions. Allowing for this variability is
important, for assuming inappropriate models may lead
to inconsistent or biased inference (Yang, 1995a; Buckley
et al., 2001; Dorman et al., 2002).

Still, the consensus approach also possesses difficul-
ties. When attempting to draw inference from across a
number of different partitions, simple consensus mea-
sures can fail, particularly when the evolutionary recon-
struction model provides only the most likely topologi-
cal relationship with no further estimates of uncertainty.
As a contrived example, consider the case of three par-
titions with phylogenetic data for the same four taxa.
Suppose that support for topology A over topologies B
or C is only marginally higher in two partitions while
the last partition shows close to 100% support for B. The
consensus estimate is A, while a method that can also
accommodate the uncertainty across partitions should
yield greater support for B.
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To overcome some of the difficulties inherent in choos-
ing a strict combined-data approach versus consen-
sus framework for multipartite data, many phyloge-
netic analyses employ a mixture of these approaches
by dividing the parameter space within partitions into
two sets (Yang, 1996). In one set, parameters are fixed
equal (or proportional) across partitions, following the
strict combined-data paradigm; in the remaining set,
parameters remain a priori independent from parti-
tion to partition, following the first stage in a consen-
sus approach. Popular phylogenetic software, such as
Bambe, MrBayes, PAML, PAUP∗, and Phylip, allow for
these analyses (Felsenstein, 1993; Yang, 1996; Larget and
Simon, 1999; Huelsenbeck and Ronquist, 2001; Swofford,
2003). In general, the models implemented in these pro-
grams fix the topologies across partitions to be equal,
side-stepping the need to take a consensus over vary-
ing topologies, while evolutionary pressure parame-
ters, e.g., transition:transversion ratios and evolutionary
rates, vary independently across partitions. However, al-
ternative models that constrain equal (or proportional)
rates and pressures across partitions are also commonly
implemented (Newton et al., 1999).

Bayesian hierarchical models can be adapted to pro-
vide another alternative in analyzing multiple parti-
tions. Bayesian methods naturally handle averaging
across uncertain discrete quantities such as topologies
across partitions and are gaining popularity in phy-
logenetics (Sinsheimer et al., 1996; Yang and Rannala,
1997; Larget and Simon, 1999; Mau et al., 1999; Li et al.,
2000; Huelsenbeck et al., 2001; Suchard et al., 2001).
Bayesian approaches focus on the estimation of the pos-
terior distribution of unknown model parameters given
the observed data via Bayes theorem. Let the parameters
be θ and data be Y. Bayes theorem states that the poste-
rior distribution p(θ | Y) of θ given Y is proportional to
the product of the sampling density f (Y | θ ) of Y given
θ , referred to as the model likelihood, and the prior dis-
tribution q (θ ) of θ . Specifically,

p(θ | Y) = f (Y | θ )q (θ )
m(Y)

, (1)

where the constant of proportionality m(Y) =∫
θ

f (Y|θ )q (θ ) dθ is the marginal likelihood of the
data Y.

Buckley et al. (2002) extended the first level of a con-
sensus approach into a Bayesian framework to examine
the congruence of topologies across multiple partitions.
Like previous consensus-based analyses, inference re-
garding tendencies across the partitions relies on an ad
hoc two-step approach in which all data are not used
simultaneously. The first step estimates individual parti-
tion parameters independently, and then the second step
either averages these values or compares them with a
fixed point. Further, to the best of our knowledge, no
previous methods share information about evolutionary
pressure parameters without assuming absolute equality
or proportionality across partitions.

In this article, using a Bayesian hierarchical frame-
work, we define a middle ground between a strict
combined-data approach and a consensus approach that
combines the strengths of both. We use all of the data in a
single analysis, akin to a strict combined-data approach.
At the same time, we allow for different phylogenetic pa-
rameters in the individual partitions, as in the consensus
approach. Our framework includes a formal statistical
model that combines the results from the individual par-
titions to provide overall or across-partition-level sum-
maries of all evolutionary parameters, including topolo-
gies for the entire data set. This across-partition-level
model and the individual partition models are fit simul-
taneously, enabling the across-partition-level model to
feed back information, in the form of a prior, into the esti-
mation for the individual partitions. The feedback results
in a borrowing of strength of information from one par-
tition by another, producing more precise partition-level
estimates. These hierarchical relations are found in many
statistical frameworks (Laird and Ware, 1982; Gelman
et al., 1995).

The Bayesian model described in Equation 1 is not in-
herently hierarchical. To define a hierarchical structure
in the model, we start with the natural divide of the
multipartite sequence data Y = (Y1, . . . , YK ) into K sep-
arate partitions with K copies of the model parameters,
θ = (θ1, . . . , θK ). This yields

p(θ | Y) ∝ f (Y | θ )q (θ ) =
(

K∏
k=1

f (Yk | θk)

)
q (θ1, . . . , θK ).

(2)

Key to the hierarchical construction is modeling the prior
q (θ1, . . . , θK ) such that it depends on unknown, but es-
timable, parameters φ in which θk are only conditionally
independent given φ, suggesting

q (θ1, . . . , θK ) =
∫

φ

K∏
k=1

q (θk | φ)q (φ) dφ. (3)

Employing unknown hyperparameters φ that, in turn,
have their own prior q (φ) enables the borrowing of
strength of information from Yk through θk and φ to the
remaining K − 1 partitions and their respective param-
eters. The hierarchical model becomes

p(θ , φ | Y) ∝
(

K∏
k=1

f (Yk | θk)q (θk | φ)

)
q (φ). (4)

In contrast, independent analyses or mixed models
combining both constrained and a priori independent
parameters assume that φ is a fixed constant across the
independent portions of the parameter space. As a result,
no sharing of information is possible and so these models
are not hierarchical. Further, constraining θ1 = · · · = θK
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is also not a hierarchical model as q (θk | φ) becomes a
point-mass on θk = φ and all variability is lost.

In a phylogenetic setting, hierarchical models serve as
a generalization of discrete site class models (Hasegawa
et al., 1993; Yang, 1995b), where individual partitions
possess independent evolutionary parameters, and the
mixture models that combine constrained equal or in-
dependent parameters across partitions. Exploiting the
hierarchical dependency between parameters allows the
generalized model to pool information across partitions
to improve the precision of estimates in individual par-
titions and conveniently enables estimating and testing
tendencies in topologies across partitions while allowing
the evolutionary parameters in individual partitions to
vary.

We outline the remainder of this paper as follows. In
the next two sections, first we review models for the re-
construction of evolutionary histories from a single parti-
tion, then formally introduce a hierarchical phylogenetic
model to incorporate data from multiple partitions and
finally describe methods to sample from the Bayesian
model. In the Examples section, we illustrate the utility of
our hierarchical phylogenetic model in three disparate
problems. The first example uses data from the recent
debate regarding the classification of guinea pigs as ro-
dents, where the 13 mitochondrial genes from four taxa
define 13 data partitions. This example employs the hier-
archical model in a data set typical of the strict combined-
data versus consensus/independence approach debate.
The second example explores the frequency of horizon-
tal gene transfer (HGT) among four prokaryotic species.
Individual genes define the separate partitions, and we
simultaneously estimate the most likely species topol-
ogy along with all gene topologies. The last example ex-
amines the intrahost evolution of HIV and utilizes the
hierarchical model to draw conclusions across multiple
hosts simultaneously. Here, individual data partitions
comprise independent hosts, and the taxa within par-
titions represent HIV sequences collected at correspond-
ing time points. Strict combined-data or independent
analyses approaches provide inadequate frameworks to
broach many phylogenetic problems like these latter two.
We conclude the article with a brief discussion in the
REMARKS section.

EVOLUTIONARY RECONSTRUCTION
WITHIN A PARTITION

We begin with aligned molecular sequence data
Y, in particular DNA or RNA sequences. Data Y =
(Y1, . . . , YK ) consist of K disjoint sets, called parti-
tions. Data Yk = (Yk1, . . . , YkC ) within partition k for k =
1, . . . , K consist of aligned sequences from N equivalent
taxa and can be further subdivided into C evolutionary
site classes. Within class c for c = 1, . . . , C , Ykc represent
Lkc aligned sites, such that Ykc = (Ykc1, . . . , YkcLkc ). Site
data Ykcl = (Ykcl1, . . . , YkclN)t contain one nucleotide from
each taxon, such that Ykcli ∈ (A, G, C, T) for i = 1, . . . , N,
where A stands for adenosine, G for guanine, C for cy-
tosine, and T for thymidine (or U for uracil in RNA

sequences). Rather than deleting sites that contain align-
ment indels or ambiguous nucleotides, we integrate over
all their possible values, where an indel can be A, G, C,
or T (Felsenstein, 1981).

Many Bayesian evolutionary reconstruction methods
(e.g., Mau and Newton, 1997; Yang and Rannala, 1997;
Larget and Simon, 1999; Suchard et al., 2001) assume
that sites are independent and identically distributed
(iid) within partitions and site classes, and the likelihood
of observing Ykcl is given by a multinomial distribution
over the 4N possible outcomes. The multinomial proba-
bilities are functions of an unknown topology τk relat-
ing the N taxa within partition k and branch lengths
tkc = (tkc1, . . . , tkcS), where s = 1, . . . , S and S = 2N − 3,
and a model to describe the mutation of nucleotides
along these branch lengths within partition k and site
class c. Popular models include the continuous-time
Markov chain (CTMC) model for nucleotide substitu-
tion (Felsenstein, 1981). CTMC models assume that the
substitution mechanism is independent across branches
and follows a memoryless process, with the proba-
bility of nucleotide X mutating to Z along a branch
with length tkcs is equal to exp(tkcs�kc), where �kc is a
4 × 4 infinitesimal rate matrix. We use a parameteriza-
tion of �kc similar to that of Tamura and Nei (1993,
TN93).

�TN93
kc = fkc




− αkcπkcG πkcC πkcT

αkcπkcA − πkcC πkcT

πkcA πkcG − γkcπkcT

πkcA πkcG γkcπkcC −


, (5)

where the minus sign in each row represents minus the
sum of the remaining elements in that row. Parameter fkc
is the transversion rate, αkc is the transition:transversion
rate ratio for transitions between the purines A and G,
and γkc is the transition:transversion rate ratio for tran-
sitions between the pyrimidines C and T in partition k
and site class c. The vector πkc = (πkcA, πkcG, πkcC, πkcT)
is the stationary distribution of the Markov chain gen-
erated by �kc . Only the product tkcs × �kc enters into
the model likelihood, so without loss of generality, we
fix

fkc = 1
2[αkcπkcAπkcG + γkcπkcCπkcT + (πkcA + πkcG)(πkcC + πkcT)]

.

(6)

This constraint enforces

∑
m∈(A,G,C,T)

πkcm(�kc)m,m = −1, (7)

such that each branch length is the expected number of
nucleotide substitutions per site between the two nodes
that the branch connects (Yang et al., 1994).

Not all branch lengths retain definition between
topologies, and topologies may change across partitions.
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To overcome this difficulty when attempting to pool
branch length information across partitions, we first
model branch lengths tkcs within partition k and site class
c as exponentially distributed

tkcs ∼ Exponential(µkc). (8)

The parameter µkc is the prior expected divergence be-
tween nodes within partition k and site class c, retains
definition across topologies, and enables us to conve-
niently share branch length information across parti-
tions. A conditionally Exponential(µkc) random vari-
able has density p(tkcs | µkc) = 1/µkc × exp(−tkcs/µkc), has
mode 0, has nonzero density on the entire positive real
line, and has been used previously in Bayesian phylo-
genetics to model branch lengths (Suchard et al., 2001,
2003a). Given its mode at 0, we suspect the conditional
prior to bias toward a starlike topology and hence would
be conservative. In our hands, a conditionally Exponen-
tial prior has not had a noticeable impact on branch
length estimation for up to 15 taxa (Suchard et al., 2001).
Further, the Exponential prior is motivated by a Yule
process of neutral evolution and is vague but remains
proper. The usual Jeffreys’ prior on tkcs ∈ [0, ∞) is 1/tkcs
(Jeffreys, 1998). This prior choice is not integrable and
may preclude calculating Bayes factors for hypotheses
of interest.

HIERARCHICAL PRIORS FOR COMBINING PARTITION
MODELS

We build a Bayesian hierarchical framework that al-
lows us to unite the separate partition models in a single
comprehensive model. The second level (across-partition
level) of our model functions as a prior for the partition-
level parameters. Hyperparameters of this second level
are themselves unknown parameters, and this allows in-
formation about the values of the parameters in one set
of partitions to be transferred to help in estimating the
parameters in other partitions. This transfer is partic-
ularly useful if the partition-level parameter is poorly
estimated, perhaps due to small Lkc or otherwise unin-
formative data. Further, estimation of the higher level
parameters reveals tendencies across partitions. In the
language of classical statistics, across-partition-level pa-
rameters represent fixed effects, while partition-level pa-
rameters represent random effects. The random effects
describe how the partition-level parameters vary from
the higher across-partition-level parameter means. Dif-
ferent hierarchical priors are required for continuous and
discrete parameters. The next two subsections illustrate
how we model these priors.

Continuous Evolutionary Parameters

Transition:transversion rate ratios αkc and γkc and ex-
pected divergence µkc exist on the positive half of the
real line. The natural transform for ratios onto the en-
tire real line is the logarithmic transformation, placing
equal rates at zero. To maintain consistency and allow

for future multivariate analysis, we also transform the ex-
pected divergence. Given transformed parameters span-
ning the entire real line, we follow common practice
(Gelman et al., 1995) and model the corresponding pa-
rameters across partitions using a multivariate normal
prior, 

 log αkc

log γkc

log µkc


 ∼ Normal(Vc, �), (9)

with log-scale, across-partition-level unknown mean
vector Vc = (Ac, Gc, Mc)t for each site class c and un-
known variance–covariance matrix �. In this article, we
assume a shared � across site classes, due to a lack of
prior knowledge about its variability, with a simple diag-
onal form, such that � = diag (σ 2

α , σ 2
γ , σ 2

µ). To ease com-
putation by allowing direct Gibbs sampling of Vc and �,
we specify conjugate hyperpriors

Vc ∼ Normal(�V,1, �V,2)

and

1
σ 2

x
∼ Gamma(ψσ 2,1, ψσ 2,2) (10)

for x ∈ (α, γ , µ). We choose relatively uninformative pri-
ors by setting �V,1 = ψV,1 × (1, 1, 1)t for ψV,1 = 0, �V,2 =
ψV,2 × I for ψV,2 = 10, where I is the identity matrix,
ψσ 2,1 = 2.1 and ψσ 2,2 = 1.1. Under these choices, σ 2

α , σ 2
γ ,

and σ 2
µ have prior expectation 1 and variance 10. In sit-

uations where K or C are large and one is interested
in estimating the posterior covariation between αkc , γkc ,
and µkc , less structured forms of �c specified for each
site class c are possible, and the conjugate hyperprior
becomes the Wishart distribution over �c .

Stationary distributions πkc exist on the simplex in 
4

and are naturally modeled by a Dirichlet distribution,

πkc ∼ Dirichlet(N� × �c), (11)

where �c = (�c A, �cG, �cC , �cT ) are the across-
partition-level proportions for each nucleotide type
for site class c and N� is a pseudocount measure of
precision across πkc . For hyperpriors on �c and N�, we
assume

�c ∼ Dirichlet(φ�)

and

N� ∼ Gamma(ψN,1, ψN,2) (12)

and set φ� = (1, 1, 1, 1), providing a flat prior on �c ,
ψN,1 = 0.1 and ψN,2 = 0.1, providing a proper yet vague
prior on N�.
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In most cases, the number of site classes C ≤ 3 and
as such we have chosen to keep across-partition-level
parameters Vc and �c a priori independent and to use
shared measures of variability � and N� across site
classes. When C is large, further borrowing strength can
be obtained by specifying a third hierarchical level across
classes. One accomplishes this by changing constants
�V,1, �V,2, and φ� into unknowns, specifying prior dis-
tributions over them, and relaxing the shared variability
assumption.

In interpreting the hierarchical distributions,
x ∼ Normal(y, z) has density p(x) = (2π |z|)−1/2

exp[−(1/2)(x − y)tz−1(x − y)], x ∼ Gamma(y, z) has
density p(x) ∝ xy−1 exp(−zx), and (x1, . . . , xI ) ∼
Dirichlet(y1, . . . , yI ) has density p(x1, . . . , xI ) ∝
xy1−1

1 · · · xyI −1
I , where I counts the number of com-

ponents in (x1, . . . , xI ).

Discrete Evolutionary Parameters

Whereas standard hierarchical distributions exist for
continuous parameters, hierarchical models for discrete
parameters, like the topologies τk across partitions in our
case, present more of a challenge. We develop three op-
tions here.

Completely linked partitions model.—In many phylo-
genetic problems, the separate partitions are believed
to have experienced equivalent evolutionary histories
and should yield the same common topology ϒ . This
situation presents itself, for example, when the par-
titions represent various genes sampled across the
same sets of organisms and recombination, HGT, or
lineage sorting (Robertson et al., 1995; Jain et al.,
2002; Suchard et al., 2003b) are highly unlikely a pri-
ori. We refer to these partitions as completely linked,
following the idea that the genes from the different
partitions may be linked together on shared chro-
mosomes or at least across evolutionary time, al-
though we need not assume such a rigorous re-
lationship between partitions. Under the completely
linked assumption, we constrain ϒ = τ1 = · · · = τK
and assume that

ϒ ∼ Multinomial(Q), (13)

where Q = (Q1, . . . , QE ) are constants, the prior prob-
abilities of the E = (2N − 5)!/2N−3(N − 3)! possible N-
taxon topologies. When little or no information is known
about ϒ , a reasonable choice is that a priori all pos-
sible common topologies are equally likely, such that
p(ϒ) = 1/E . Alternatively, in a hypothesis testing set-
ting, one may choose Q such that the prior odds of the
dueling hypotheses regarding ϒ are 1.

The completely linked partitions model is a direct
extension of the mixed models under which topolo-
gies are taken to be equal and evolutionary pres-
sure parameters vary independently across partitions.
Although our prior over τk is not hierarchical here,
our prior over the remaining parameters is hierar-
chical, enabling more precise parameter estimation

through the borrowing of strength than mixed models
afford.

Partially linked partitions model.—Situations where in-
frequent recombination, HGT, or lineage sorting may oc-
cur warrant a full hierarchical prior. Our partially linked
partitions model speculates, as above, that there exists
an estimable common topology ϒ for all partitions. In
contrast to the completely linked model, each partition
topology τk may differ from ϒ with an estimable prob-
ability p. If τk is incongruent with ϒ , then τk is equally
likely to be any of the remaining E − 1 possible topolo-
gies. The multinomial hierarchical prior on τk becomes

q (τk | ϒ) =



1 − p if τk = ϒ

p × 1
E − 1

otherwise.
(14)

Following the completely linked partitions model, we
assume a multinomial prior for ϒ with prior probabili-
ties Q. To maintain identifiability between ϒ and p, we
restrict 0 ≤ p ≤ (E − 1)/E by assuming

p ∼ Beta(ψp,1, ψp,2) × 1
{

p ≤ E − 1
E

}
, (15)

where ψp,1 and ψp,2 specify our prior information re-
garding p and 1{·} is the indicator function. An advan-
tage of this hierarchical structure is that we allow τk to
vary and, hence, can simultaneously estimate the pos-
terior probabilities of incongruence between partitions
while inferring ϒ .

One caveat in interpreting incongruent topologies is
that such incongruence can also result from the estima-
tion process itself. These mechanisms include stochastic
error due to sparse data, evolutionary model misspeci-
fication, and parallel/convergent evolution (Cao et al.,
1998). As a consequence, probability p becomes an up-
per bound on the frequency of the underlying biological
process producing incongruent topologies. On the other
hand, the ability of the partially linked partitions model
to identify model misspecification when no recombina-
tion, HGT, or lineage sorting is suspected may be capi-
talized on as a diagnostic tool.

Unlinked partitions model.—In contrast to both linked
partition problems, there also exist phylogenetic ques-
tions focused on the average behavior of unlinked par-
titions. Unlinked partitions arise when the data within
one partition result from evolutionary events that are
independent from those producing the data in another
partition. For example, consider the evolutionary histo-
ries of independent populations of the same organism
and let each partition contain sampled sequences from
corresponding phenotypes or time points in the history
of one population. In this situation, the researcher may be
interested in identifying the occurrence of similar evolu-
tionary events across population partitions or estimating
the most probable sequence of events using all partitions
simultaneously.
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Given the independence of unlinked partitions, our
model for them is simpler than those for their linked
counterparts. We posit that

τk ∼ Multinomial(T), (16)

where T = (T1, T2, . . . , TE ) are the unknown across-
partition-level probabilities for each of the E possi-
ble topologies. To complete the hierarchical prior, we
assume

T ∼ Dirichlet(NQ × Q), (17)

where constant prior probabilities Q retain their earlier
definition and specification suggestions and NQ is the
number of pseudocounts or weight given to the prior
probabilities Q. This prior imparts as much informa-
tion to the posterior of T as NQ additional partitions
with topologies drawn directly from Multinomial (Q).
For large NQ, the posterior of T approaches a point mass
at Q. On the other end of the spectrum, NQ → 0 re-
sults in an uninformative prior but, in the limit, does
not guarantee that the posterior of T remains proper.
We recommend moderate choices of NQ to avoid these
extremes.

Posterior Model Sampler

For each partition, let θk = (τk , tk1, . . . , tkC , αk1, . . . , αkC ,
γk1, . . . , γkC , µk1, . . . , µkC , πk1, . . . , πkC ). Also, let
θ = (θ1, . . . , θK ) and φ = (V1, . . . , VC , �, �1, . . . ,�C ,
N�, ϒ, p) for linked partitions or φ = (V1, . . . , VC , �,
�1, . . . , �C , N�, T) for unlinked partitions, then the
parameter pair (θ , φ) specifies the complete model.
Having formalized our hierarchical phylogenetic model
with parameters (θ , φ) in the previous sections, we now
discuss a Markov chain Monte Carlo (MCMC) approach
to sample from the model’s joint posterior distribution
p(θ , φ | Y). MCMC has been used extensively to sam-
ple from nonhierarchical partition models (Larget and
Simon, 1999; Mau et al., 1999; Li et al., 2000; Huelsenbeck
and Ronquist, 2001; Suchard et al., 2001) parameterized
in terms of just θ . Most of these samplers utilize a
Metropolis-within-Gibbs (Tierney, 1994) algorithm that
cycles through blocks of parameters within θk , updating
them via a Metropolis–Hastings proposal (Metropolis
et al., 1953; Hastings, 1970) conditional on the current
values of the remaining parameters.

We construct our hierarchical sampler out of two
nested Metropolis-within-Gibbs cycles. The outer cycle
first iterates over partitions k = 1, . . . , K and then over
the across-partition-level parameters φ. Within each par-
tition k, the inner cycle proceeds over parameters θk ,
following the proposals of Suchard et al. (2001) with
minor exception. The within-partition update blocks
are

τk , tkc | αkc , γkc , µkc , πkc , φ , Y

tkc | τk , αkc , γkc , µkc , πkc , φ , Y

αkc , γkc | τk , tkc , µkc , πkc , φ , Y

µkc | τk , tkc , αkc , γkc , πkc , φ , Y

πkc | τk , tkc , αkc , γkc , µkc , φ , Y. (18)

Suchard et al. (2001) restrict Trace(�kc) = −1, constrain-
ing (αkc , γkc) ∈ U[0, 1) × U[0, 1), and propose new val-
ues for αkc and γkc by generating Normal random vari-
ates centered at their current values and reflected about
both zero and 1. In our current formulation (αkc , γkc) ∈
[0, ∞) × [0, ∞). As a consequence, we modify the pro-
posal step such that it reflects only about zero. For
the completely linked partitions model, the first update
block above is skipped, as τk = ϒ for all k.

In order to sample the across-partition-level param-
eters φ in the outer Metropolis-within-Gibbs cycle, we
must either derive their full conditional distributions
to use Gibbs sampling or develop Metropolis–Hastings
proposals for each parameter. We begin with Vc and �.
By assuming a prior diagonal form for � and �V,2, the
full conditional distributions of (Ac, σ 2

α ), (Gc, σ 2
γ ), and

(Mc, σ 2
µ) are independent. Let αc = (α1c , . . . , αK c), then

the full condition distributions of Ac and σ 2
α are

Ac | αc , σ 2
α ∼ Normal(νA, σ 2

A) for c = 1, . . . , C

and

1
σ 2

α

| αc , Ac

∼ Gamma

(
ψσ 2,1 + KC

2
, ψσ 2,2 + 1

2

C∑
c=1

SS Ac

)
,

where

νA = ψV,1σ
2
α + ψV,2

∑K
k=1 log αkc

σ 2
α + KψV,2

,

σ 2
A =

(
K
σ 2

α

+ 1
ψV,2

)−1

and

SSAc =
K∑

k=1

(Ac − log αkc)2. (19)

Similar conditional distributions exist for (Gc, σ 2
γ ) and

(Mc, σ 2
µ) by modifying the indices in Equation 19.

The full conditional distributions of N� and �c are
not of standard form. We sample these parameters us-
ing Metropolis–Hastings proposals. For N�, we propose
new values by generating a Normal random variate cen-
tered at the current value of N� and reflected about zero
to maintain positivity. For �c , we draw new values �∗

cm
from a Normal distribution centered at the current values
�cm for m ∈ (A, G, C), set �∗

cT = 1 − �∗
c A − �∗

cG − �∗
cC ,
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and automatically reject any proposal where �∗
c lies

outside the simplex in 
4. These two Normal distribu-
tions have tunable variances. We adjust these variances
such that proposals have acceptance rates of 30%–40%
(Gelman et al., 1996).

For the completely linked partitions model, we sample
ϒ using the topology proposal of Suchard et al. (2001).
For the partially linked partitions model, it is possible to
directly sample ϒ from its full conditional distribution
when E is moderately small. Let τ = (τ1, . . . , τK ), �−ϒ be
the vector of all model parameters from (θ , φ) excluding
ϒ , and �−(ϒ,τ ) be all parameters excluding both ϒ and τ .
Then, given τ , ϒ is independent of the pair (Y, �−(ϒ,τ )).
As a consequence,

p(ϒ | Y, �−ϒ ) = q (τ | ϒ)q (ϒ)∑E
ϒ=1 q (τ | ϒ)q (ϒ)

. (20)

Finally, given ϒ , the K topologies τk are a priori iid,
yielding

q (τ | ϒ) =
K∏

k=1

q (τk | ϒ). (21)

We draw ϒ from a Multinomial distribution with E state
probabilities calculated using Equations 20 and 21. Prob-
ability p is updated via a Metropolis–Hastings proposal
similar to N� with reflections about both 0 and (E − 1)/E .

Under the unlinked partitions model, the Dirichlet
prior on T is conjugate to the Multinomial distribu-
tion on τk . This conjugacy makes Gibbs sampling of T
convenient, as its full conditional distribution remains
Dirichlet,

T | τ, NQ, Q ∼ Dirichlet(NQ × Q + C), (22)

where C = (C1, . . . , CE ) with elements Ce counting the
number of partitions in which the topology correspond-
ing to e is observed,

Ce =
K∑

k=1

1{τk = e}. (23)

We run our MCMC chains for 5.1 × 106 outer
Metropolis-within-Gibbs cycles, discard the first 105 cy-
cles as burn-in, and subsample every 5 × 102 cycles.
This process retains P = 104 posterior samples with de-
creased autocorrelation. To help ensure convergence,
these burn-in times and total chain lengths are signifi-
cantly longer than what appears to be required by exam-
ining time-series plots of the log likelihood of each sam-
ple. Further, we compare the estimates obtained from
the simulation of at least five independent chains with
starting values drawn directly from the model priors to
assess convergence.

Bayes Factors

Bayes factors measure the change in the support of the
data in favor of one statistical model relative to another
model. Formally, a Bayes factor (B10) in favor of model
1 (M1) over model 0 (M0) is the ratio of the marginal
likelihood m(Y | M1) of M1 over the marginal likelihood
m(Y | M0) of M0 (Kass and Raftery, 1995):

B10 = m(Y | M1)
m(Y | M0)

. (24)

To calculate Bayes factors for nonnested models, it is fre-
quently more convenient to estimate the posterior proba-
bilities p(M0 | Y) and p(M1 | Y) by MCMC sampling over
the joint space of the competing models rather than esti-
mating the multidimensional integrals hidden in Equa-
tion 24 directly. Applying Bayes theorem to Equation 24
yields

B10 = p(M1 | Y)
p(M0 | Y)

/
q (M1)
q (M0)

= Posterior Odds
Prior Odds

, (25)

where q (M0) and q (M1) are the prior probabilities of mod-
els M0 and M1.

Bayes factors are the Bayesian analogue of the likeli-
hood ratio test (LRT). LRTs have been used effectively
in phylogenetics (Huelsenbeck and Rannala, 1997) but
can be remiss in that the data are sparse and the space of
possible evolutionary topologies is discrete so that stan-
dard likelihood asymptotics may not apply (Goldman,
1993; Sinsheimer et al., 1996; Whelan and Goldman,
1999). Bayes factors have fewer difficulties in discrete
spaces; probability mass functions naturally substitute
for continuous distributions, and Bayes factors do not
rely on large sample asymptotics. Huelsenbeck et al.
(2001) and Suchard et al. (2001, 2003a) discussed further
advantages of Bayes factors in phylogenetics, namely
that tests of competing nucleotide substitution models
and branch length restrictions do not require condition-
ing on known topologies.

More Efficient Estimators

To calculate Bayes factors comparing across-partition-
level topological hypotheses regarding ϒ and T , we esti-
mate the posterior odds of the competing hypotheses and
divide this value by the prior odds (Eq. 25). Three spe-
cific tests for nonnested hypotheses are illustrated in the
examples. For the completely and partially linked parti-
tions models, a standard estimator of the posterior prob-
ability λe = p(ϒ = e | Y) for some topology e ∈ (1, . . . , E)
is the average of the indicator that ϒ = e is true over all
posterior draws. Using this naive estimator, the smallest
nonzero estimate possible is <1/P , where P is the poste-
rior sample length and no samples support ϒ = e. Fur-
ther, if we approximate the posterior draws as indepen-
dent, the relative SE of estimation of λe is approximately
100% when λe is small. This error grows substantially
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when one considers the dependence among the Marko-
vian posterior samples.

For the completely linked partitions model, a more effi-
cient estimator is possible by first conditioning on ϒ = e
and then calculating p(Y | ϒ = e) using importance sam-
pling integration (Newton and Raftery, 1994),

p(Y | ϒ = e)

=
∫

�−ϒ

f (Y | �−ϒ , ϒ = e)q (�−ϒ )
g(�−ϒ )

g(�−ϒ ) d�−ϒ , (26)

for each e ∈ (1, . . . , E). Importance sampling reduces the
variance of Monte Carlo integration by utilizing an im-
portance sampling function g(·) that places increased
weight on random samples where f (Y | �−ϒ , ϒ = e) is
large. Following Newton and Raftery (1994), we employ
an importance sampling function that is a mixture of
samples from the model prior and posterior samples
from our MCMC algorithm conditional on ϒ = e. Ap-
plication of Bayes theorem allows us then to recover es-
timates λ̂e .

For the partially linked partitions model, we take ad-
vantage of the Gibbs sampling step for ϒ . Based on in-
termediate calculations saved during Gibbs sampling
(Weiss et al., 1999), we use Rao-Blackwellization to pro-
vide an efficient estimator (Casella and Robert, 1996).
Rao-Blackwellization reduces the variance of an unbi-
ased estimator by replacing the estimator by its condi-
tional expectation given a sufficient statistic.

By conditioning,

p(ϒ | Y) =
∫

�−ϒ

p(ϒ | Y, �−ϒ )p(�−ϒ | Y) d�−ϒ. (27)

Let �
(p)
−ϒ for p = 1, . . . , P be a marginal posterior sample

from our model, then the Rao-Blackwell estimator is

λ̂e = 1
P

P∑
p=1

p
(
ϒ = e

∣∣ Y, �
(p)
−ϒ

)
for e = 1, . . . , E . (28)

Conveniently, this estimator is the posterior mean of
the full conditional probabilities calculated during each
Gibbs cycle (Eq. 20).

EXAMPLES

Guinea Pigs as Rodents

Common lore holds that guinea pigs (Cavia por-
cellus), originally domesticated in South America as
a food source and later brought to Europe as pets,
are rodents. As far back as Linnaeus in 1758, guinea
pigs have been classified within the order Rodentia.
Graur et al. (1991) questioned this classification using
a maximum-parsimony analysis of 15 protein sequences
and found that the order Rodentia is polyphyletic, sug-
gesting that guinea pigs should be separated out of
the order. Since that time, several research groups have

broached the guinea-pig-as-rodent hypothesis using var-
ious nucleotide and protein sequences with parsimony
and maximum-likelihood–based approaches (Hasegawa
et al., 1992; Cao et al., 1994, 1997; Frye and Hedges, 1995;
D’Erchia et al., 1996; Sullivan and Swofford, 1997). Re-
sults from these analyses have been contradictory and
sometimes inconclusive regarding the placement of the
guinea pig. One reason for the disparate findings has
been the lack of methodology to reconstruct the evolu-
tionary histories from multiple data partitions simulta-
neously and infer tendencies across the partitions. Our
intention in this small example here is not to resolve the
guinea pig issue once and for all; for example, Sullivan
and Swofford (1997) show that nucleotide substitution
model choice, in particular within-site-class rate varia-
tion, can greatly affect inference in this problem. Rather,
our intention is to illustrate how a hierarchical phyloge-
netic model can provide more efficient parameter esti-
mation and could possibly shed additional light on the
question.

Following D’Erchia et al. (1996), we attack the guinea
pig problem using nucleotide sequences from all K = 13
protein-coding mitochondrial genes. For each of the 13
partitions, we construct a four-taxon alignment consist-
ing of a single gene sequence from a (1) guinea pig,
(2) rat, (3) human, and (4) opossum. We divide parti-
tions into C = 3 site classes based on first, second, or
third codon position. Partition lengths range from 207
nucleotides for atp8 to 1,842 nucleotides for nd5, with an
average length of 890 nucleotides. All sequence align-
ments originate from AMmtDB, a database of multiply
aligned metazoan mitochondrial DNA (Lanave et al.,
2000). Serving as an outgroup, the opossum is a mar-
supial and is assumed to have evolutionarily diverged
before the remaining three eutherial (placental) taxa in
our analysis.

Among the N = 4 taxa, there exist E = 3 possible
topologies for each partition. Figure 1 depicts these
topologies. Two topologies τR1

and τR2
are inconsistent

with the guinea-pig-as-rodent hypothesis. In these
topologies, the guinea pig is nearest neighbor to either
the human or opossum, suggesting that the order Ro-
dentia is polyphyletic. The remaining topology τR is con-
sistent with a monophyletic order Rodentia but does not
offer definitive support of the guinea pig as a rodent; this
support may change depending on taxon choice. Hence,
estimating the posterior probability of the inconsistent
topologies versus the consistent topology provides a con-
servative test of polyphyly. We utilize the completely
linked partitions model. To assign a prior probability
distribution over all possible common topologies ϒ , we
first assume equal prior probability over monophyly ver-
sus polyphyly and further assume that the two poly-
phyletic topologies are also equally probable. As a result,
QR = 1/2 and QR1

= QR2
= 1/4.

Table 1 presents the partition-level evolutionary es-
timates for the 13 mitochondrial genes divided into
three codon positions or site classes. Listed in the table
are estimates of the transition:transversion rate ratios
αkc and γkc , expected divergences µkc , and stationary
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TABLE 1. Hierarchical partition-level estimates for the guinea pig example. For each gene k and codon position (site) class c, estimates of αkc ,
γkc , and µkc are posterior means and 95% confidence intervals and estimates of πkc are posterior means.

πkc

k c αkc γkc µkc × 10 A G C T

atp6 1 1.4 (0.8–2.1) 3.2 (2.0–4.7) 1.5 (0.7–2.8) 0.38 0.16 0.28 0.19
2 2.2 (0.9–4.4) 2.5 (1.5–4.1) 0.6 (0.3–1.2) 0.16 0.10 0.30 0.44
3 4.4 (2.5–6.9) 12.2 (4.9–27.1) 10.0 (4.2–20.9) 0.41 0.05 0.28 0.26

atp8 1 2.7 (1.2–5.3) 1.5 (0.8–2.6) 1.9 (1.0–3.6) 0.40 0.09 0.25 0.27
2 1.4 (0.5–2.8) 2.6 (1.4–4.4) 1.3 (0.7–2.3) 0.27 0.06 0.34 0.34
3 3.3 (1.5–6.3) 12.6 (4.8–26.8) 8.3 (3.3–17.8) 0.45 0.06 0.26 0.23

co1 1 2.3 (1.5–3.5) 7.3 (4.9–10.6) 1.0 (0.5–2.1) 0.27 0.28 0.19 0.26
2 1.5 (0.6–3.2) 3.8 (2.0–7.0) 0.4 (0.1–0.8) 0.19 0.14 0.26 0.41
3 8.4 (5.3–13.9) 13.1 (6.4–34.4) 10.3 (4.6–21.7) 0.38 0.06 0.29 0.27

co2 1 1.8 (1.1–2.8) 2.7 (1.7–4.2) 1.3 (0.6–2.6) 0.30 0.23 0.23 0.23
2 2.0 (0.8–3.8) 3.1 (1.7–5.2) 0.6 (0.3–1.1) 0.25 0.11 0.24 0.40
3 5.3 (3.0–9.0) 13.0 (5.6–29.9) 9.9 (4.2–20.6) 0.40 0.06 0.28 0.27

co3 1 2.5 (1.4–4.0) 3.4 (2.1–5.3) 1.1 (0.5–2.2) 0.27 0.21 0.24 0.29
2 1.5 (0.6–3.0) 2.9 (1.5–4.9) 0.5 (0.2–1.0) 0.22 0.15 0.25 0.37
3 7.1 (3.9–14.5) 12.8 (5.7–28.3) 9.6 (4.2–19.8) 0.41 0.05 0.30 0.25

cytb 1 1.9 (1.3–2.8) 2.3 (1.5–3.2) 1.3 (0.6–2.5) 0.31 0.20 0.25 0.25
2 1.6 (0.8–3.0) 3.0 (1.8–4.5) 0.6 (0.3–1.1) 0.20 0.13 0.26 0.41
3 6.7 (3.9–11.3) 13.3 (6.0–28.5) 10.3 (4.5–21.6) 0.40 0.04 0.38 0.18

nd1 1 2.0 (1.3–2.9) 2.6 (1.8–3.7) 1.6 (0.8–2.9) 0.32 0.19 0.26 0.24
2 2.2 (1.0–4.2) 2.9 (1.8–4.5) 0.6 (0.3–1.2) 0.19 0.10 0.29 0.42
3 8.8 (4.4–17.3) 10.5 (4.3–23.0) 10.4 (4.6–21.3) 0.43 0.04 0.34 0.18

nd2 1 1.1 (0.7–1.5) 1.6 (1.1–2.2) 1.9 (1.0–3.6) 0.40 0.12 0.25 0.22
2 1.4 (0.7–2.5) 2.4 (1.7–3.3) 1.0 (0.6–1.9) 0.20 0.08 0.31 0.41
3 7.4 (3.6–14.6) 11.9 (4.7–24.6) 11.4 (5.0–23.1) 0.45 0.04 0.32 0.20

nd3 1 1.2 (0.6–2.0) 2.2 (1.3–3.5) 1.8 (0.9–3.3) 0.32 0.17 0.23 0.28
2 1.8 (0.7–3.8) 4.8 (2.6–8.3) 0.8 (0.4–1.5) 0.18 0.11 0.27 0.44
3 8.9 (4.0–20.3) 10.3 (3.9–22.4) 10.3 (4.5–21.3) 0.45 0.05 0.27 0.24

nd4 1 1.4 (1.0–1.9) 2.6 (1.9–3.4) 1.7 (0.9–3.1) 0.38 0.13 0.25 0.24
2 1.9 (1.0–3.2) 2.0 (1.3–2.7) 0.7 (0.4–1.3) 0.20 0.11 0.27 0.41
3 6.3 (3.6–12.2) 11.9 (5.3–25.1) 10.8 (4.8–22.5) 0.44 0.04 0.31 0.21

nd4l 1 1.4 (0.7–2.4) 2.3 (1.2–3.8) 1.7 (0.8–3.1) 0.33 0.19 0.22 0.27
2 1.4 (0.5–3.1) 4.8 (2.5–8.5) 0.8 (0.4–1.5) 0.18 0.09 0.26 0.47
3 6.3 (2.6–14.0) 10.0 (3.5–21.2) 10.8 (4.6–22.3) 0.43 0.04 0.30 0.23

nd5 1 1.1 (0.8–1.4) 2.1 (1.6–2.7) 1.7 (0.8–3.1) 0.38 0.15 0.23 0.24
2 1.5 (0.9–2.3) 2.2 (1.6–2.9) 0.8 (0.4–1.6) 0.22 0.10 0.28 0.40
3 8.3 (4.8–14.2) 11.1 (5.1–22.3) 10.9 (4.8–22.1) 0.41 0.03 0.32 0.23

nd6 1 2.0 (1.3–2.9) 2.5 (1.3–4.2) 2.1 (1.1–3.8) 0.26 0.35 0.09 0.31
2 2.5 (1.4–4.1) 1.8 (1.1–2.8) 1.1 (0.6–2.0) 0.18 0.21 0.16 0.45
3 4.4 (2.1–10.1) 10.8 (3.2–26.8) 11.9 (5.3–24.4) 0.27 0.21 0.08 0.43

(a) (b)

FIGURE 1. Three possible topologies relating guinea pigs, rats, humans, and opossum. (a) Topology R is consistent with the guinea-pig-as-
rodent hypothesis. (b) Topologies R1 and R2 are inconsistent with this hypothesis.
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distributions πkc . As expected, the most noticeable fea-
ture of the table is the universally larger estimates of
the transition:transversion rate ratios and divergence of
the third codon position as compared with the first and
second positions. However, even within the hierarchical
structure of a single site class, variability between corre-
sponding parameters exists. Among ratios αkc and γkc ,
γk1 has the largest range of point estimates, 1.5–7.3. Ratio
αk2 has the smallest range, 1.4–2.5. Within classes, ratios
αco1,1 and αnd5,1 significantly differ; their 95% Bayesian
credible intervals do not overlap. Further, γco1,1 is signif-
icantly larger than γk1 for 11 other genes, overlapping
only with γco3,1. These differences highlight the need
for a hierarchical model when analyzing multiple par-
titions, as these model accommodate such variability in
a parsimonious manner. Expected divergences µkc also
express some variability across partitions, with the co1
gene demonstrating the slowest rate of evolution across
first and second codon positions and atp8 and nd6 de-
mostrating the fastest rates.

Table 2 lists the across-partition-level estimates across
genes. We calculate posterior probability estimates λ̂e
that the common tree ϒ = e using importance sampling.
The conditional marginal log likelihoods are (−39628,
−39592, −39597) for e ∈ (R, R1, R2), respectively. Using
the posterior probability estimates, the Bayes factor in
favor of polyphyly,

BR, R =
(

λ̂R1
+ λ̂R2

λ̂R

)/(
QR1

+ QR2

QR

)
, (29)

equals 1.4 × 1015, decisively rejecting the guinea pig as
a rodent given this restricted nucleotide substitution
model.

Returning to Table 2, we appreciate little difference be-
tween our point estimates for the across-partition-level
SDs σα , σγ , and σµ. This coincidence is not surprising;
the difference between

∑
c SSAc ,

∑
c SSGc , and

∑
c SSMc

is small relative to the uninformative hyperprior param-
eters ψσ 2,1 + (K × C)/2 and ψσ 2,2, found in the full con-
ditions distributions of σ 2

α , σ 2
γ , and σ 2

µ. This observation
suggests that informative prior information, when avail-
able, may aid inference. Finally, site class-specific across-
partition-level parameters Ac , Gc , and Mc follow the pat-
tern of variability observed at the partition-level across

TABLE 2. Hierarchical across-partition-level estimates for the guinea pig example. Parameters λ̂e estimate the posterior probability that the
common topology ϒ = e. Remaining continuous parameter estimates are posterior means and 95% confidence intervals.

Across site class estimates Site class specific estimates (for class c)

Parameter Parameter 1 2 3

λ̂R 7.2 × 10−16 Ac 0.48 (0.18–0.78) 0.49 (0.08–0.87) 1.78 (1.44–2.13)
λ̂R1

9.9 × 10−1 Gc 0.92 (0.63–1.20) 1.01 (0.71–1.32) 2.36 (1.83–2.96)
λ̂R2

8.6 × 10−3 Mc −1.92 (−2.28–−1.55) −2.70 (−3.06–−2.32) −0.05 (−0.52–0.46)
σA 0.47 (0.34–0.64) �c A .33 (.29–.37) .21 (.17–.24) .41 (.37–.45)
σG 0.46 (0.35–0.62) �cG .19 (.15–.22) .12 (.09–.14) .06 (.04–.08)
σM 0.47 (0.34–0.64) �cC .23 (.19–.26) .27 (.23–.30) .28 (.25–.32)
N� 50.5 (36.9–67.0) �cT .26 (.22–.29) .41 (.37–.45) .25 (.21–.28)

classes; notably, rates of evolution, as measured by Mc ,
are significantly larger for the third codon position than
for the first or second positions. We also observe sig-
nificantly heterogeneous nucleotide composition across
codon positions, as seen through �c .

For comparison to the hierarchical approach, Table 3
reports the posterior estimates of αkc , γkc , µkc , and πkc
when the data are analyzed using a mixture model con-
sisting of a single topology and a priori independent
continuous parameters across partitions and site classes.
Although the mixture model returns the same most prob-
able topology, τR1

, as the hierarchical model, we observe
from Table 3 that estimates of the continuous parameters
are in general less precise. To quantify the gain in effi-
ciency bought by the hierarchical model, we calculate
across partitions the average percentage reduction in the
length of the 95% confidence intervals when comparing
the hierarchical and the mixture results. These gains in
efficiency range from 12% for γk1 to 61% for γk3.

HGT Among Prokaryotes

Biologists increasingly have recognized HGT between
different species as an important mechanism of evolu-
tion (Syvanen, 1994; Lawrence, 1999; Jain et al., 2002) and
in particular among prokaryotes (Jain et al., 1999; Koonin
et al., 2001). The ability of prokaryotes to quickly adapt
to new environments often results from the acquisi-
tion of new genes through HGT rather than by the al-
teration of current gene function by random mutation
(Lawrence, 1999). Within prokaryotes, genes or com-
plete operans can be horizontally transferred by means
of transformation, conjugation, and transduction (Jain
et al., 2002). The rate of HGT has traditionally been dif-
ficult to estimate (Lawrence, 1999).

Both phylogenetic reconstruction using orthologous
genes (Jain et al., 1999) and similarity approaches based
on gene content (Lawrence and Ochman, 1997) are pop-
ular methods to examine HGT across species. Phyloge-
netic methods offer an advantage over similarity based
approaches; the reconstructed topologies from a phylo-
genetic method have direct biological interpretability as
descriptions of the underlying evolutionary histories of
the different genes (Doolittle, 1999). If the reconstructed
topology for a gene differs from the known phylogeny of
the species, then HGT is suggested as a possible expla-
nation (Syvanen, 1994). In many situations, the species
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TABLE 3. Independent estimates for the guinea pig example. For each gene k and site class c, estimates of αk , γk , and µk are posterior means
and 95% confidence intervals, and estimates of πk are posterior means.

πk

k c αk γk µk × 10 A G C T

atp6 1 1.3 (0.7–2.2) 3.3 (2.0–5.2) 1.6 (0.6–3.9) 0.39 0.15 0.28 0.18
2 2.8 (0.6–6.9) 2.4 (1.3–4.2) 0.7 (0.2–1.7) 0.15 0.10 0.30 0.45
3 3.6 (1.9–6.1) 12.0 (3.7–55.0) 10.1 (2.7–37.1) 0.41 0.05 0.28 0.26

atp8 1 6.8 (1.7–20.3) 0.9 (0.3–2.0) 3.1 (1.1–8.4) 0.39 0.05 0.27 0.29
2 0.7 (0.0–2.5) 2.3 (1.1–4.3) 2.4 (0.9–6.1) 0.29 0.05 0.36 0.31
3 1.3 (0.3–3.3) 11.8 (2.8–51.8) 6.4 (1.7–21.9) 0.47 0.08 0.24 0.21

co1 1 2.9 (1.7–4.6) 9.7 (6.2–14.5) 0.7 (0.3–1.9) 0.26 0.29 0.19 0.26
2 1.0 (0.1–3.7) 4.3 (1.8–9.0) 0.2 (0.1–0.5) 0.19 0.14 0.26 0.41
3 14.7 (5.3–65.7) 19.5 (5.9–78.7) 15.2 (3.8–52.6) 0.38 0.06 0.29 0.27

co2 1 1.8 (1.0–3.0) 2.8 (1.6–4.5) 1.3 (0.5–3.3) 0.30 0.24 0.23 0.23
2 2.4 (0.6–5.9) 3.4 (1.6–6.5) 0.5 (0.2–1.3) 0.26 0.11 0.24 0.39
3 5.0 (2.5–9.5) 15.2 (4.6–63.6) 11.4 (3.0–39.9) 0.39 0.06 0.28 0.27

co3 1 3.2 (1.7–5.4) 3.9 (2.2–6.4) 0.9 (0.3–2.3) 0.25 0.21 0.24 0.30
2 1.1 (0.2–3.0) 2.6 (1.2–5.0) 0.4 (0.1–1.1) 0.23 0.16 0.25 0.36
3 10.7 (3.5–38.0) 18.0 (5.3–72.0) 12.2 (3.1–44.1) 0.41 0.05 0.30 0.25

cytb 1 2.0 (1.2–2.9) 2.2 (1.4–3.2) 1.3 (0.5–3.2) 0.31 0.20 0.25 0.25
2 1.5 (0.5–3.4) 3.0 (1.7–4.8) 0.5 (0.2–1.4) 0.20 0.14 0.26 0.40
3 8.6 (3.6–30.5) 19.3 (5.4–76.3) 14.3 (3.5–51.1) 0.39 0.04 0.38 0.18

nd1 1 2.1 (1.3–3.0) 2.6 (1.7–3.8) 1.8 (0.7–4.4) 0.31 0.19 0.26 0.24
2 2.9 (0.9–6.3) 2.9 (1.7–4.9) 0.6 (0.2–1.6) 0.19 0.10 0.29 0.42
3 21.9 (4.3–102) 13.5 (3.5–59.8) 14.9 (3.6–55.2) 0.43 0.04 0.34 0.18

nd2 1 0.9 (0.6–1.4) 1.4 (0.9–2.0) 2.7 (1.1–6.6) 0.41 0.11 0.25 0.22
2 1.3 (0.5–2.6) 2.3 (1.6–3.2) 1.7 (0.6–4.1) 0.19 0.08 0.31 0.41
3 16.8 (3.2–82.1) 15.8 (3.9–67.0) 17.5 (4.2–62.8) 0.45 0.04 0.32 0.19

nd3 1 0.9 (0.3–1.8) 2.0 (1.0–3.4) 2.3 (0.9–5.6) 0.31 0.17 0.23 0.29
2 2.1 (0.2–7.0) 6.8 (3.0–13.9) 1.1 (0.4–2.9) 0.18 0.11 0.27 0.44
3 20.5 (3.6–93.0) 9.0 (2.5–41.6) 12.3 (3.3–42.3) 0.45 0.05 0.27 0.24

nd4 1 1.4 (0.9–1.9) 2.6 (1.8–3.4) 2.1 (0.8–5.1) 0.38 0.13 0.25 0.24
2 2.0 (0.9–3.5) 1.8 (1.2–2.6) 0.8 (0.3–2.1) 0.20 0.11 0.28 0.41
3 8.4 (3.2–36.5) 16.0 (4.5–67.9) 14.7 (3.8–52.0) 0.44 0.04 0.31 0.21

nd4l 1 1.2 (0.5–2.5) 2.0 (0.9–3.8) 2.1 (0.8–5.1) 0.32 0.20 0.21 0.27
2 0.6 (0.0–3.0) 6.9 (2.8–14.9) 1.1 (0.4–2.9) 0.18 0.09 0.25 0.48
3 9.2 (1.4–50.6) 9.0 (1.9–42.7) 11.6 (2.9–43.0) 0.43 0.04 0.31 0.22

nd5 1 1.0 (0.7–1.3) 2.0 (1.5–2.6) 2.1 (0.8–5.0) 0.38 0.15 0.23 0.24
2 1.4 (0.7–2.4) 2.1 (1.6–2.8) 1.2 (0.5–3.0) 0.22 0.10 0.28 0.40
3 21.2 (5.0–101) 16.1 (4.5–70.0) 17.1 (4.1–62.7) 0.41 0.03 0.32 0.23

nd6 1 2.0 (1.2–3.1) 2.9 (1.2–5.5) 3.0 (1.2–7.4) 0.25 0.37 0.07 0.31
2 2.7 (1.4–4.7) 1.7 (0.9–2.8) 1.8 (0.7–4.4) 0.18 0.22 0.15 0.45
3 4.7 (1.5–18.9) 8.1 (1.2–42.8) 12.9 (3.7–43.8) 0.26 0.22 0.07 0.44

phylogeny is not known with absolute certainty and
should be jointly estimated along with the individual
gene topologies.

Here, we briefly illustrate the utility of a hierarchi-
cal phylogenetic model to examine HGT using multiple
orthologous gene alignments simultaneously. Jain et al.
(1999) construct a data set of 144 separate gene align-
ments. Each alignment contains orthologous copies of
a gene from the same six prokaryotes. To limit com-
putational demand, we randomly subsample K = 50
alignments of genes from N = 4 taxa: Escherichia coli
(Ec) and Synechocystis 6803 (S6), both Eubacteria, and
Methanococcus jannaschii (Mj) and Archeoglobus fulgidus
(Af), both Archaea. Maintaining consistency with Jain
et al. (1999), we exclude the third codon position from
analysis and assumed a single site class (C = 1) for
the first and second positions within a gene. Partition
lengths range from 156 to 1,580 nucleotides, with an
average length of 585 nucleotides. Among the E = 3
possible topologies, few would doubt that τAE = (Ec,
S6, (Mj, Af)) describes the true species phylogeny, split-

ting the Archaea from the Eubacteria. However, for il-
lustrative purposes, we assume that the species topol-
ogy is completely unknown and simultaneously in-
fer the common topology ϒ among the four species
and an upper estimate of the frequency of HGT p.
In doing so, we take Q = (1/3, 1/3, 1/3) and ψp,1 =
ψp,2 = 1, such that the prior on p is uniform over 0
to 2/3.

Figure 2 plots the partition-level, cumulative poste-
rior probabilities of the three possible topologies for all
50 genes. The vast majority of the genes support τAE as
most probable (open boxes), while eight genes support
alternative topologies. Four genes recover τAE 1

= (Mj, S6,
(Ec, Af)) as most probable (shaded boxes), and four genes
recover τAE 2

= (Ec, Mj, (S6, Af)) as most probable (solid
boxes). For brevity, partition-level estimates of the evo-
lutionary pressure parameters are not shown. However,
when compared with estimates obtained while analyz-
ing each gene independently, the hierarchical estimates
show increased precision, similar to the guinea pig exam-
ple. Table 4 presents the across-partition-level estimates
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FIGURE 2. HGT among prokaryotes. For each gene, boxes report the cumulative posterior probabilities of the three possible topologies (open
= τAE ; shaded = τAE1

; solid = τAE2
). A majority of genes support τAE as the common topology. Support for alternative topologies suggests

HGT.

of the common topology ϒ and HGT frequency p, in
addition to the remaining across-partition-level parame-
ter estimates. Estimates of p are consistent with previous
studies of HGT rates among prokaryotes using similarity
based methods; the estimates include 17% in Escherichia
(Lawrence and Ochman, 1997) and range from 2% to 14%
across other prokaryotes (Garcia-Vallve et al., 2000). A
strength of the hierarchical approach is that we are able
to simultaneously determine the most probable species
phylogeny. The Bayes factor in favor of τAE versus its
two alternatives,

BAE ,AE =
(

λ̂AE

λ̂AE 1
+ λ̂AE 2

)/(
QAE

QAE 1
+ QAE 2

)
, (30)

equals 4.4 × 1023, decisively accepting the known tree
without any a priori information.

Intrahost Evolution of HIV

Within infected patients, HIV exists as a population of
rapidly mutating viruses. Evolution of the viruses is due

TABLE 4. Hierarchical across-partition-level estimates for the hor-
izontal gene transfer example. Parameters λ̂e estimate the posterior
probability that the common topology ϒ = e. Remaining continuous
parameter estimates are posterior means and 95% confidence intervals.

Parameter Estimate Parameter Estimate

λ̂AE ≈1 A 0.44 (0.35–0.53)
λ̂AE1

3.8 × 10−24 G 0.21 (0.10–0.32)
λ̂AE2

7.7 × 10−25 M −1.35 (−1.51–−1.19)
p 0.17 (0.08–0.28) �A .34 (.34–.35)
σA 0.28 (0.23–0.34) �G .30 (.29–.31)
σG 0.31 (0.25–0.39) �C .17 (.16–.17)
σM 0.35 (0.27–0.46) �T .19 (.18–.20)
N� 334 (252–430)

in part to sloppy replication as they attempt to infect new
cells in the body. Evolution of the envelope gene, env, has
important consequences on disease progression because
the gene is implicated in differential coreceptor usage
(Connor et al., 1997; Shankarappa et al., 1999; Philpott
et al., 2001). Most strains transmitted in vivo utilize
the CCR5 coreceptor (R5) (Scarlatti et al., 1997; Berger
et al., 1998; Shankarappa et al., 1999). As infection pro-
gresses, viral isolates that utilize the CXCR4 coreceptor
(X4) emerge in about 50% of hosts (Connor et al., 1997;
Scarlatti et al., 1997; Berger et al., 1998). The emergence
of X4 strains is correlated with disease progression and
death (Connor et al., 1997). Recently, it has been shown
that potent antiretroviral therapy (PART) can alter this
course and shift the viral populations back to R5-utilizing
strains (Este et al., 1999; Philpott et al., 2001). It is not
known whether these reemergent R5 strains are latent
archived virus or represent further mutation from the
X4 strains in light of PART suppression.

To infer the evolutionary ancestry of the reemergent
R5 strains from multiple patients simultaneously, we be-
gin with serially sampled HIV-1 sequences, comprising
the 105-nucleotide V3 region of env, from K = 4 infected
women who demonstrate the R5 → X4 → R5 progres-
sion. For each patient, we construct one data partition.
Each partition contains three patient sequences, that of
the infecting R5 (R5-i) virus, the disease progressing X4
virus, and the reemergent R5 (R5-r) virus after PART
treatment, and an outgroup (O) sequence. Our outgroup
sequence comes from HIV-1 clone JRCSF and utilizes
the R5 coreceptor (O’Brien et al., 1990). Due to the short
length of available sequences, we used only C = 1 site
class.

Among the N = 4 taxa in each partition, there exist
E = 3 possible topologies. Figure 3 superimposes two of
these topologies, E (evolution) and L (latent). When R5-r

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/52/5/649/1681866 by guest on 10 April 2024



2003 SUCHARD ET AL.—HIERARCHICAL PHYLOGENETIC MODELS 661

FIGURE 3. Evolution of coreceptor utilization in HIV-1. Two possi-
ble hypotheses, continued evolution (E) or latency (L), about the origin
of reemergent CCR5 tropic virus are shown.

and X4 are nearest neighbors, the final R5 population
most likely evolved from the X4 population. When R5-r
and R5-i are nearest neighbors, the final R5 population
most likely stems from a latent reservoir of the initial
R5 population. The final topology O (outgroup) has R5-r
and the outgroup as nearest neighbors and is much less
likely a priori given the time sequence of events. Unlike
the guinea pig and HGT examples, evolution across par-
titions is independent, so we employ the unlinked par-
titions model for this example. We assume a prior pseu-
docount NQ = 1 and that topologies L and E are equally
likely and together are ≈10 times more likely than topol-
ogy O, such that Q = (QO, QE , QL ) = (0.10, 0.45, 0.45).

Table 5 reports the partition-level evolutionary esti-
mates for the four HIV+ patients. Three of the four pa-
tients show >95% support for the evolution topology τE ;
the remaining patient demonstrates equivocal support
for τE and the latent topology τL . Table 6 presents the
across-partition-level estimates. We determine whether
τE is more likely than τL across all patients using a Bayes
factor,

BE, L =
(

TE

TL

)/(
QE

QL

)
= 4.1. (31)

This result offers evidence in favor of continued evo-
lution of HIV in light of PART suppression. However,
overall support is weak, not surprisingly given the small
number of patients and the short length of alignments
available.

Finally, Table 7 reports the posterior model estimates
when the patients are analyzed completely indepen-
dently and when concatenated into a single partition.

TABLE 5. Hierarchical partition-level estimates for the HIV example. For each subject k, estimates of τk are posterior probabilities, estimates
of αk , γk , and µk are posterior means and 95% confidence intervals, and estimates of πk are posterior means.

τk πk

k O L E αk γk µk × 100 A G C T

1 <0.01 0.02 0.97 4.7 (1.8–10.4) 2.3 (0.4–6.5) 4.3 (1.7–9.6) 0.43 0.23 0.18 0.17
2 0.02 0.48 0.50 4.4 (1.6–9.9) 1.3 (0.1–4.0) 3.8 (1.5–8.5) 0.46 0.20 0.17 0.17
3 <0.01 <0.01 >0.99 3.0 (0.9–7.2) 2.8 (0.5–8.4) 3.1 (1.1–7.1) 0.44 0.21 0.17 0.18
4 <0.01 <0.01 >0.99 5.3 (2.0–11.8) 2.5 (0.5–7.1) 4.1 (1.6–9.0) 0.45 0.20 0.18 0.17

TABLE 6. Hierarchical across-partition-level estimates for the HIV
example. Parameter estimates are posterior means and 95% confidence
intervals.

Parameter Estimate Parameter Estimate

TO 0.02 (<0.01–0.23) A 1.31 (0.38–2.22)
TL 0.19 (<0.01–0.66) G 0.49 (−0.90–1.69)
TE 0.78 (0.31–>0.99) M −3.34 (−4.20–−2.44)
σA 0.72 (0.41–1.33) �A .43 (.33–.52)
σG 0.81 (0.43–1.62) �G .21 (.14–.29)
σM 0.69 (0.40–1.23) �C .18 (.11–.26)
N� 37.4 (12.7–77.1) �T .18 (.11–.25)

In general, the independent analysis provides less pre-
cise continuous parameter estimates. Considering the
topology estimates, a consensus conclusion of the odds
in favor of the evolution hypothesis versus the latent
hypothesis is 3:1. On the other hand, the concatenated
analysis overestimates the posterior support. The analy-
sis returns >99% support for τE and <1% support for
τL , even when one of the four patients offers modest
support in favor of the latent topology. The hierarchi-
cal estimates of TE = 0.78 and TL = 0.19 provide a more
balanced summary of the data.

REMARKS

In this article, we introduce a hierarchical phyloge-
netic model that enables researchers to estimate both
the variability between multiple data partitions and ten-
dencies across partitions simultaneously. Like mixture
models, the hierarchical model offers a middle ground
to the divide between strict combined-data and consen-
sus/independence approaches, drawing on both of their
strengths. We illustrate some of the advantages of hi-
erarchical models using three examples. In the first ex-
ample, we employ a hierarchical approach that is a di-
rect extension of the mixture models readily available
in current phylogenetic software. The example demon-
strates improved parameter estimation by borrowing
strength through hierarchical priors without losing the
salient features of the data. In the HGT example, a single
topology assumption would miss evidence of incongru-
ent partitions completely, while allowing all partitions
to be a priori independent would preclude estimation
of a common species topology. A hierarchical approach
overcomes both issues simultaneously. Finally, the HIV
example shows that a hierarchical solution provides a
proper compromise between strict combined-data and
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TABLE 7. Independent and concatenated estimates for the HIV example. For each subject k, estimates of τk are posterior probabilities, estimates
of αk , γk , and µk are posterior means and 95% confidence intervals, and estimates of πk are posterior means.

τk πk

k O L E αk γk µk × 100 A G C T

Independent
1 0.06 0.07 0.86 5.1 (1.6–12.9) 2.8 (0.3–9.4) 5.4 (1.8–14.2) 0.43 0.23 0.17 0.17
2 0.11 0.75 0.13 3.9 (1.1–9.6) 0.3 (0.0–1.9) 4.4 (1.3–11.8) 0.47 0.19 0.17 0.17
3 0.04 <0.01 0.96 2.3 (0.4–7.1) 3.5 (0.3–12.1) 3.0 (0.9–8.1) 0.45 0.21 0.17 0.18
4 0.05 0.02 0.94 6.5 (1.9–17.2) 3.5 (0.3–11.8) 5.0 (1.6–13.5) 0.45 0.20 0.17 0.17

Concatenated
<0.01 <0.01 >0.99 4.0 (2.3–6.8) 2.1 (0.7–4.6) 4.3 (1.6–11.1) 0.45 0.21 0.17 0.17

consensus estimates of the most likely topology across
partitions.

The general hierarchical phylogenetic model proposed
here can be easily extended. For example, one can incor-
porate more complicated models of nucleotide substitu-
tion, including those that consider within-site-class rate
variation (Yang, 1994) and codon models (Goldman and
Yang, 1994; Schadt et al., 2002). The hierarchical model
can also be applied to other forms of sequence informa-
tion as well, i.e., amino acid sequences, given appropriate
changes to the sequence mutation models used (Whelan
and Goldman, 2001). Our current framework and presen-
tation assumes that the same equivalent taxa are present
in each partition. With simple adaptation of the hierar-
chical structure placed on topologies, overlapping sets
of taxa can also be accommodated and supertrees can be
constructed (Sanderson et al., 1998; Salamin et al., 2002).

One feature central to the hierarchical framework is
the exchangeability assumption between partitions. Ex-
changeability implies that inference is invariant to per-
mutation of the partition labels. Although exchangeabil-
ity is reasonable between independent patients in our
unlinked model example, the order of mitochondrial or
prokaryotic genes in our first two examples may contain
additional information and impart further correlation
between partitions. For example, a recombination event
along a chromosome may cause the topologies to vary
between genes on either side of the event. One potential
extension to our model accommodates partial exchange-
ability. Here, continuous model parameters remain ex-
changeable, while the topologies follow a Markovian
prior (Suchard et al., 2002).

The hierarchical framework we propose over topolo-
gies requires estimation of E − 1 free across-partition-
level probabilities in the unlinked partitions model and
enumeration over all E possible common topologies in
the partially linked partitions model. For the examples
considered in this paper, E = 3; thus, the estimation
or enumeration remains quite modest. However, E in-
creases superexponentially with the number of taxa N in
a partition. Although many phylogenetic questions can
be reduced to four-taxon problems, at least two solutions
exist for handling large E in a hierarchical framework.
The first solution proposes grouping disjoint subsets of
all possible topologies into a modest number of cliques
and estimating their probabilities. Within a clique, all
topologies are then considered equally likely. The defi-

nition of the cliques depends on the research question
at hand. A second solution advocates sampling the com-
mon topology ϒ using a Metropolis–Hastings algorithm,
as is done in the completely linked partitions model,
rather than Gibbs sampling.
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