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Abstract.—Model selection is a topic of special relevance in molecular phylogenetics that affects many, if not all, stages
of phylogenetic inference. Here we discuss some fundamental concepts and techniques of model selection in the context
of phylogenetics. We start by reviewing different aspects of the selection of substitution models in phylogenetics from a
theoretical, philosophical and practical point of view, and summarize this comparison in table format. We argue that the
most commonly implemented model selection approach, the hierarchical likelihood ratio test, is not the optimal strategy for
model selection in phylogenetics, and that approaches like the Akaike Information Criterion (AIC) and Bayesian methods
offer important advantages. In particular, the latter two methods are able to simultaneously compare multiple nested or
nonnested models, assess model selection uncertainty, and allow for the estimation of phylogenies and model parameters
using all available models (model-averaged inference or multimodel inference). We also describe how the relative importance
of the different parameters included in substitution models can be depicted. To illustrate some of these points, we have
applied AIC-based model averaging to 37 mitochondrial DNA sequences from the subgenus Ohomopterus (genus Carabus)
ground beetles described by Sota and Vogler (2001). [AIC; Bayes factors; BIC; likelihood ratio tests; model averaging; model
uncertainty; model selection; multimodel inference.]

It is clear that models of nucleotide substitution
(henceforth models of evolution) play a significant role
in molecular phylogenetics, particularly in the context
of distance, maximum likelihood (ML), and Bayesian es-
timation. We know that the use of one or other model
affects many, if not all, stages of phylogenetic inference.
For example, estimates of phylogeny, substitution rates,
bootstrap values, posterior probabilities, or tests of the
molecular clock are clearly influenced by the model of
evolution used in the analysis (Buckley, 2002; Buckley
and Cunningham, 2002; Buckley et al., 2001; Kelsey et al.,
1999; Pupko et al., 2002; Sullivan and Swofford, 1997,
2001; Suzuki et al., 2002; Tamura, 1994; Yang et al., 1995;
Zhang, 1999). We can argue, in general, that phyloge-
netic methods are less accurate (that is, they recover an
incorrect phylogeny more often), or become inconsistent
(converging to an incorrect tree with increasing num-
ber of characters) when the model of evolution assumed
is wrong (Bruno and Halpern, 1999; Felsenstein, 1978;
Huelsenbeck and Hillis, 1993; Penny et al., 1994). It is
evident that the use of appropriate models is essential
if we are to be confident in the results of a phylogenetic
analysis, and indeed, several strategies for model choice
have been proposed in the context of phylogenetics. We
refer the reader to Johnson and Omland (2003), Posada
and Crandall (2001b) and Posada (2001) for a detailed in-
troduction, and for an evaluation of the performance of
these methods to recover the model generating the data.
Computer programs exist that implement these meth-
ods (Adachi and Hasegawa, 1996; Posada and Crandall,
1998). Among the available methods for model selec-
tion in phylogenetics, hierarchical likelihood ratio tests
(hLRTs) are the most popular. However, here we argue
that the hLRTs approach is not the optimal strategy for
model selection in phylogenetics, and that approaches
like the Akaike Information Criterion (AIC) and Bayesian

methods offer important advantages. In particular, the
latter two allow for assessment of model selection un-
certainty and model averaging.

MODEL SELECTION

Before proceeding further, it is worth reiterating the
fact that any model of evolution we can construct is never
going to be the “true model” that generated the data we
observe. In other words, the set of models is misspecified.
All models are wrong but some are useful (Box, 1976),
and model selection is best seen as a way of approx-
imating, rather than identifying, full reality (Burnham
and Anderson, 2003, pp. 20–23). Statistical model selec-
tion is commonly based on William of Occam’s (ca.1320)
parsimony principle,1 by which hypotheses should be
kept as simple as possible. In statistical terms, this is a
trade-off between bias (distance between the average es-
timate and truth) and variance (spread of the estimates
around the truth) (Fig. 1). The idea is that by adding pa-
rameters to a model we obtain improvement in fit (see
below) to some degree, but at the same time parameter
estimates are “worse” because we have less data (i.e.,
information) per parameter. In addition, the computa-
tions typically require more time. So the question is how
complex should the model be for a given problem.

THE LIKELIHOOD FUNCTION

We referred above to the fit of a model to the data, but
we have not yet explained how we measure this fit. In
most cases, the fit of a model is measured by the likeli-
hood function (see Edwards, 1972; Fisher, 1921), and in

1Occam’s (ca. 1280–1349) parsimony principle or Occam’s razor
was stated as “Pluralitas non est ponenda sine necessitate,” which trans-
lates literally into English as “plurality should not be posited without
necessity.”
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FIGURE 1. The principle of parsimony. Model selection is more or
less based on the trade-off between bias and variance versus the num-
ber of estimable parameters in the model. The principle of parsimony
tells us that as we increase the number of parameters in a model the
bias decreases but the variance increases. This principle underlies all
model selection approaches.

phylogenetics (see Felsenstein, 1981a; Goldman, 1990)
we define the likelihood (L) as (proportional to) the
probability of the data (D) given a model of evolution
(M), a vector of K model parameters θ = (θ1, θ2, . . . , θK ),
a tree topology (τ ), and a vector of S branch lengths,
ν = (ν1, ν2, . . . , νS):

L = P(D | M, θ , τ, ν)

If the goal is to compute the likelihood of a given
model, then θ , T , and ν are nuisance parameters—they
affect the likelihood calculation but they are not really
what we want to infer—and they should somehow be
eliminated from the inference. A common strategy to re-
move nuisance parameters is to assume that they take
those values that maximize the overall likelihood, thus
reducing the likelihood to a function of the parameters
of interest. What is usually done in practice is to es-
timate a tree (topology and branch lengths) from the
data and then—implicitly assuming that this tree is the
maximum likelihood tree for every candidate model—
calculate maximum likelihood estimates of all model pa-
rameters, including the branch lengths, for every model
given this tree. In this way we obtain the maximized (log)
likelihood under model M:

� = ln P(D | M, θ̂ , τ̂ , ν̂)

where ˆ means “estimate of” (θ̂ is an estimate of θ ). The
strategy just described is sometimes called joint estima-
tion. A different strategy to remove nuisance parameters
is to assign them prior probabilities and integrate them
out to obtain the marginal probability of the data given
only the model, that is, the model likelihood (also called
integrative, marginal, or predictive likelihood):

P(D | M) =
∫∫∫

P(D | M, θ , τ, ν)P(θ , τ, ν | M) dθdτdν

However, this multidimensional integral can be very
difficult to compute, and it is typically approximated us-
ing computationally intensive techniques like Markov

chain Monte Carlo (MCMC) (Gilks et al., 1996; Hastings,
1970; Metropolis et al., 1953). Steel and Penny (2000) and
Holder and Lewis (2003) provide an instructive discus-
sion on joint and marginal estimation in the context of
phylogenetics.

HIERARCHICAL LIKELIHOOD RATIO TESTS

The most popular strategy for model selection in
phylogenetics are the hierarchical likelihood ratio tests
(hLRTs) (Frati et al., 1997; Huelsenbeck and Crandall,
1997; Posada and Crandall, 1998) (Fig. 2). This method
usually consists of performing pairwise likelihood ratio
tests in a specific sequence until a final model is con-
verged on that cannot be rejected. By means of the LRTs,
we compare the maximized log-likelihoods of the null
(�0) and the alternative (�1) models, and if the associated
P-value is smaller than the predefined threshold (the sig-
nificance level, usually 0.05), we say that alternative model
fits the data significantly better than the null model (i.e.,
we reject the null model), and vice versa.

LRT = 2(�1 − �0)

The approximation of this P-value is straightforward
for nested models, using a standard or mixed χ2 dis-
tribution (Goldman, 1993; Goldman and Whelan, 2000;
Kendall and Stuart, 1979; Ota et al., 2000). Two models

FIGURE 2. Hierarchical likelihood ratio tests (hLRTs). This figure il-
lustrates an arbitrary hierarchy of LRTs for six different models. Within
each LRT, the null model is depicted above the alternative model. When
the LRT is not significant, the null model (above) is accepted (A), and
it becomes the null model of the next LRT. When the LRT is signifi-
cant, the null model is rejected (R) and the alternative model (below)
becomes the null model of the next LRT. There are six possible paths
depending on the outcome of the individual LRTs, and each path re-
sults in the selection of a different model. JC69: Jukes-Cantor model
(Jukes and Cantor, 1969); K80: Kimura 1980 model (Kimura, 1980), also
known as K2P; F81: Felsenstein 81 model (Felsenstein, 1981b); HKY85:
Hasegawa-Kishino-Yano model (Hasegawa et al., 1985); SYM, sym-
metrical model (Zharkikh, 1994); GTR: general-time reversible model
(Tavaré, 1986), also known as REV.
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are nested when one of them, the null model, is a spe-
cial case of the other, the alternative model. For exam-
ple, the Jukes-Cantor model (Jukes and Cantor, 1969)
(JC69) is nested within the Kimura two-parameter model
(Kimura, 1980) (K80), because if we assume that tran-
sitions and transversions occur at the same rate (i.e.,
κ = 1), K80 collapses to JC69. However, obtaining correct
P-values for the LRT statistics can be difficult. LRTs im-
plicitly assume that at least one of the models compared
is correct, and when the models are misspecified these
tests can often be incorrect (Foutz and Srivastava, 1977;
Golden, 1995; Kent, 1982). Although proper LRTs can
be constructed when models are wrong (Vuong, 1989),
standard LRTs in phylogenetics are not robust to model
misspecification (Zhang, 1999). When the models are
non-nested, the χ2 approximation is not longer valid,
and more computationally intensive Monte Carlo meth-
ods are needed (Goldman, 1993; Whelan and Goldman,
1999). In addition, when sample size is small the usual
asymptotic approximation on which P-values are based
no longer applies.

Furthermore, LRTs were designed for hypothesis test-
ing, and although classical hypothesis testing is com-
monly used as a model selection strategy, it has been
argued that hypothesis testing and model selection are
distinct issues (Burnham and Anderson, 2003, pp. 132–
134). A stepwise procedure like the hLRTs, in which we
sequentially decide whether to add (or remove) certain
parameters, is analogous to forward and backward selec-
tions in best-subset linear regression (Miller, 2002, pp. 39–
46), which do not guarantee finding the optimal model.
As pointed out by Sanderson and Kim (2000), we can
identify several potential problems with the use of hLRTs
for model selection in phylogenetics. There exist situa-
tions in which an optimal model may not exist for the
hLRTs procedure. This kind of situation occurs, for exam-
ple, if the general time-reversible model (Tavaré, 1986)
(GTR) is not significantly better than the Hasegawa et al.
model (1985) (HKY85), HKY85 is not significantly better
than JC69, but GTR is significantly better than JC69. Even
if an optimal model exists, it will be always a function
of the significance level, and the outcome of the model
choice procedure may vary accordingly. In addition, the
hLRTs approach performs multiple tests with the same
data, and this will increase the rate of false positives (that
is, to reject the null hypothesis when it is true): the proba-
bility of falsely rejecting the null hypothesis at least once
in n tests is 1−(1 − α)n. Although there are statistical pro-
cedures to correct for this effect—like the Bonferroni cor-
rection (see Hochberg, 1988)—here the tests are nonin-
dependent, and the appropriate adjustment can be very
complex (see also Shimodaira, 1998, 2001; Shimodaira
and Hasegawa, 1999). The outcome of the hLRTs might
also be affected by the starting model (for the hLRTs pro-
cedure we need to select a starting point, usually repre-
sented by the simplest or the most complex model in the
set of candidate models). In addition, there are cases in
which the hLRTs will not select the best model, according
to its own criteria, among the candidate models.

Indeed, these problems can have an impact on the anal-
ysis of real data sets, and we have analyzed a set of HIV
sequences (Posada and Crandall, 2001a) for illustrative
purposes (Fig. 3) (Pol, in press). In Figure 3a we can see
a case in which an optimal model does not exist, as all of
the three models are rejected when compared with one
of the other two. However, we will select HKY85 as the
best fit (because we did not compare HKY85 and GTR).
Also, note that increasing the significance level (Fig. 3b)
changes the outcome, as GTR now becomes the best fit
model. With a different set of candidate models, and if
we start with HKY85, the model selected will be HKY85
(Fig. 3c), which is a suboptimal choice, whereas if we
start with GTR the model selected will be GTR (Fig. 3d),
which is actually the optimal model. We cannot devise
a hierarchy of hLRTs that overcomes all these problems
at once, but better approaches exist than simply forward
and backward selection (Miller, 2002).

BAYESIAN MODEL SELECTION

Model selection is an integral part of Bayesian esti-
mation (Gelfand, 1996; Raftery, 1996; Wasserman, 2000),
and within this framework, different strategies exist to
accomplish the same tasks.

Bayes Factors

Bayes factors (Kass and Raftery, 1995) are the Bayesian
analogue of the LRT (Suchard et al., 2003a). They contrast
the evidence provided by the data for two competing
models, i and j , as:

Bi j = P(D | Mi )
P(D | Mj )

Evidence for Mi is considered very strong if Bi j > 150,
strong if 12 < Bi j < 150, positive if 3 < Bi j < 12, barely
worth mentioning if 1 < Bi j < 3, and negative (supports
Mj ) if Bi j < 1 (Raftery, 1996). It is important to note
that Bayes factors compare model likelihoods orP(D | M),
which are calculated by integrating—not maximizing—
over all possible parameter values (except in empirical
Bayesian approaches, where maximum likelihood esti-
mates can be used instead). Therefore we should not con-
found them with the log of the maximized likelihoods (�)
used in the LRTs and AIC. Bayes factors are already be-
ing used in the context of phylogenetics, for example to
infer the occurrence of recombination events (Suchard
et al., 2002), to compare different phylogenetic hypothe-
sis (Huelsenbeck and Imennov, 2002; Huelsenbeck et al.,
2000; Suchard et al., 2003b) and for model selection
(Aris-Brosou and Yang, 2002; Huelsenbeck et al., 2004;
Nylander et al., 2004; Suchard et al., 2001).

Posterior Probabilities

When multiple models are considered, the usual
Bayesian solution is to choose the model with the high-
est posterior probability (Kass and Raftery, 1995; Raftery,
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FIGURE 3. Problems of hLRTs with a real data set. See text for further details. The data set analyzed is an alignment of 12 HIV-1 subtype D
sequences of a fragment of 1462 nucleotides from the gag region (Posada and Crandall, 2001a). K81uf is the Kimura 1981 model (Kimura, 1981)
with unequal base frequencies. TN93 is the Tamura-Nei model (Tamura and Nei, 1993). Solid arrows indicate the outcome of the LRT performed,
whereas discontinuous arrows indicate the outcome of a potential LRT not performed. P is the associated P-value of the LRTs. The underlined
model is the starting point of the hLRT, the best model according to all LRTs is indicated with an asterisk, and the model selected is enclosed
within a square.

1996; Wasserman, 2000). For R models, the posterior
probability of the ith model is:

P(Mi | D) = P(D | Mi )P(Mi )∑R
r=1 P(D | Mr )P(Mr )

A word is needed about model prior probabilities
P(Mi ). Although models are commonly assigned equal
prior probabilities, in phylogenetics we may have prior
beliefs stating that some models are more probable than
others. For example, we have enough information about
the process of mitochondrial sequence evolution to be-
lieve that the JC69 model is less probable in this case
than the HKY85 model with a gamma distribution for
rates among sites (see Yang, 1996a). Ideally, this infor-
mation should be reflected in the model priors, and al-
though considerable Bayesian research exists on eliciting
prior information (Kadane and Wolfson, 1998; Madigan
et al., 1995), it still seems be very difficult to quantify.

Fortunately, if the signal in the data, conveyed through
the likelihood, is strong enough, then the prior distribu-
tions should not have a large influence on the posterior
distribution. Indeed, posterior probabilities of trees are
already being used to estimate phylogenies (Holder and
Lewis, 2003; Huelsenbeck et al., 2001, 2002; Larget and
Simon, 1999; Mau and Newton, 1997; Mau et al., 1999;
Yang and Rannala, 1997).

When the priors for the parameters in the complex
model are very diffuse, Bayesian approaches tend to
support the null model in contradiction to significance
tests (e.g., LRTs) as sample size increases—the so called
Jeffreys-Lindley’s paradox (Bartlett, 1957; Jeffreys, 1939;
Lindley, 1957; Shafer, 1982). If the diffuseness of these
priors arises because of mere ignorance of the values
these parameters can take, this conflict highlights a dis-
advantage of Bayesian approaches, especially in the case
of Bayesian Information Criterion (BIC) (see below),
which assume flat, improper priors. In any case, Jeffreys-
Lindley’s paradox illustrates the relevance, for good or
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for bad, of the priors we choose for the model param-
eters (Huelsenbeck et al., 2002). Moreover, in some sit-
uations Bayesian approaches and standard significance
tests can also be irreconcilable when testing point (or
sharp) null hypotheses, for example, H0: ti/tv = 0.5 ver-
sus H1: ti/tv �= 0.5 (Berger and Sellke, 1987) (ti/tv is the
transition/transversion ratio).

Bayesian Information Criterion

In order to calculate model likelihoods, Bayesian meth-
ods often require computationally intensive techniques
like Markov chain Monte Carlo (Gilks et al., 1996;
Hastings, 1970; Metropolis et al., 1953). Although easy to
implement, Bayes factor calculations do exist for some
nested models via the Savage-Dickey ratio (Suchard et
al., 2001; Verdinelli and Wasserman, 1995). However,
there is a computationally more tractable approach, the
Bayesian Information Criterion (BIC) (Schwarz, 1978):

BIC = −2� + K log n

where K is the number of estimable parameters, and n
is the sample size (for now we assume that n can be ap-
proximated by the total number of characters in the align-
ment). The BIC was developed as an approximation to
the log marginal likelihood of a model, and therefore, the
difference between two BIC estimates may be a good ap-
proximation to the natural log of the Bayes factor (Kass
and Wasserman, 1995). Given equal priors for all com-
peting models, choosing the model with the smallest BIC
is equivalent to selecting the model with the maximum
posterior probability. The BIC assumes that the (param-
eters) prior is the unit information prior (i.e., a multivari-
ate normal prior with mean at the maximum likelihood
estimate and variance equal to the expected information
matrix for one observation) (Kass and Wasserman, 1995),
which can be thought of as a prior distribution that con-
tains the same amount of information as a single, typical
observation. This prior is quite diffuse, so the BIC tends
to select models that are less complex than Bayes fac-
tors (for discussion see Raftery, 1999; Weakliem, 1999),
and if n > 8, the BIC selects simpler models than the
AIC (Forster and Sober, 2004). However, Burnham and
Anderson (2003, pp. 302–305) suggest that the BIC can
be used more generally with any prior.

A collection of BIC statistics contains the same infor-
mation as a collection of pairwise Bayes factors. How-
ever, when choosing among several models, the BIC
statistics are easier to interpret by visual inspection, as
they allow for the simultaneous comparison of multi-
ple models, so the best-fit models can be immediately
identified. On the other hand, selecting the best-fit model
from a collection of multiple pairwise Bayes factors could
be more burdensome, and such procedure might suf-
fer from some of the problems described above for the
hLRTs. Nevertheless, the BIC approximation might not
be appropriate when the posterior mode occurs at the
boundary of the parameter space (Hsiao, 1997; Ota et al.,
2000).

Decision Theoretic Approaches

Recently, Minin et al. (2003) applied decision theory
(Bernardo and Smith, 1994) to develop a novel model se-
lection strategy (the DT method) that extends the BIC.
Minin et al. (2003) argue that there is no guarantee that
the best-fit models will produce the best estimates of phy-
logeny, and therefore propose a model selection method
that incorporates some measure of phylogenetic perfor-
mance. They assess models through a penalty or loss
function, related to how dissimilar the branch length
estimates are across models, and pick the model with
the minimum posterior loss. As expected, simulations
suggested that models selected with this criterion result
in slightly more accurate branch length estimates than
those obtained under models selected by the hLRTs.

Model Selection Uncertainty

Once we have selected a model it is very important
that we are able to assess how confident we are in
that selection (see Chatfield, 1995). We would like to
be able to rank the models and to know whether the
model selected is much better than the other candidate
models. At the same time, we should be interested to
learn whether we would select the same model if sev-
eral other independent samples were available. The as-
sessment of model selection uncertainty has a long tra-
dition within the Bayesian community and posterior
probabilities can be naturally used to take account of
model uncertainty (Kass and Raftery, 1995; Madigan and
Raftery, 1994). For example, models can be ranked ac-
cording to their posterior probabilities and 95% credible
intervals (Occam’s Window) can easily be constructed
by summing these probabilities (Madigan and Raftery,
1994). Although computing posterior probabilities can
be hard and time consuming, in theory we could approx-
imate those probabilities with the BIC. Furthermore, we
could also use the BIC values or posterior risks of the
DT method (Minin et al., 2003) in the same way that we
use the AIC below above to assess model selection un-
certainty, although this could be considered ad hoc (see
Hoeting et al., 1999).

Model Averaging

Although in general model selection is concerned
with the selection of just the best fit model, Bayesian
approaches allow us to make inferences based on
the entire set of candidate models, or model averaging
(Hoeting et al., 1999; Madigan and Raftery, 1994; Raftery,
1996; Wasserman, 2000). Indeed, obtaining model aver-
aged phylogenetic estimates is straightforward (Posada,
2003). If we consider, for example, G models that include
the gamma distribution for rate variation among sites
(Yang, 1996a), the overall posterior mean of the shape of
the gamma distribution (α) would be:

E(α | D) =
G∑

i=1

α̂i P(Mi | D)

where α̂i is the estimate of α for model i .
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Because not all parameters have the same interpre-
tation across models, we should be careful when cal-
culating and interpreting model-averaged parameter
estimates. For example, the gamma shape parameter
describing among-site rate variation has a different in-
terpretation depending on whether the model also in-
cludes a proportion of invariable sites, because in such a
case only the rates at variable sites, and not at all sites, are
gamma-distributed. To facilitate a correct interpretation
we could obtain two separate model-averaged estimates
of the gamma shape parameter, one from models that in-
clude a proportion of invariable sites, and another from
models that do not include a proportion of invariable
sites. Moreover, from the above formulation we can see
that it would be easy to estimate the relative importance
of any parameter by summing the posterior probabilities
across all models that included the parameters we are in-
terested in. For example, the relative importance (w+) for
the shape of the gamma distribution across all candidate
models is simply:

w+(α) =
R∑

i=1

P(Mi | D)Iα(Mi )

where

Iα(Mi ) =
{

1 if α is in model Mi

0 otherwise

We also need to be careful when interpreting the
relative importance of parameters. When the number
of candidate models is less than the number of possi-
ble combinations of parameters, the presence-absence
of some pairs of parameters can be correlated, and so
their relative importances. In other words, if parame-
ter ε actually has a high relative importance, then a
second parameter η might yield a high relative impor-
tance simply because the presence-absence of parame-
ters ε and η among models is positively correlated. For
the 56 models in Table 1, the presence of the different
base frequencies parameters (π ) is completely correlated,
whereas the presence of several substitution rates (ϕ)
show complete or high levels of correlation. The pres-
ence of parameter κ is inversely correlated with that
of several substitution rate parameters (e.g., ϕA−G). The
presence of α, the shape of the gamma distribution for
rate variation among sites, or pinv, the proportion of in-
variable sites, is not correlated with that of any other
parameter.

Indeed, the averaged parameter could be the topology
itself, so we could construct a model-averaged estimate
of phylogeny. We will come back to this later.

AKAIKE INFORMATION CRITERION

A different approach to model selection is the Akaike
Information Criterion (AIC) (Akaike, 1973, 1974; and see
Sakamoto et al., 1986). The AIC is an asymptotically un-

TABLE 1. AICc values, AICc differences (�), and Akaike weights
(w) for the carabid beetles Ohomopterus mitochondrial DNA data set
from Sota and Vogler (2001). Because branch lengths were estimated
for each candidate model, the number of branches was included in the
penalty parameter K (= number of parameters). � are the maximized
log likelihoods and Cum(w) are the cumulative Akaike weights.

Model � K AICc �AICc w Cum(w)

TN93+I+
 5441.4600 78 11045.5888 0.0000 0.5221 0.5221
TIM+I+
 5441.3765 79 11047.5965 2.0077 0.1913 0.7134
HKY85+I+
 5443.6729 77 11047.8422 2.2534 0.1692 0.8826
K81uf+I+
 5443.5566 78 11049.7821 4.1934 0.0641 0.9468
GTR+I+
 5440.9150 81 11051.0301 5.4413 0.0344 0.9811
TVM+I+
 5442.7393 80 11052.4991 6.9103 0.0165 0.9976
TN93+
 5448.6792 77 11057.8549 12.2661 0.0011 0.9988
HKY85+
 5450.5068 76 11059.3402 13.7514 0.0005 0.9993
TIM+
 5448.6577 78 11059.9843 14.3955 0.0004 0.9997
K81uf+
 5450.4883 77 11061.4730 15.8843 0.0002 0.9999
GTR+
 5448.0298 80 11063.0802 17.4914 0.0001 1.0000
TVM+
 5449.6685 79 11064.1804 18.5917 0.0000 1.0000
TN93+I 5470.7568 77 11102.0102 56.4214 0.0000 1.0000
TIM+I 5470.7417 78 11104.1522 58.5635 0.0000 1.0000
GTR+I 5470.3452 80 11107.7110 62.1223 0.0000 1.0000
HKY85+I 5476.8496 76 11112.0257 66.4370 0.0000 1.0000
K81uf+I 5476.8208 77 11114.1381 68.5493 0.0000 1.0000
TVM+I 5476.1650 79 11117.1736 71.5849 0.0000 1.0000
F81+I+
 5769.1118 76 11696.5501 650.9614 0.0000 1.0000
F81+
 5782.0566 75 11720.2721 674.6834 0.0000 1.0000
F81+I 5807.4927 75 11771.1442 725.5554 0.0000 1.0000
GTR 5805.0576 79 11774.9588 729.3700 0.0000 1.0000
TVM 5808.4727 78 11779.6141 734.0254 0.0000 1.0000
TIM 5810.4102 77 11781.3168 735.7280 0.0000 1.0000
TN93 5813.4780 76 11785.2825 739.6938 0.0000 1.0000
K81uf 5813.5190 76 11785.3646 739.7758 0.0000 1.0000
HKY85 5816.5894 75 11789.3375 743.7488 0.0000 1.0000
SYM+I+
 5861.0859 78 11884.8407 839.2520 0.0000 1.0000
TVMef+I+
 5867.6128 77 11895.7221 850.1333 0.0000 1.0000
SYM+
 5876.7803 77 11914.0570 868.4683 0.0000 1.0000
TVMef+
 5884.4272 76 11927.1810 881.5922 0.0000 1.0000
TIMef+I+
 5885.0684 76 11928.4632 882.8745 0.0000 1.0000
K81+I+
 5893.7642 75 11943.6872 898.0984 0.0000 1.0000
TN93ef+I+
 5897.7529 75 11951.6647 906.0759 0.0000 1.0000
TIMef+
 5899.2588 75 11954.6764 909.0877 0.0000 1.0000
K80+I+
 5906.2329 74 11966.4593 920.8706 0.0000 1.0000
K81+
 5908.7876 74 11971.5687 925.9800 0.0000 1.0000
TN93ef+
 5911.5659 74 11977.1254 931.5366 0.0000 1.0000
SYM+I 5908.7021 77 11977.9008 932.3120 0.0000 1.0000
TVMef+I 5917.6128 76 11993.5521 947.9633 0.0000 1.0000
K80+
 5920.9038 73 11993.6382 948.0494 0.0000 1.0000
TIMef+I 5928.9629 75 12014.0846 968.4959 0.0000 1.0000
K81+I 5938.0137 74 12030.0209 984.4321 0.0000 1.0000
TN93ef+I 5940.7383 74 12035.4701 989.8813 0.0000 1.0000
K80+I 5949.5186 73 12050.8677 1005.2789 0.0000 1.0000
F81 6088.2227 74 12330.4388 1284.8501 0.0000 1.0000
JC69+I+
 6101.2656 73 12354.3618 1308.7730 0.0000 1.0000
JC69+
 6114.8408 72 12379.3515 1333.7628 0.0000 1.0000
JC69+I 6142.1719 72 12434.0137 1388.4249 0.0000 1.0000
SYM 6170.8916 76 12500.1097 1454.5209 0.0000 1.0000
TVMef 6190.3394 75 12536.8375 1491.2488 0.0000 1.0000
TIMef 6194.5806 74 12543.1547 1497.5659 0.0000 1.0000
TN93ef 6210.6353 73 12573.1011 1527.5123 0.0000 1.0000
K81 6214.1152 73 12580.0610 1534.4723 0.0000 1.0000
K80 6230.2100 72 12610.0898 1564.5011 0.0000 1.0000
JC69 6411.5161 71 12970.5438 1924.9551 0.0000 1.0000

biased estimator of the expected relative Kullback-Leibler
information quantity or distance (K-L) (Kullback and
Leibler, 1951), which represents the amount of informa-
tion lost when we use model g to approximate model f
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FIGURE 4. The Kullback-Leibler distance. The K-L distance aims to
represent how close a model is to the truth. Here, M2 is the candidate
model that best approximates truth and therefore it is the model with
the smallest K-L distance. The AIC chooses the candidate model with
the smallest expected K-L distance.

(Fig. 4):

K -L = I ( f, g) =
∫

f (x) log
(

f (x)
g(x | θ )

)
dx 2

The AIC for a given model is a function of its max-
imized log-likelihood (�) and the number of estimable
parameters (K ):

AIC = −2� + 2K

In the context of phylogenetics we can think of the
AIC as the amount of information lost when we use, say
HKY85, to approximate the real process of nucleotide
substitution. Hence, we prefer the model with the small-
est AIC. The second term K includes the parameters from
the substitution model, like base frequencies, substitu-
tion rates, proportion of invariable sites, or rate variation
among sites. If branch lengths are estimated de novo
for every model, K should also include the number of
branches (for an unrooted bifurcated tree, twice the num-
ber of taxa minus three). Although the inclusion of the
number of branches, constant for all models, does not
change the order of the AIC values, it will change their
relative magnitude.

In the AIC, as more parameters are added to the model
the first term becomes smaller, representing an increased

2For continuous functions.

fit, whereas the second component, or penalty term, be-
comes larger. Indeed, when the sample is large, the num-
ber of adjustable parameters makes a negligible differ-
ence, and more complex models will be favored (Forster
and Sober, 1994). It is important to note that although
the AIC formula appears to be superficially very sim-
ple, its derivation is well founded on information theory
(deLeeuw, 1992), and the so called “penalty term” 2K is
not an arbitrary value (Burnham and Anderson, 2003, pp.
64). When sample size (n) is small compared to the num-
ber of parameters (say, n/K < 40) the use of a second-
order AIC, AICc (Hurvich and Tsai, 1989; Sugiura, 1978),
is recommended:

AICc = AIC + 2K (K + 1)
n − K − 1

where sample size is approximated by the total number
of characters in the alignment (see below for discussion).
Note that in this case the inclusion of branch lengths as
estimated parameters can change the order of the AICc
values, and therefore, the selected model.

Because the AIC is on a relative scale, it is critical to
compute and present the AIC differences (�AIC), rather
than actual AIC values, over all candidate models (Buck-
ley and Cunningham, 2002; Burnham and Anderson,
2003, pp. 70–72). For the ith model, the AIC difference is:

�AICi = AICi − min AIC,

where min AIC is the smallest AIC value among all can-
didate models.

The AIC is designed to estimate the predictive accuracy
of competing hypotheses (Forster, 2002; Sober, 2002b),
which is the expected performance of a model when pre-
dicting new data. The prediction of new data is a com-
mon application in phylogenetics, for example in para-
metric bootstrapping or simulation studies. It seems that
the AIC was first applied in the context of phylogenetics
by Hasegawa and collaborators (1990a; 1990b; Kishino
and Hasegawa, 1989), and although several phylogenet-
ics programs implement the AIC, like MOLPHY (Adachi
and Hasegawa, 1996) and MODELTEST (Posada, 2003;
Posada and Crandall, 1998), the use of the AIC is much
less common than that of the hLRTs.

The AIC makes several assumptions. First, there is the
assumption of “uniformity of nature” (Forster and Sober,
1994), that is, that all data sets (future and past) are drawn
from the same underlying process. Second, the AIC as-
sumes that the sample size is large enough to ensure that
the likelihood function will approximate its asymptotic
properties. Finally the AIC assumes that the true distri-
bution of parameter estimates, when the number of data
n is sufficiently large, follows a multivariate normal dis-
tribution. In principle, these assumptions (on the other
hand, common in statistical phylogenetics) should not
be unduly restrictive (Forster and Sober, 1994, 2004), but
the implications of potential violations need to be stud-
ied. It has been argued that constraining parameters at
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their boundaries, for example setting the proportion of
invariable sites to be zero, might violate the derivation
of the AIC (and the BIC) (Ota et al., 2000).

Model Selection Uncertainty with the AIC

The AIC differences allow for an immediate ranking of
the candidate models. The larger the AIC difference for a
model, the less probable that it is the best K-L model. As
a rough rule of thumb, Burnham and Anderson (2003,
p. 70) propose that models for which �i ≤ 2 receive sub-
stantial support and are considered when making infer-
ences, models having 4 ≤ �i ≤ 7 have considerably less
support, and models having �i > 10 receive no support.
However, they also warn that these guidelines are not ex-
pected to hold when observations are not independent
but are assumed so, as is usually the case in phylogenet-
ics.

Akaike (1983) also suggested that the exp(−1/2�i ) ap-
proximates the relative likelihood of the models given the
dataL(Mi | D), which are then normalized to obtain a
positive set of Akaike weights (w). The Akaike weight for
the ith model in a set of R candidate models is:

wi = exp(−1/2�i )∑R
r=1 exp(−1/2�r )

Akaike weights are very useful for assessing model-
selection uncertainty without having to use computer
intensive methods like Monte Carlo simulation or boot-
strapping (Buckland et al., 1997; see Buckley et al., 2002,
for an example). We can establish a 95% confidence set of
models for the best K-L model by summing the Akaike
weights from largest to smallest until the sum is just
0.95; the corresponding subset of models is a type of
confidence set on the best K-L model (Burnham and
Anderson, 1998, pp. 169–171; 2003). We can also assess
the relative likelihoods of model i versus model j as
simply the ratio of the two Akaike weights, which are
called evidence ratios (Anderson et al., 2000; Burnham
and Anderson, 2003, pp. 77–79). Techniques exist to com-
pare whether two AICs differ significantly (Linhart, 1988;
Shimodaira, 1997; Vuong, 1989), and multiple compar-
ison techniques can be used to construct a confidence
set of models that minimize the sampling error of the
AIC (Shimodaira, 1998). Such techniques have already
been proposed to construct a confidence sets of trees
(Shimodaira, 2001; Shimodaira and Hasegawa, 1999).

There is a Bayesian basis for interpreting the Akaike
weights as being the probability that a model is the ex-
pected best K-L model (Akaike, 1981). In fact, the Akaike
weights can be generalized to also include prior infor-
mation (ρi ):

wi = L(Mi | D)ρi∑R
r=1 L(Mr | D)ρr

(Burnham and Anderson, 2003, p. 76). However, the
above is not a true Bayesian approach, because these pri-

ors only refer to the model, and not to the prior proba-
bility distribution of the parameters of the model. Nei-
ther do these priors refer to the belief that Mi is the true
model, but rather to the belief that model Mi is the best
K-L model for the data (Burnham and Anderson, 1998,
2003). Usually ρi is set to 1/R for every model.

Model Averaging with the AIC

Within the AIC framework, it is straightforward to ob-
tain a model-averaged estimate of any parameter (Posada,
2003). For example, a model-averaged estimate of the
substitution rate between adenine and cytosine (ϕA−C )
using the Akaike weights (w) for R candidate models
would be:

ˆ̄ϕA−C =
∑R

i=1 wi IϕA−C (Mi )ϕA−Ci

w+(ϕA−C )

where

w+(ϕA−C ) =
R∑

i=1

wi IϕA−C (Mi )

and

IϕA−C (Mi ) =
{

1 if ϕA−C is in model Mi

0 otherwise

Again, the caveats described above about interpreting
model-averaged parameter estimates apply. Likewise, it
is again easy to estimate the relative importance of any
parameter by summing the Akaike weights across all
models that include the parameters we are interested in.
For example, the relative importance of the substitution
rate between adenine and cytosine across all candidate
models is simply the denominator above, w+(ϕA−C ).

MODEL-AVERAGED ESTIMATION OF PHYLOGENIES

As discussed above, model averaging can also be ap-
plied to the estimation of phylogenetic trees (Posada,
2003). This can be easily accomplished in programs like
PAUP* (Swofford, 1998), and perhaps the only limita-
tion is the time we want to dedicate to the analysis. We
start by estimating a tree for each candidate model and
then build a consensus tree using model weights as tree
weights (these model weights can be Akaike weights,
BIC weights, or model likelihoods from a Bayesian anal-
ysis) (see Jermiin et al., 1997). In a Bayesian framework
one could also directly obtain a model-averaged esti-
mate of phylogeny by using reversible-jump MCMC,
an algorithm that moves through both parameter and
model space (Green, 1995), and very recently imple-
mented by Huelsenbeck et al. (2004), for phylogenetic
model selection. It is also interesting to note that the AIC
and Bayesian approaches allow for the direct compar-
ison of trees estimated under different models because
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likelihoods calculated on different trees and on differ-
ent models are comparable (e.g., ML-JC69 versus ML-
HKY). In this sense, the AIC has already been used as
an extension of the likelihood optimality criterion for
phylogenetic estimation (Kishino and Hasegawa, 1989;
Ogishima et al., 2000; Sober, 2002b; Sober and Steel, 2002;
Tanaka et al., 1999), and nothing prevents the BIC from
also being considered as another phylogenetic criterion.
Posterior probabilities for different trees inferred under
different models are also directly comparable if they fall
under the same posterior distribution.

We have applied AIC-based model averaging to 37
mitochondrial DNA sequences from the subgenus Oho-
mopterus (genus Carabus) ground beetles described by
Sota and Vogler (2001). This alignment contains 1927
sites, 301 of which are variable. We took three approaches
to selecting the best-fit model. First, we optimized the
likelihood and model parameters for the 56 substitution
models currently implemented in the program MODEL-
TEST (Posada and Crandall, 1998) on a neighbor-joining
tree estimated from Jukes and Cantor (1969) distances.
We then used the AIC and AICc to select the best-fit
model from these likelihoods. Second, we took these
model parameters and performed a tree search under
each of the 56 models so as to find the tree with the
highest likelihood under each of these optimized models.
Again, the AIC and AICc was used to chose the best-fit
model. The second approach is superior to the first ap-
proach because it involves a more thorough search for
the maximum likelihood under each model; however,
the computational burden is much greater. Third, we also
used the specific hLRT strategy implemented in MODEL-
TEST (Posada and Crandall, 1998). From the likelihood
values we calculated AICc values, Akaike weights, the
relative importance of different parameters, and model
averaged estimates of parameters and topology. In ad-
dition, we performed a bootstrap analysis on the data
using the best AICc model with 500 replicates. All tree
searches used five random addition replicates followed
by TBR branch swapping. All likelihood calculations
and tree searches were performed using PAUP*4.0b10
(Swofford, 2000).

Examining the AICc values and Akaike weights for
the models optimized on the NJ tree we immediately
observe that only 11 out of the 56 models received no-
ticeable support from the data (Table 1). Importantly,
this confidence set of models, and the ranking of mod-
els within this set is almost identical to that obtained
from optimizing the topology (data not shown) (see
also Nylander, 2004). All of the supported models in-
corporated the gamma distribution for among site rate
variation and the best-supported models also included
a proportion of invariable sites. Models that assumed
equal base frequencies fitted the data poorly and re-
ceived essentially no support (i.e., their Akaike weights
are close to zero). The TN93+I+
 model had the small-
est AICc value, but there was considerable uncertainty
in identifying the most appropriate number of differ-
ent substitution rates between nucleotides. The Akaike
weights calculated from the AICc values were very sim-

ilar to those calculated from the AIC. This is because
the n/K ratio, 37.14, is close to the value of 40, which
Burnham and Anderson (2003, p. 66) recommend as the
cut-off for preferring AICc . Indeed, when n/K is rela-
tively large the AICc converges back to the AIC, and so
it is still appropriate to use the AICc instead of the AIC.
The hLRT approach led to selection of the HKY+I + 

model, which only received an AICc weight of 0.1692
(Table 1), but was contained within the 95% AIC confi-
dence set of models. The ML tree under the HKY+I + 

model differs by a symmetrical distance (Foulds et al.,
1979) of 4 and 5 from the two trees estimated under the
TN93+I + 
 model.

In total 23 unique tree topologies were estimated from
all of the models; however, only 8 unique topologies were
contained in the set of trees that were estimated from
models that received greater than or equal to 0.00001
support from the AICc weights. Some tree searches un-
der the among-site rate variation models recovered two
topologies, where one of these topologies had an in-
ternal branch collapsed to zero length. The weighted
AICc consensus topology (Fig. 5A) was almost identi-
cal to the topology estimated under the best AICc model
(TN93+I + 
) (Fig. 5B), but due to the model selection
uncertainty there is considerable ambiguity in selecting
the best point estimate of topology for these data. The
bootstrap analysis under the best AICc model indicates
that the nodes that are not supported under all of the
models also have low bootstrap support (Fig. 5). This
observation is important because it suggests that in this
case if we had ignored model selection uncertainty our
conclusion as to what hypotheses were well supported
by the data would be the same. It is worth mentioning
that the numbers above branches in Figure 5A describe
the uncertainty of branches due to uncertainty on the
models of molecular evolution. This is in contrast with
the bootstrap values in Figure 5B, which describe uncer-
tainty due to the stochasticity of molecular evolution. The
former numbers can be regarded as “bootstrap propor-
tions” obtained by resampling models with probabilities
proportional to the Akaike weights. The phylogenetic
relationships among the Ohomopterus carabid beetles are
very similar to those estimated by Sota and Vogler (2001)
using maximum parsimony.

We examined the association between pairwise AICc
differences and pairwise tree distances (Foulds et al.,
1979) for the 11 models included in the 99% confidence
set (Fig. 6). This relationship shows a weak but signif-
icant correlation (r2 = 0.2394; P = 0.00015) between the
improvement of fit of a model to the data and differ-
ences in topology. This graph supports, to a limited ex-
tent, the intuition that models with similar fits to the data
tend to support similar trees.

The model averaged parameter estimates are very sim-
ilar to the maximum likelihood estimates under the best-
fit models (Table 2) because models with similar like-
lihoods, and thus low AIC differences tend to result
in similar parameter estimates. The variability between
the model averaged and best-fit model parameter esti-
mates is unlikely to have a large effect on estimation of

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/53/5/793/2842928 by guest on 18 April 2024



802 SYSTEMATIC BIOLOGY VOL. 53

FIGURE 5. Multimodel phylogeny of Ohomopterus carabid beetles. (A) Consensus of trees estimated under 56 candidate models, and con-
structed using Akaike weights (with the AICc) as tree weights. The values above branches represent the weights for each branch. All branches
without a number received a weight of 100%. (B) Consensus of the two maximum likelihood trees under the best AICc model (TN93+I+
), one
of which had a branch of zero length. Numbers above nodes are nonparametric bootstrap proportions. Nodes that received less than 50% are
not indicated. The five species groups are indicated by shaded boxes.

topology. The greatest variability between the model
averaged parameter and best-fit model parameter es-
timates is observed for the transversion rate param-
eters. This is not surprising given that relatively few

FIGURE 6. AIC differences and phylogeny estimation. For each pair
of models out of the 11 models with noticeable AICc support, we cal-
culated the differences in AIC scores (Pairwise AICc distances) and
the Robinson and Foulds (1981) tree distances (Pairwise tree distances)
using AICc scores calculated on a NJ-JC tree.

transversions have occurred in these data and therefore
there is not much information from which to gain stable
estimates.

Not all model parameters have the same importance
for this data set (Table 3). The alpha shape parameter
from the gamma distribution of among-site rate vari-
ation and the base frequency parameters have a rela-
tive importance of 1.0 because they appear in all of the
supported models. The proportion of invariable sites is
also a very important parameter although a few models
with low weight without this parameter are supported.
This observation suggests that these properties of the
evolutionary process are very important for obtaining
a good model fit. The ϕA−G and ϕC−T substitution rate
parameters have higher relative importance values that
the transversion parameters. This indicates that for these
data it is important to allow the two transition types to
have different rates, more so than the transversion types.
The results shown in Table 2 make sense in light of our
current knowledge of the dynamics of animal mitochon-
drial DNA evolution (e.g., Brown et al. 1982; Tamura and
Nei 1993; Buckley et al. 2001a).
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TABLE 2. Model-averaged estimates of nucleotide substitution
parameters. These estimates were obtained from the carabid beetles
Ohomopterus mitochondrial DNA data set using the Akaike weights
(wi ) derived from the AICc for models with wi > 0.0001. Which es-
timates contributed from which models are indicated in Table 3. In-
cluded also are the estimates corresponding to the best AICc model
(TN93+I+
) and to the model selected by the hLRT procedure
(HKY85+I+
). πA − πT : base frequencies; κ : transition/transversion
parameter; ϕA−C − ϕA−T : substitution rates; α: shape of the gamma dis-
tribution for rate variation among sites; α (I+
) shape of the gamma
distribution for rate variation among sites under an I+
 model; pinv

(I+
) proportion of invariable sites under an I+
 model.

Model-averaged AICc model hLRT model
Parameter estimate estimate estimate

πA 0.3330 0.3342 0.3303
πC 0.0683 0.0667 0.0725
πG 0.1362 0.1369 0.1335
πT 0.4625 0.4622 0.4637
κ 14.8483 14.8476 14.8476
ϕA−C 0.6290 1.0 —
ϕA−G 13.4111 13.1823 —
ϕA−T 1.0536 1.0 —
ϕC−G 0.4189 1.0 —
ϕC−T 20.0553 19.7583 —
α 0.1011 — —
α(I+
) 0.7149 0.7658 0.5849
pinv(I+
) 0.6874 0.7038 0.6644

Lastly, model averaging could also be applied to other
problems in evolutionary biology in which inferences
can be drawn from several models, for example as in the
detection of positive selection from sequence alignments
(Yang et al., 2000), and the estimation of divergence times
using relaxed molecular clocks (Aris-Brosou and Yang,
2002), where different models can frequently yield dif-
ferent results.

PHILOSOPHICAL CONSIDERATIONS ON MODEL
SELECTION

There is still an important philosophical debate about
model selection in general (Burnham and Anderson,
1998, 2003; Forster and Sober, 1994, 2004; Forster,
2000, 2001; Kass and Raftery, 1995; Kieseppä, 2002;
Myrvold and Harper, 2002; Popper, 1959; Sober, 2002a;

TABLE 3. Relative parameter importance. Included here are Akaike weights (wi ) and relative parameter importance values for the Ohomopterus
carabid beetles mitochondrial DNA data set, for models with wi > 0.0001. Where a model contains a free parameter it is indicated with a black
dot (note that ϕG−T is often set to equal 1).

wi πA πC πG πT κ ϕA−C ϕA−G ϕA−T ϕC−G ϕC−T ϕG−T α pinv

TN93+I+
 0.5221 • • • • • • • •
TIM+I+
 0.1913 • • • • • • • •
HKY85+I+
 0.1692 • • • • • • •
K81uf+I+
 0.0642 • • • • • •
GTR+I+
 0.0344 • • • • • • • • • • • •
TVM+I+
 0.0165 • • • • • • • • • •
TN93+
 0.0011 • • • • • • •
HKY85+
 0.0005 • • • • • •
TIM+
 0.0004 • • • • • • •
K81uf+
 0.0002 • • • • •
GTR+
 0.0001 • • • • • • • • • • •
Relative parameter 1.0 1.0 1.0 1.0 0.170 0.051 0.749 0.051 0.051 0.749 0.051 1.0 0.997

importance

Wasserman, 2000), and here we do not attempt to address
all the issues, but just those we think are most relevant.
The information-theoretic and the Bayesian approaches
represent different philosophical approaches to the prob-
lem of model selection (Forster and Sober, 1994; Kuha,
2003; Sober, 2002a). The AIC is designed to choose the
model that best approximates reality. The conclusions of
AIC are never about the truth or falsity of a hypothesis,
but about its closeness to the truth (Forster and Sober,
2004). On the other hand, Bayesian approaches are de-
signed to identify the true model, given the data. Both
the AIC and Bayesian approaches have been criticized
on different grounds.

That Bayesian approaches are designed to identify the
true model can be surprising when surely we know that
all models of evolution are false (i.e., their probability is
zero). The standard interpretation of P(Mi |D) is that it is
the probability that Mi is the true model given the data,
even though we know that this statement is false a priori
(Gelfand, 1996). A common response to this criticism is
that we can hope that at least one of the models is approx-
imately true, and that the posterior distributions allows
us to compare the relative merits of the models (Wasser-
man 2000). On the other hand, it has been argued that
the derivation of the BIC does not require that the true
model is contained within the set of candidate models
(Burnham and Anderson, 2003, pp. 293–295; Cavanaugh
and Neath, 1999). Interestingly, it is possible to obtain the
AIC as a Bayesian result if a particular prior (the so called
K-L prior) is used with the BIC (Burnham and Anderson,
2003, pp. 302–305).

It has been alleged in the statistical literature that, un-
der certain conditions, the BIC is statistically consistent
(it does converge to truth as more data is added), whereas
the AIC is not (but see Bozdogan, 1987; Findley, 1991;
Keuzenkamp and McAleer, 1995; Nishii, 1984, 1988; Shi-
bata, 1986; Woodroofe, 1982) but the relevance of statisti-
cal consistency in this context is not clear (Forster, 2002).

We can think of a model as a set or family of
sharp hypotheses. For example, the K80 model con-
tains all hypotheses representing different values of the
transition/transversion parameter, κ . The JC69 model,
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however, contains only one hypothesis, as all its param-
eters are fixed (equal base frequencies and equal rates
for transitions or transversions). The AIC and the BIC
work with maximized likelihoods, and therefore they
are comparing the best point hypothesis within each
model. However, it might be unwise to compare mod-
els based only on the merits of a single point, even if
this point is optimal, and that is why Bayesians prefer
models for which the sum of the likelihoods of all con-
tained point hypotheses is largest (Holder and Lewis,
2003).

WHICH MODEL SELECTION METHOD IS BEST
FOR PHYLOGENETICS?

The use of different model selection strategies may
lead to the selection of different models of evolution
(Posada and Crandall, 2001a), and we know that model
choice affects all aspects of phylogenetic analysis. Here
we have attempted to compare different model selec-
tion strategies from a theoretical and practical point of
view, in the context of phylogenetics. Previous Monte
Carlo simulations on the performance of model selection
in phylogenetics (Posada, 2001; Posada and Crandall,
2001b) showed that these methods work well when the
aim is to identify the generating model. However, these
simulations missed the point that the true model of evo-
lution will never be one of the candidate models. It would
be more useful to generate data from a model much
more complex than any of the candidate models, and
then study how well the selected models approximate
this complex generating model (e.g., Minin et al., 2003).
Clearly, we should seek models that are good approxima-
tions to the truth and from which therefore we can make
valid inferences concerning the real process of molecular
evolution. Too often we read expressions like “The best-
fit model was selected with the program MODELTEST”
without any reference to which model selection strategy
was used (in this case, hLRT or AIC). When a method
of model selection is used, this should be explicitly
reported.

From the discussion above it should be clear that the
Bayesian and AIC approaches present several important
advantages over the hLRTs for model selection (see also
Table 4). Namely, they are able to simultaneously com-
pare multiple nested or nonnested models (see Chamber-
lain, 1890), account for model selection uncertainty, and
allow for model-averaged inference. Although model se-
lection uncertainty tools do not exist within the standard
hLRTs framework, there are extensions of the LRT frame-
work that allow for the specification of confidence sets
of models. Evidence for a model can be also estimated
by the “expected likelihood weights” (Strimmer, 2001;
Strimmer and Rambaut, 2001). Criteria like the AIC or
BIC are very simple to calculate from the maximum like-
lihood estimate, although they do rely on point estimates
and do not take in account topological uncertainty (Boll-
back, 2002). The importance of the later effect has yet to
be examined (but see Posada and Crandall, 2001b), as
well as the potential impact of comparing models with

TABLE 4. Comparison of model selection strategies for phyloge-
netics. Indicated are what the authors think are good properties for a
model section procedure. Exceptions to these may exist and the com-
ments below are generalizations.

Good properties for model
selection methods hLRT Bayesian AIC

Applies easily to nonnested No Yes Yes
models

Allows for the simultaneous No Yes Yes
comparison of multiple models

Does not depend on a subjective No Yes§ Yes
significance level

Incorporates topological No Yes∗ No
uncertainty

Easy to compute Yes No∗ Yes
Assesses model selection No Yes Yes

uncertainty
Allows model averaging No Yes Yes
Provides the possibility of No Yes∗ Yes

specifying prior information for
models

Provides the possibility of No Yes∗ No
specifying prior information for
model parameters

Designed to approximate, No No Yes
rather than to identify, truth

∗Not the BIC.
§In a sense, the interpretation of Bayes factors could be considered as

subjective.

parameters fixed at the boundary of their ranges (e.g.,
α = ∝) in the AIC and BIC.

The possibility of inferring model-averaging phylo-
genies will eliminate some of the criticisms that model-
based methods are contingent on the single best-fit model
selected. Obviously, the methods described above can fa-
cilitate model-averaged hypothesis testing, as one could
test for the monophyly of a group by considering all mod-
els available. Sanderson and Kim (2000) already hinted
at the possibility of model-averaging phylogenies, but
claimed that such a composite solution would be compu-
tationally prohibitive. However, this computational bur-
den will depend on the size of the data set (especially
on the number of taxa) and the number of models con-
sidered (but one could work with the 95% confidence or
credible set of models), and in some cases it will certainly
be feasible.

Selecting a set of candidate models is not easy; there are
203 “standard” time-reversible models of nucleotide sub-
stitution, but model selection in phylogenetics is com-
monly limited to a subset of these (Huelsenbeck et al.,
2004). Indeed, evaluating a large number of models is
more problematic for the hLRT than for the AIC and
Bayesian approaches for the reasons explained above.
The implications of conditioning model selection on a
subset of the possible set of models is currently unknown.

Selection bias (Zucchini, 2000) may occur when the
number of candidate models is large. In such cases ran-
dom fluctuations in the data will increase the score of
some models more than others and therefore the chance
that the best model won for spurious reasons increases.
Indeed, the set of candidate models influences model
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choice, and a careful a priori selection of candidate mod-
els is very important.

Both in the AICc and the BIC descriptions above, the
total number of characters was used as an estimate of
sample size. However, effective sample sizes in phylo-
genetic studies are poorly understood, and depend on
the quantity of interest (Churchill et al., 1992; Goldman,
1998; Morozov et al., 2000). Characters in an alignment
will often not be independent, so using the total num-
ber of characters as a surrogate for sample size (Minin et
al., 2003; Posada and Crandall, 2001b) could be an over-
estimate. Using only the number of variable sites as an
estimate of sample size is a more conservative approach,
but could be an underestimate (note that all sites are used
when estimating base frequencies or the proportion of in-
variable sites). Indeed, sample size also depends on the
number of taxa. Importantly, sample size can have an
effect on the outcome of model selection with the AICc .
In our example above, if we were to use the number of
variable characters (301 sites) as the sample size, instead
of the total number of characters (1927 sites), the best
AICc model would not change, but the second and third
AICc models would exchange their rankings. Further-
more, because the LRT, the AIC, and the BIC strategies
rely on large sample asymptotics, it is also important to
decide when a sample should be considered small. Al-
though the AICc was derived under Gaussian assump-
tions, Burnham et al. (1994) found that this second or-
der expression performed well in product multinomial
models for open population capture-recapture. Burnham
and Anderson (2003, p. 66) suggest using this correction
when the sample size is small compared to the num-
ber of adjustable parameters, n/K < 40. Alternatively,
and because AICc converges to the AIC with increas-
ing n/K ratios, one could always use the AICc (D. An-
derson, personal communications). Phylogenetic char-
acters are mostly discrete, and the unconstrained model
in phylogenetics is multinomial (Goldman, 1993). One
may think of an alignment of nucleotide characters as a
large and sparse contingency table with 4T bins, where
T is the number of taxa. For large sample asymptotics to
hold in a contingency table every cell should contain, in
general, more than 5 observations (see Agresti, 1990, p.
49, 244–250), which gives a rule of thumb of n/4T > 5.
Clearly, more research is needed on sample size in
phylogenetics.

Other model selection methods exist, like cross-
validation and the bootstrap (see Browne, 2000; Efron
and Tibshirani, 1993; Linhart and Zucchini, 1986), but
they seem too time-consuming—note that cross vali-
dation is asymptotically equivalent to the AIC (Stone,
1977)—for the selection of substitution models. There
is an important role for more general tests of model fit
and accuracy within the process of model selection. For
example, tests of base frequency stationarity (Rzhetsky
and Nei, 1995; Van Den Bussche et al., 1998) should be
standard before a phylogenetic analysis. In addition, the
global tests of Goldman (1993) and Bollback (2001) are
useful for detecting model misspecification. When tests
such as these indicate that the final model selected still

does not fit the data well, our results must be interpreted
with caution as the possibility remains that some vital
evolutionary process has not been accounted for, which
could potentially be misleading.

Model selection is a useful tool for research, but it is
not a substitute for careful thinking and common sense
reasoning (Browne, 2000). There are examples in the phy-
logenetic literature where the best-fit models have led to
phylogenetic estimates that are clearly incorrect (Buckley
and Cunningham, 2002; Posada and Crandall, 2001c).
Consideration of model selection uncertainty and multi-
model inference should lead to equal or better estimates
of phylogenies and substitution parameters, and we
should see more applications of these ideas in the future
(see also Nylander, 2004). Computation of AIC differ-
ences, Akaike weights, model-averaged estimates, and
relative parameter importance is currently implemented
in the program MODELTEST (Posada and Crandall, 1998).
Further developments will allow for the simultaneous
use of different models for different partitions of the data
(Nylander et al., 2004; Pupko et al., 2002; Suchard et al.,
2003a; Yang, 1996b). It is now time to start thinking about
how we will select those. Model selection in phylogenet-
ics is indeed still an open area for research (Huelsenbeck
et al., 2002).
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