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ABSTRACT

Early diagnosis of drug-induced liver injury (DILI) continues to be a major hurdle during drug development and
postmarketing. The objective of this study was to evaluate the diagnostic performance of promising biomarkers of liver
injury—glutamate dehydrogenase (GLDH), cytokeratin-18 (K18), caspase-cleaved K18 (ccK18), osteopontin (OPN),
macrophage colony-stimulating factor (MCSF), MCSF receptor (MCSFR), and microRNA-122 (miR-122) in comparison to the
traditional biomarker alanine aminotransferase (ALT). Biomarkers were evaluated individually and as a multivariate model
in a cohort of acetaminophen overdose (n¼175) subjects and were further tested in cohorts of healthy adults (n¼135),
patients with liver damage from various causes (n¼104), and patients with damage to the muscle (n¼74), kidney (n¼40),
gastrointestinal tract (n¼37), and pancreas (n¼34). In the acetaminophen cohort, a multivariate model with GLDH, K18,
and miR-122 was able to detect DILI more accurately than individual biomarkers alone. Furthermore, the three-biomarker
model could accurately predict patients with liver injury compared with healthy volunteers or patients with damage to
muscle, pancreas, gastrointestinal tract, and kidney. Expression of K18, GLDH, and miR-122 was evaluated using a database
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of transcriptomic profiles across multiple tissues/organs in humans and rats. K18 mRNA (Krt18) and MiR-122 were highly
expressed in liver whereas GLDH mRNA (Glud1) was widely expressed. We performed a comprehensive, comparative
performance assessment of 7 promising biomarkers and demonstrated that a 3-biomarker multivariate model can
accurately detect liver injury.

Key words: keratin-18; microRNA; glutamate dehydrogenase; diagnosis; liver. .

Drug-induced liver injury (DILI) is a major concern for patients,
clinicians, regulatory agencies, and drug makers, as it is the
leading cause of acute liver failure among patients referred for
liver transplantation (Bernal and Wendon, 2014; Przybylak and
Cronin, 2012). The annual incidence of DILI is about 14–24 per
100 000 people (Bjornsson et al., 2013; Sgro et al., 2002; Shen et al.,
2019). An overdose of acetaminophen (APAP/paracetamol) is the
most common cause of DILI and acute liver failure in the United
States and Europe (Stravitz and Lee, 2019). DILI is also a leading
cause of compound attrition during drug development, and drug
withdrawals and restrictions after drug approval and marketing
(Kullak-Ublick et al., 2017; Onakpoya et al., 2016; ). Although idio-
syncratic and intrinsic DILI have different pathophysiologies,
many biomarkers likely overlap in their ability to detect DILI. A
large effort is currently under way in academia, industry, and
public-private partnerships to identify early, sensitive, and spe-
cific translational biomarkers for diagnosis and prognosis of DILI
in humans. Furthermore, the Food and Drug Administration
(FDA) has a renewed interest to expand guidance on biomarker
research to determine hepatotoxic liability of drugs and avenues
for biomarker regulatory qualification opportunities.

The current DILI biomarkers are a combination of serum ala-
nine aminotransferase (ALT) and aspartate aminotransferase
(AST) which are general indicators of hepatocellular injury, se-
rum alkaline phosphatase (ALP) which is partially predictive of
cholestatic liver injury, and total bilirubin (TBL) concentration
which is frequently used to predict global liver function (Church
et al., 2019; Shi et al., 2010). It is widely accepted that current di-
agnosis of DILI relies on biomarkers which lack sufficient specif-
icity and sensitivity for detecting liver injury and therefore,
there is a need for development of better biomarkers (Shi et al.,
2010), especially those that can be used both in preclinical and
clinical studies for drug development.

Promising biomarkers for diagnosis of DILI, that have also
been supported by the FDA, include total cytokeratin 18 (K18),
caspase cleaved K18 (ccK18), macrophage colony-stimulating
factor (MCSF), MCSF receptor (MCSFR), osteopontin (OPN), gluta-
mate dehydrogenase (GLDH), and microRNA-122 (miR-122)
(Church et al., 2019; Roth et al., 2020). Although these biomarkers
have been evaluated in preclinical and clinical studies, a com-
prehensive study to quantitatively evaluate the performance
characteristics of all 7 candidate biomarkers individually and in
combination has not been performed. Therefore, the objective
of this study was to evaluate the sensitivity and specificity of
these promising safety biomarkers individually and in combina-
tion for detecting liver injury using APAP overdose and cross-
sectional cohorts of patients with liver damage due to diverse
etiologies. Specifically, our aims were to (1) compare the diag-
nostic performance of the 7 DILI biomarkers in patients with
APAP overdose (APAP, n¼ 175); (2) apply random forest model-
ing to train, test, and validate a multivariate model with top per-
forming biomarkers to predict ALT; and (3) independently
confirm the performance of biomarkers individually and as a
multivariate model in a cross-sectional study involving patients
with clinically established liver damage (n¼ 104) as well as

patients with other organ damage (n¼ 185) and healthy volun-
teers (n¼ 135).

Brief Experimental Procedures (Details
Provided in Supplementary Material)

Study Populations
Acetaminophen overdose study participants. Ethical approval for
this study was provided by London—South East Research Ethics
Committee (18/LO/0894) (ClinicalTrials.gov identifier:
NCT03497104). Patients presenting to Royal Infirmary of
Edinburgh, UK (RIE) following APAP overdose, who met the in-
clusion criteria, were asked to provide informed consent to par-
ticipate in the prospective, APAP overdose cohort study, and
their demographics and blood results were recorded. Although
the current consensus for defining DILI is an ALT value �5� up-
per limit of normal (ULN) (Aithal et al., 2011), in this study a cut-
off of 3 times the upper limit of normal (�3� ULN) ALT (150 U/l)
was used as this is consistent with prior studies (Starkey Lewis
et al., 2011) and because the FDA has defined an ALT �3� ULN of
study patients compared with controls as a potential signal of
DILI during drug development in particular (Senior, 2014). A cut-
off of >1 ULN ALT (>50 U/l) was also explored. Serum was col-
lected at 3 timepoints, baseline (T1, n¼ 175), T2 (n¼ 127), and T3
(n¼ 81). T1 was collected when the patient was admitted to the
hospital, 4.6 h (IQT: 4.1, 10.7) after ingestion of APAP. The me-
dian collection time for T2 was 12.7 h (IQT: 9.2, 14.1) after T1,
and the median for T3 was 22.9 h (IQT: 19.8, 24.2) after T1.

Cross-sectional cohort study participants. Patient samples were col-
lected from the University of Michigan health care system with
informed consent (IRB approval no. HUM-44422). Patient cohorts
were selected based on their individual disease states, their se-
rum chemistry values, and medical adjudication of their clinical
files. Liver damage patients were determined by utilizing the
EWG definition (�5� ALT ULN, or �2� ALP ULN, or �3� ALT
ULN and �2� TBL ULN) and medical adjudication demonstrat-
ing various liver damage etiologies. Healthy subjects were se-
lected as those having normal ranges of ALT (<35 U/l), AST (8–
30 U/l), ALP (0.2–1.2 mg/dl), TBL (0.2–1.2 mg/dl), glucose (73–
100 mg/dl), blood urea nitrogen (BUN) (8–20 mg/dl), serum creati-
nine (0.5–1.0 mg/dl for females and 0.7–1.3 mg/dl for males), and
creatine kinase (26–180 U/l for females and 38–240 U/l for males).
Subjects with clinically demonstrable liver damage typically in-
cluded those with accidental APAP overdose, ethanol toxicity,
drug abuse, transaminitis (elevated transaminases without
other evidence of liver injury), metastatic liver disease (diag-
nosed by biopsy or histopathology after resection), cirrhosis,
and liver impairment (Hepatitis B or C, hepatic graft vs host dis-
ease). The metastatic group is comprised 12 different sites of or-
igin of the primary cancers. Represented by adrenal, breast,
cholangiocarcinoma, colon, endometrial, kidney, liver, mela-
noma, ancreatic, pleomorphic sarcoma, prostate, and rectal. No
single primary cancer site is represented by more than 4
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patients of the 27 in this cohort. Some subjects exhibited multi-
ple types of liver injury for example, a subject could be repre-
sented in both categories of DILI and acute liver failure. Muscle
Injury was diagnosed by either (1) medical adjudication, (2) a
muscle biopsy, (3) genetic testing, or (4) clinically determined in-
juries, which may include, but are not limited to, primary disor-
ders of muscle (dystrophies, myotonic disorders, congenital
myopathies, and mitochondrial myopathies) and toxic myopa-
thies (drug, alcohol, and toxicants), as exhibited by, myositis (in-
flammatory muscle injury), neurogenic atrophy, necrotizing
inflammatory muscle injury, chronic severe atrophy, AAF, type
II fiber atrophy, nuclear myobags, denervation atrophy, and in-
creased lipids in myofibers. Subjects demonstrating pancreatitis
(acute, chronic, hereditary) were diagnosed by either (1) persis-
tent severe epigastric pain, (2) diagnostic armamentarium (en-
doscopic ultrasound [ES], magnetic resonance
cholangiopancreatography [MRCP], computerized tomography
[CT], or transabdominal ultrasound), (3) clinically demonstrable
deficiencies, or (4) amylase or lipase 3� ULN. Subjects demon-
strating gastrointestinal abnormalities were diagnosed by either
(1) endoscopy, (2) sigmoidoscopy, or (3) colonoscopy, or (4) clini-
cally demonstrable deficiencies, which could include, but is not
limited to, gastroesophageal reflux disease (GERD), esophagitis,
irritable bowel syndrome (IBS), celiac disease, Crohn’s disease,
ulcerative colitis, ulcerative pancolitis, ulcerative proctosigmoi-
ditis, and appendicitis. Subjects having chronic kidney disease
(CKD) were diagnosed by either (1) biopsy-proven or (2) clinically
demonstrable deficiencies, which could include, but are not lim-
ited to, diabetes, high blood pressure, glomerulonephritis, inter-
stitial nephritis, polycystic kidney disease, and malformations,
as exhibited by, CKD stage II–V, end stage renal disease (ESRD)
and patients on dialysis. Patients were excluded from a cohort if
they had any ongoing health problems or immunological flares
that could influence liver health, or if they had additional organ
injury outside their included cohort. Traditional organ damage
biomarkers, such as AST and ALP for liver; lipase and amylase
for pancreas, BUN and creatinine for kidney; and creatinine ki-
nase enzyme activity for muscle damage were elevated in their
respective clinically diagnosed organ damage cohorts
(Supplementary Figure 5). All human serum was collected in se-
rum separator tubes, aliquoted, frozen at �80�C and sent to
Pfizer’s Drug Safety Research and Development’s Biomarker
Laboratories for biomarker analysis.

Biomarker Measurements
Clinical chemistry parameters ALT, GLDH, AST, ALP, TBIL,
Lipase, AMYL, GLUC, BUN, CREA, and CK were evaluated using a
Siemens Advia 1800 chemistry analyzer.

Protein biomarkers. K18 and ccK18 were measured by SpectraMax
500 from Molecular Devices using CK_M65 EpiDeath ELISA kit
and CK_M30 Apoptosense ELISA kit respectively (manufacturer:
PEVIVA AB, Bromma, Sweden; distributor: DiaPharma, West
Chester Township, Ohio, catalog numbers 10040 and 10010).
M65 assay can detect full-length, nonapoptotic and apoptotic
fragments of K18 whereas M30 assay detects only caspase-
cleaved fragments of K18 (Ku et al., 2016). MCSF and OPN were
measured by electro-chemiluminescent using Meso Scale
Discovery (MSD) Kits (catalog number K151XRK-1 and K151HJC-
2) and light intensity signal was detected by Meso Sector S600,
Model 1201. MCSFR was measured by fluorescent-labeled
microbeads using Luminex Magnetic MultiPlex Human MCSFR
kit (R&D Systems Inc., Minneapolis, Minnesota, catalog number
LXSAHM-01) and the fluorescent signal was detected by Bio-

Plex 200, Model Luminex XYP. Biomarker assays were per-
formed according to the manufacturers’ protocols with a few
modifications. The serum biomarker values were calculated us-
ing a 6–9 point 5-parameter logarithmic standard curve
(Supplementary Figure 1).

MicroRNA-122. Total RNAs from 100 ll plasma/serum were puri-
fied by Qiagen’s miRNeasy kit (Valencia, California) according to
the manufacturer’s protocol and a total final 20 ll of the purified
RNAs was eluted. To remove possible heparin contamination,
6 ml of extracted RNA was added to a master mix consisting of
2 ml of 10� reaction buffer (New England Biolabs, Ipswich,
United Kingdom), 10.75 ml of RNA free H2O, 0.25 ml of Heparinase
I (New England Biolabs, Ipswich, United Kingdom), and 1 ml of
RNase inhibitor (Promega, Wisconsin). Samples were incubated
for 1 h at 30�C followed by 1 min at 99�C. Samples were stored at
�80�C. Five ll of the purified miRNA was subjected to ddPCR
quantification. Three step reactions were employed in the
quantification of miRNAs. First, a poly(A) tail was added to the
miRNAs using a poly(A) enzyme from New England Lab. Next,
polyadenylated miRNAs were transcribed to cDNA by reverse
transcriptase (MultiScribe, Applied Biosystems) with poly(T) oli-
gos containing an adapter primer sequence. The cDNA was
then quantified with specific forward (50-
GCTGGAGTGTGACAATGGTGTT-30) and universal reverse (50-
TTTCGGCTGCCATGTACGTTTTTTTTTTVN-30) primers using
Eva-green in droplet digital PCR (ddPCR). All primers were ac-
quired through Integrated DNA Technologies (IDT, Coralville,
Iowa). Circulating miR-122 was assayed in singleton by QX200
Droplet Digital PCR System from Bio-Rad using Evagreen-based
detection method. The performance of miR-122 in ddPCR was
evaluated to determine assay sensitivity, range of the assay, re-
producibility, dilutional linearity, and freeze-thaw stability.

Performance characteristics are described in the
Supplemental Material.

Statistical Analysis
Area under the curve analysis. Global predictivity across potential
cutoffs for any single biomarker was assessed using the AUC
(area under the curve) of the receiver operator characteristic
(ROC) curve. The ROC curve plots the false positive rate horizon-
tally versus the true positive rate vertically, which represents,
respectively, the fraction of actual control samples (eg, healthy)
predicted to be cases (eg, liver injury), and the fraction of actual
case samples predicted to be cases. The curve is generated by
visiting every distinguishable cutoff, which corresponds to a
cutoff between every pair of adjacent unique sorted values in
the observed biomarker dataset. An AUC of 1.0 represents per-
fectly separable cases and controls, while an AUC of 0.5 repre-
sents predictability no better than random guessing.

For each biomarker, we assessed the distinguishability of
liver injury as cases versus healthy subjects as controls by cal-
culating the AUC for that biomarker as calculated from the auc
function using the pROC package in R (R Development Core
Team, 2019). The significance levels of the AUC values were
evaluated using the roc test() function in that same package, us-
ing the default DeLong method (DeLong et al., 1988) for compar-
ing AUCs from 2 datasets. Here, the p-value of a single AUC was
evaluated by using roc test() to compare it to the AUC of the null
set for the same biomarker values, where the null set was gen-
erated by randomly permuting the case and control labels of the
biomarker values. To evaluate biomarker specificity for liver in-
jury, AUCs were also evaluated via the same method using
other organ injury cohorts as controls against the liver injury
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cohort as cases. Using roc test() as above, we were also able to
assess the statistical significance of AUC differences between
different biomarkers, as well as for comparisons between differ-
ent control cohorts versus liver injury for the same biomarker.

Multivariate modeling. To evaluate the predictivity of a panel of
the candidate biomarkers (GLDH, K18, miR-122, OPN, ccK18,
MCSFR, and MCSF) to predict the measured ALT activity value,
multivariate models were built using the baseline (T1) APAP
overdose patient data. First, the natural logarithm of ALT was
used as the dependent variable and candidate biomarkers were
used as predictors. Random forest and linear regression models
were then built to assess the predictivity of the biomarker panel,
ie, composite score. Importance values were generated from the
random forest modeling. All biomarker values were generally
comparable between timepoints and the difference in bio-
marker kinetics were not expected to influence the modeling.

Biomarker selection was based on their importance value
>20 (scaled maximum score is 100). Next, thresholds of pre-
dicted log(ALT) were used to categorize subjects into DILI or
non-DILI given the condition that sensitivity >0.95 at T2. DILI
was defined as ALT� 150 U/L (�3� ULN) or ALT> 50 U/l (>1�
ULN). The threshold of 50 U/l was used as the ULN as this is the
locally defined ULN at RIE. After the model was built with base-
line data (training set) and a threshold was chosen at T2, the
model was validated using T3 data.

Random forest was chosen as an optimal model based on
the following considerations:

• Correlation coefficient between score (predictive log(ALT)) and

measured log(ALT) in both testing set (T2 data) and validation

dataset (T3 data).
• Number of false positives given a sensitivity > 0.95 in the testing

dataset; at the same time, defined a DILI threshold to evaluate in

the validation dataset (T3 data).

Since models were built at baseline, with thresholds decided
based on timepoint 2, and validation conducted on data from T3
with the same set of patients, models were also tested in the
cross-sectional cohort as an independent dataset to evaluate
model performance.

RESULTS

Analysis of Candidate Biomarkers in Cohort of Patients With
Acetaminophen Overdose
Promising liver injury biomarkers GLDH, K18, ccK18, miR-122,
OPN, MCSF, and MCSFR were evaluated for their ability to pre-
dict ALT in a cohort of patients with APAP overdose (n¼ 175)
(Supplementary Table 2) at 3 timepoints. A random forest model
to predict ALT was trained, tested, and validated on this APAP
overdose cohort using GLDH, K18, and miR-122 as they had a
high importance value as determined by the random forest
model (100, 88.05, 54.57, respectively) relative to OPN, ccK18,
MCSFR and MCSF (16, 15.21, 8.27, and 0 respectively). Consistent
with prior APAP cohort studies (13) and because ALT � 3� ULN
may be a potential signal of DILI during drug development in
particular (14), we first evaluated the predictability of the model
using an ALT cutoff of �150 U/l. GLDH, K18, and miR-122 con-
centrations were elevated at all timepoints in APAP overdose
subjects with ALT� 150U/l compared with APAP exposed
patients with ALT< 150U/l, with few exceptions (Figure 1A).
Using baseline (T1) data to train the model with GLDH, K18, and
miR-122 (also referred to as the 3-biomarker model), the

composite score (ie, predicted log ALT) produced by this model
was highly correlated (R¼ 0.921) with measured ALT activity
(Figure 1B). The model was then tested at the second timepoint
(T2) (Figure 1C) and validated at the third timepoint (T3)
(Figure 1D). The composite score highly correlated with mea-
sured log ALT activity at T2 and T3 and the correlation coeffi-
cients (0.905 and 0.922, respectively) were comparable to those
from the training data (T1), suggesting generalizability of the
model. With the objective of maximizing sensitivity (fixed at
�0.95), the composite score threshold was set at the lowest
composite score (4) in subjects with ALT � 150 U/l in the testing
dataset (Figure 1C). In general, when the values of 2 or 3 of the
biomarkers were high, the patient tended to have a high com-
posite score (Supplemental Figure 2). The composite scores at
each timepoint demonstrated high specificity, with few false
positives with an ALT cutoff of �150 U/l (Figs. 1E and 1F) or
>50 U/l (Supplementary Table 4). Furthermore, all 7 biomarkers
were used in the multivariate model and were evaluated with a
cutoff of ALT � 150 U/l (Supplementary Figure 3, Table 1) and >

50 U/L (Supplementary Table 1). In this cohort, the specificity
and positive predictive value (PPV) of the models were similar
between the 3- and 7-biomarker models when using a cutoff of
either ALT � 150 or > 50 U/l.

In addition to random forest, we also evaluated a linear re-
gression approach to develop a multivariate model for predict-
ing ALT. Values of the ROC AUC suggest comparable predictivity
between the 2 approaches at T1, T2, T3 (random forest ROC AUC
¼ 0.99, 0.99, 1.00 and linear regression ROC AUC ¼ 0.98, 0.98,
0.99, respectively). However, in cases of significant class imbal-
ance (the total number of a class of data is far less than the total
number of another class of data), it is recognized the ROC AUC
values can sometimes be overoptimistic (Davis and Goadrich,
2006). With that in mind, we also computed the precision-recall
curve (PRC) AUC values for both approaches. Where ROC curves
summarize the tradeoff between sensitivity and specificity, P-R
curves summarize the tradeoff between sensitivity (“recall”)
and positive predictive value (“precision”). The results at T1
(random forest PRC AUC ¼ 0.86 and linear regression PRC AUC ¼
0.61) suggest an advantage to the random forest approach. PRC
AUC are similar at T2 and T3 between the random forest (PRC
AUC ¼ 0.91, 1.00) and linear regression (PRC AUC ¼ 0.90, 0.97)
approaches. While the composite score using a linear regression
model correlated with ALT (R¼ 0.83, R¼ 0.91, R¼ 0.94 for T1, T2
and T3, respectively), there were more false positives
(Supplementary Figure 4) compared with the random forest
model. Therefore, we focused on the results from the random
forest model only.

To compare the performance of individual biomarkers to the
models, sensitivity was set to �0.95 and specificity was com-
pared (Table 2) within each timepoint or injury damage cohort.
The threshold was determined by maximizing the specificity
given sensitivity �0.95 within each timepoint or injury damage
cohort. Consistent with the above findings, the 3- and 7-bio-
marker model had similar specificities and in general, were
higher than the individual biomarkers. K18 had a higher specif-
icity than any other biomarkers at each timepoint and slightly
lower specificity than the 3- and 7-biomarker models, suggest-
ing that K18 might be a sufficient standalone liver injury
biomarker.

Performance Characteristics of Biomarkers in a Cross-sectional
Cohort of Patients With Liver Injury
The performance characteristics of the 7 candidate liver injury
biomarkers and multivariate model in comparison with the

26 | BIOMARKERS OF LIVER INJURY

D
ow

nloaded from
 https://academ

ic.oup.com
/toxsci/article/181/1/23/6112709 by guest on 25 April 2024



traditional biomarker, ALT, was further tested in an indepen-
dent cross-sectional study with healthy volunteers (n¼ 135) and
patients with damage to liver (n¼ 104), muscle (n¼ 74), pancreas
(n¼ 34), GI (n¼ 37), and kidney (n¼ 40). Liver damage patients in-
cluded transaminitis (n¼ 54), metastatic liver disease (n¼ 27),
drug induced (n¼ 24), cirrhosis (n¼ 20), alcoholic (n¼ 15), hepati-
tis (n¼ 12), liver transplant (n¼ 9), and acute liver failure (ALF)
(n¼ 4) (Supplementary Methods, Supplementary Table 3, Figure
5). All 7 measured candidate liver injury biomarkers as well as
ALT were elevated in patients with liver damage relative to
other organ damages (Figure 2A). Of these biomarkers, GLDH,
K18, and miR-122 had a greater fold increase (7.3-, 12.0-, and
6.3-fold, respectively) in liver damage over healthy volunteers
than ALT (5.3-fold). Candidate biomarkers were also stratified
by the type of liver damage (Figure 2B). Biomarkers tended to be
highest in patients with ALF, DILI, and transaminitis (elevated

transaminases without other evidence of liver injury). As previ-
ously reported (Church et al., 2019), GLDH activity showed a pos-
itive correlation with ALT activity (Figure 2C). K18, ccK18, and
miR-122 levels were also positively correlated with ALT activity
(Figure 2C) suggesting that these biomarkers positively associ-
ate with ALT. MCSF, and MCSFR levels did not correlate with
ALT activity (r ¼ �0.043, p¼ .66; r¼ 0.1512, p¼ .125, respectively)
and OPN levels did not correlate with ALT activity (r ¼ �0.2086,
p¼ .0336).

For each biomarker, we assessed the distinguishability of
liver damage (cases) versus healthy subjects (controls) by calcu-
lating the area under the receiver operator characteristic curve
(AUC) for each biomarker. K18 achieved near complete separa-
tion between patients with liver damage and healthy subjects
with an AUC of 0.98 (Table 2, Figure 3A, Supplementary Table 4).
MCSF achieved an AUC of 0.97, whereas ALT achieved an AUC

Figure 1. Analysis of a 3-biomarker-based multivariate model for detection of liver injury using longitudinal cohort of patients with acetaminophen overdose. Three

liver injury biomarkers (GLDH, K18, and miR-122) were used to build a predictive model for log ALT. (A) ALT, GLDH, K18, and miR-122 levels at each timepoint.

Correlation between composite score and measured log ALT activity at (B) baseline (time 1, training), (C) time 2 (testing), and (D) time 3 (validation). (E) Score of each pa-

tient overtime. (F) Summary results from setting the threshold at an ALT cutoff of �150 U/l. Values are shown as raw and natural logarithm ALT. Pearson’s R coefficient

is shown based on the measured log ALT and score.
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of 0.93, and GLDH, ccK18, MCSFR, OPN, and miR-122 demon-
strated AUCs of 0.87–0.92. K18 also distinguished patients with
liver damage from those with GI tract, pancreatic, muscle, and
kidney damage (AUC ¼ 0.959, 0.963, 0.937, and 0.90, respectively)
(Supplementary Table 5). However, the K18 AUC for liver versus
kidney damage subjects was only 0.90. By comparison, ALT had
similar AUC values in healthy compared to GI tract, pancreas,
and kidney, but was significantly reduced (p¼ 7.2e-05) when
compared with the muscle damage patients. We also assessed
the statistical significance of AUC differences between different
biomarkers using the same comparison cohorts. When compar-
ing AUCs, K18 was superior in terms of sensitivity and specific-
ity over ALT and GLDH in diagnosing liver damage compared
with healthy volunteers, GI tract, and muscle damage patients
(Figure 3A). K18 outperformed ALT for liver damage in all
cohorts except kidney injury where they were similar. GLDH
only outperformed ALT for muscle injury. ccK18 did not outper-
form ALT in any cohort. MCSF outperformed ALT for healthy, GI
tract, and muscle but not for pancreas and kidney. MCSFR only
outperformed ALT for GI tract. Overall, in this cross-sectional
analysis, GLDH, K18, and miR-122 were more sensitive and spe-
cific compared with other biomarkers in a liver damage patient
cohort.

The cross-sectional cohort of patients with liver damage,
other organ damage, and healthy volunteers was used as an in-
dependent validation dataset for the multivariate models. The

models were constructed to predict ALT with the APAP overdose
cohort and therefore, we used the same composite score thresh-
olds defined in the APAP cohort for validation in the cross-
sectional cohort. The 3-biomarker model was able to achieve
near perfect separation between patients with liver injury and
healthy volunteers (Table 1) and composite scores were highly
correlated with the measured log ALT (Figure 3B). The model
exhibited strong predictability as reflected by the ROC AUC
(Figure 3C, Table 1) when comparing liver damage to healthy or

Table 1. Assessment of the Random Forest Biomarker Models in the
Acetaminophen Overdose and Cross-sectional Cohorts

Dataset
Panel 3a Panel 3 Panel 7b Panel 7

R AUC (CI) R AUC (CI)

Acetaminophen overdose cohort
ALT � 150 U/l cutoff

Training (T1) 0.921 0.99
(0.98, 1)

0.964 0.99
(0.99, 1)

Testing (T2) 0.905 0.99
(0.97, 1)

0.912 0.99
(0.98, 1)

Validation (T3) 0.922 1 (1, 1) 0.922 1 (0.99, 1)
ALT > 50 U/l cutoff

Training (T1) 0.921 0.98
(0.96, 1)

0.964 0.99
(0.97, 1)

Testing (T2) 0.905 0.98
(0.96, 1)

0.912 0.97
(0.93, 1)

Validation (T3) 0.922 1 (1, 1) 0.922 0.99
(0.98, 1)

Cross-sectional cohort: comparator group versus liver
Healthy 0.856 0.99

(0.98, 1)
0.815 1 (1, 1)

Muscle 0.76 0.92
(0.88, 0.97)

0.688 0.96
(0.93, 0.99)

Pancreas 0.799 0.97
(0.95, 1)

0.731 0.99
(0.98, 1)

GI tract 0.811 0.98
(0.96, 1)

0.748 0.99
(0.98, 1)

Kidney 0.814 0.93
(0.90, 0.97)

0.751 0.97
(0.94, 0.99)

aPanel 3: GLDH, K18, miR-122.
bPanel 7: GLDH, K18, miR-122, ccK18, MCSF, MCSFR, OPN; R: Pearson’s correlation

coefficient to measured ALT activity; AUC: area under the curve; T1: Timepoint 1

(collected at hospital admission, median: 4.6 h, IQR: 4.1, 10.7 after acetamino-

phen ingestion), T2: Timepoint 2 (11.4 h after T1), T3: Timepoint 3 (21.8 h after

T1); GI: gastrointestinal; CI: 95% confidence interval.

Table 2. Comparative Assessment of Candidate Biomarkers at a
Fixed Sensitivity for Diagnosis of Liver Injury

Metric
Biomarker
Threshold Sensitivity Specificity

ROC
AUC PPV NPV

Acetaminophen overdose cohorta

T1
GLDH 5.5 1.00 0.77 0.95 0.22 1.00
K18 375.5 1.00 0.94 0.97 0.52 1.00
ccK18 NA 1.00 0.00 0.72 0.06
MCSF 3.8 1.00 0.04 0.68 0.07 1.00
MCSFR 493.5 1.00 0.35 0.84 0.09 1.00
OPN 3.2 1.00 0.09 0.72 0.07 1.00
miR-122 3412.0 1.00 0.85 0.96 0.31 1.00
Panel-3 4.7 1.00 0.99 0.99 0.85 1.00
Panel-7 4.7 1.00 0.99 0.99 0.85 1.00

T2
GLDH 5.5 1.00 0.77 0.97 0.29 1.00
K18 135.5 1.00 0.84 0.97 0.38 1.00
ccK18 NA 1.00 0.00 0.87 0.09
MCSF 19.5 1.00 0.32 0.82 0.12 1.00
MCSFR 416.1 1.00 0.22 0.73 0.11 1.00
OPN 8.6 1.00 0.31 0.78 0.12 1.00
miR-122 280.0 1.00 0.10 0.90 0.10 1.00
Panel 3 4.0 1.00 0.94 0.99 0.61 1.00
Panel 7 4.2 1.00 0.97 0.99 0.79 1.00

T3
GLDH 6.5 1.00 0.86 0.98 0.52 1.00
K18 716.0 1.00 0.99 0.99 0.92 1.00
ccK18 160.0 1.00 0.81 0.96 0.46 1.00
MCSF 21.0 1.00 0.66 0.90 0.31 1.00
MCSFR 445.6 1.00 0.19 0.70 0.16 1.00
OPN 7.4 1.00 0.14 0.76 0.15 1.00
miR-122 82.0 1.00 0.01 0.72 0.14 1.00
Panel 3 4.6 1.00 1.00 1.00 1.00 1.00
Panel 7 4.4 1.00 0.99 1.00 0.92 1.00

Cross-sectional cohort: healthy versus liver
GLDH 2.3 0.88 0.58 0.90 0.62 0.87
K18 137.0 0.95 0.93 0.98 0.92 0.96
ccK18 70.5 0.94 0.36 0.87 0.53 0.89
MCSF 17.1 0.95 0.72 0.97 0.72 0.95
MCSFR 828.5 0.95 0.64 0.92 0.67 0.95
OPN 11.8 0.95 0.59 0.95 0.64 0.94
miR-122 614.0 0.95 0.71 0.94 0.71 0.95
Panel 3 3.1 0.95 0.96 0.99 0.94 0.96
Panel 7 3.6 0.95 1.00 1.00 1.00 0.96
ALT 15.5 0.95 0.46 0.93 0.58 0.93

aSensitivity was fixed at �0.95 where possible and thresholds for the APAP

cohorts were determined with ALT � 150 U/l within each timepoint. Panel 3:

GLDH, K18, miR-122; Panel 7: GLDH, K18, miR-122, ccK18, MCSF, MCSFR, OPN; R:

Pearson’s correlation coefficient to measured ALT activity; ROC AUC: receiver

operator curve area under the curve; T1: Timepoint 1 (collected at hospital ad-

mission, median: 4.6 h, IQT: 4.1, 10.7 after acetaminophen ingestion), T2:

Timepoint 2 (12.7 h, IQT: 9.2, 14.1 after T1), T3: Timepoint 3 (22.9 h, IQT: 19.8, 24.2

after T1); PPV: positive predictive value, NPV: negative predictive value.
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other organ damage cohorts. When setting the sensitivity �0.95
and comparing the individual biomarkers to the models, K18
had a similar specificity to the 3-biomarker model (Table 2). The
7-biomarker model had a higher specificity for identifying
patients with liver damage than the 3-biomarker model or any
individual biomarker alone (Supplementary Figure 6). Of ALT,
K18, GLDH, and miR-122, K18 has the highest specificity in the

cross-sectional data, consistent with findings in Figure 3A. In
the case of setting the specificity to 0.95, in this cohort of 104
patients with liver damage, ALT, GLDH, K18, and miR-122 would
correctly identify 83, 82, 98, and 80 patients, respectively. CcK18,
MCSF, MCSFR, and OPN would correctly identify 73, 94, 75, and
89 patients, respectively. The 3-biomarker and 7-biomarker
panel would correctly identify 101 and 103 patients,

Figure 2. Evaluation of 7-candidate biomarkers for liver injury in comparison to ALT in the cross-sectional cohort. A, Glutamate dehydrogenase (GLDH), cytokeratin 18

(K18), caspase-cleaved K18 (ccK18), macrophage colony-stimulating factor (MCSF), MCSFR (MCSFR), microRNA-122 (miR-122), and osteopontin (OPN) in comparison

with the traditional biomarker, alanine aminotransferase (ALT) were measured in healthy volunteers (n¼135) and patients with damage to liver (n¼104), muscle

(n¼74), pancreas (n¼34), GI (n¼37) or kidney (n¼40). B, Candidate biomarkers in the liver damage cohort in subjects with acute liver failure (n¼ 4), drug induced

(n¼24), transaminitis (n¼54), alcoholic (n¼ 15), hepatitis (n¼12), liver metastatic (n¼27), cirrhosis (n¼20), and transplant (n¼9). Healthy data are repeated from

Figure 2A for reference. Values are log 10 normalized. Some subjects exhibited multiple types of liver damage. C, Spearman’s R correlation coefficient between ALT ac-

tivity and candidate biomarkers GLDH, K18, ccK18, and miR-122 in patients with liver damage. Values are log 10 normalized.
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respectively. If the 3-biomarker model composite score thresh-
old was lowered and set based on an ALT of >50 U/l as defined
in Supplementary Figure 3, the number of false negatives de-
creased (Supplementary Table 4). Patients with liver damage in
the cross-sectional cohort contained multiple different types of
liver disease and some had low ALT measurements (diagnosed
using >2� ULN ALP), which may be why the lower threshold
performed better. The predictability of the model was also en-
hanced when all 7 biomarkers were included (Supplementary
Table 4; Table 1). The linear regression 3- biomarker model as
defined in the APAP cohort performed slightly better
(Supplementary Figure 7) than the random forest (Figure 3)

when independently validated in the cross-sectional liver dam-
age cohort.

In summary, the three-biomarker model with GLDH, K18
and miR-122 was trained, tested and validated in the APAP over-
dose cohort, demonstrated high predictability of ALT and accu-
rately identified liver damage subjects in an independent
validation cohort.

Expression Patterns of K18, GLDH, and miR-122 in Humans and Rat
K18 protein and gene expression was evaluated in healthy
and injured human livers. Using immunohistochemistry and
in-situ hybridization, we found that in both normal (n¼ 5) and

Figure 3. Independent validation of the 3-biomarker-based multivariate model for detection of liver damage in the cross-sectional cohort. (A) Area under the receiver

operator characteristic curve (AUC-ROC) for candidate biomarkers in patients with liver damage versus healthy volunteers. The 3-liver injury biomarker (GLDH, K18,

and miR-122) model was evaluated in the cross-sectional cohort. Correlation between composite score and measured log ALT activity in (B) liver damage patients and

healthy volunteers and (C) all organ damages. (D) Summary results from setting the threshold at 4 (as defined in Figure 1C). Values are shown as raw and natural loga-

rithm ALT. *p< .05, **p< .01, ***p< .001, ****p< .0001.
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diseased livers (n¼ 5), K18 protein and mRNA were consis-
tently and highly expressed in bile duct epithelium and in
peri-portal hepatocytes (Supplementary Figure 8A). Expression
in midzonal and centrilobular hepatocytes was also observed,
however this was more variable both within and across
samples.

To evaluate the physiological gene expression profiles of
KRT18 (gene for K18) and GLUD1 (gene for GLDH) across different
tissues in human and rat, we queried (1) GTEX (Genotype-
Tissue Expression) and HPA (Human Protein Atlas), public hu-
man gene/protein expression databases and (2) Pfizer Zoomap,
an internal tissue atlas for preclinical species. Rat gene expres-
sion data in each tissue can be found in Supplementary Table 6.
In the human, KRT18 expression is predominantly expressed in
the liver compared with other tissues, whereas GLUD1 is widely
expressed, suggesting that GLUD1 may be less specific for liver

than KRT18 (Figure 4A). In the rat, Krt18 expression is the high-
est in bladder, ileum, colon, stomach, and liver (Supplementary
Figure 8B). Rat Krt18 and Glud1 expression levels in some tis-
sues, including the liver, kidney, and heart correlated with hu-
man expression (Supplementary Figs. 8C and 8D).

To further assess the utility of expression profiles of Krt18
and Glud1 in rat hepatotoxicity, we queried DrugMatrix, a public
rat toxicogenomics database that includes tissue gene expres-
sion and pathological evaluations. Krt18 expression had mini-
mal variability in control samples with an associated pathology
score of 0 (Figure 4B). In samples treated with compound, Krt18
expression increased with more severe pathology scores, sug-
gesting that Krt18 gene expression is actively regulated during
liver injury and that upregulation of Krt18 may start to occur
prior to any overt pathology or occur as a secondary effect of he-
patocyte regeneration in the context of injury. Additionally, ALT

Figure 4. Expression patterns of KRT18, GLUD1, and miR-122 in human and rat. A, A RNAseq-based database was queried for KRT18 and GLUD1 gene expression in hu-

man tissues (see Methods). DrugMatrix, an Affymatrix-based rat toxicogenomics database, was queried for Krt18 (B, C) and Glud1 (D, E) expression across several tis-

sues. B, Krt18 in control samples (n¼ 77) and samples treated with a compound (n¼ 115), classified by histopathology score for liver necrosis and or apoptosis of none

(n¼96), minimal (n¼14) and mild (n¼5). The Kruskal-Wallis p-value is 5.76e-5. C, Correlation between ALT activity and rat Krt18 gene expression. D, Glud1 expression

in control samples (n¼ 19) and samples treated with a compound (n¼134), classified by histopathology score for liver necrosis and or apoptosis of none (n¼ 113), mini-

mal (n¼ 18), and mild (n¼ 3). The Kruskal-Wallis p-value is 0.119. E, Correlation between ALT activity and rat Glud1 gene expression. F, Tissue Atlas was queried for 3p

and 5p miR-122 in human tissues. The linear regression line (blue) and confidence interval (gray shading) are shown. Pairwise comparisons were calculated using the

Dunn test if the Kruskal-Wallis test was significant. *p< .05, **p< .01, ***p< .001, ****p< .0001. TPM: transcript per million; QNE: quantile normalized expression.
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activity correlated with Krt18 expression (Figure 4C), which is
consistent with the patient data (Figure 1B). We also filtered for
Glud1 and found 153 samples with a reported pathology term in-
cluding liver necrosis and/or apoptosis. Although treated sam-
ples had higher expression of Glud1 compared with controls,
there was no correlation of pathology with Glud1 expression lev-
els (Figure 4D). Glud1 gene expression was not correlated with
measured ALT activity (Figure 4E).

Tissue Atlas, a human miRNA tissue expression database,
was interrogated for miR-122 expression. MiR-122-3p and miR-
122-5p were highly expressed in the liver (Figure 4F) with a tis-
sue specificity index >0.91 and tissue expression correlated
with each other (r2¼ 0.91). Rat miR-122 expression was evalu-
ated in the RATEmiR database. Rat miR-122-3p and miR-122-5p
were liver tissue specific (Supplementary Figure 8G) with a tis-
sue specificity index ¼ 1, and tissue expression was highly cor-
related with each other (r2¼ 1). Furthermore, rat miR-122-3p
expression was highly correlated with human miR-122-3p
(r2¼ 0.96) and miR-122-5p is correlated with human miR-122-5p
(r2¼ 0.67) (Supplementary Figs. 8E and 8F). These expression
data suggest that K18 and miR-122 maybe be specific bio-
markers of liver injury in rats and humans. Although Glud1
mRNA expression doesn’t seem to be tissue specific in rats and
humans, protein expression and enzyme activity of GLDH
across all tissues has not been evaluated and may provide addi-
tional information on its utility and specificity.

DISCUSSION

The present study evaluated the diagnostic performance of
seven promising biomarkers of liver injury in humans. We pro-
vide evidence to suggest that (1) K18 was superior in terms of
sensitivity and specificity over ALT and GLDH in diagnosing
liver damage compared to healthy volunteers, GI tract, and
muscle damage patients; and (2) a 3- biomarker model with K18,
GLDH and miR-122 that was trained, tested, and validated using
an APAP overdose cohort, was independently validated in a
cross-sectional cohort and able to achieve separation between
patients with liver damage and healthy volunteers. The 3-bio-
marker model also demonstrated strong diagnostic potential
when comparing liver damage patients and patients with dam-
age to the muscle, pancreas, GI tract, and kidney. Early detec-
tion, accurate diagnosis, and determining outcomes of DILI
continue to be major hurdles during drug development and
postmarketing. Significant biomarker gaps exist in the current
methods to diagnose, provide mechanistic information, and de-
termine prognosis of DILI in clinical trials. These results not
only provide a comprehensive assessment of individual bio-
marker performance in APAP and liver damage cohorts due to
different etiologies, but also highlight the utility of K18, GLDH,
and miR-122 in a multivariate model to provide greater sensitiv-
ity and specificity than each biomarker alone in detecting liver
injury.

Elevations in ALT activity can occur in other settings such as
muscle movement (Fu et al., 2019) and myocardial (Giesen et al.,
1989) and skeletal muscle injury (Nathwani et al., 2005). Data
from this study demonstrate that the 3-biomarker model
(GLDH, K18, and miR-122) clearly separated patients with mus-
cle injury from patients with liver damage thereby offering sig-
nificant advantages over measuring ALT. This finding suggests
that the 3-biomarker model could be deployed as monitoring
biomarker panel for liver injury in clinical trials involving
patients with muscular dystrophies (Zhu et al., 2015) where ALT

is nonspecifically elevated due to muscle damage and a specific
biomarker to monitor liver health is desired.

In this study, all candidate biomarkers were elevated in liver
damage patients relative to healthy volunteers, muscle, pan-
creas, GI tract, and kidney patients. Furthermore, candidate bio-
markers were elevated in each type of liver damage, including
DILI. K18 had superior sensitivity and specificity over ALT,
GLDH, and miR-122 in liver compared to healthy, muscle and GI
tract damage patients. K18 has been proposed as a biomarker
for a range of liver conditions including acute liver failure and
chronic liver diseases such as viral hepatitis, nonalcoholic fatty
liver disease and liver cancer (Ku et al., 2016). Although an ad-
vantage of K18 as a biomarker is that it is an early marker of ap-
optosis/necrosis; a disadvantage is that it is also a biomarker for
dysfunction in tissues other than the liver including the lung
(Fu et al., 2019; Levy et al., 2019; Molnar et al., 2019; Tajima et al.,
2019; Yang et al., 2019; ). Thus, a panel of 3 or 7 biomarkers may
be advantageous over a single biomarker. An advantage of
GLDH as a biomarker is that it is an early marker of liver-
specific mitochondrial damage and has low inter- and intra-
individual variability compared with other liver injury bio-
markers (Tajima et al., 2019). GLDH has also been shown to be
more readily detectable than ALT in a rat model of APAP-DILI
(Thulin et al., 2017). However, GLDH has been shown to have a
shorter half-life than ALT (Tajima et al., 2019) and by itself did
not offer any advantage over ALT in detecting liver damage
compared with healthy controls. miR-122 is advantageous as an
early marker of liver-specific damage but its use has been lim-
ited due to the higher inter- and intra-individual variability
(Levy et al., 2019) and a potentially short half-life (Thulin et al.,
2017).

Traditional liver injury biomarkers are passively released
from necrotic hepatocytes and lack mechanistic understanding
of underlying liver injury. Our data and others (Ku et al., 2016)
demonstrate that hepatocytes and cholangiocytes specifically
express K18. With a direct hepatotoxic insult, in early apoptosis
K18 is cleaved and released into circulation as ccK18; whereas
full-length K18 is released with necrosis. Therefore, levels may
reflect different cell death processes in the liver (Fu et al., 2019).
Although ccK18 performed well with an AUC of 0.873, the rela-
tively reduced sensitivity and specificity can be investigated in
subsequent studies to understand if this is associated with ki-
netics of ccK18 release, severity of injury and/or underlying
pathologic mechanism of liver injury using longitudinal cohort
of patients with DILI. Gene expression was increased with the
degree of liver apoptosis and necrosis, suggesting K18 has an ac-
tive role in liver damage. We and others show that miR-122 is
specifically expressed in the livers of humans (Landgraf et al.,
2007) and rats (Smith et al., 2016). MiR-122 accounts for 70% of
hepatic miRNAs (Lagos-Quintana et al., 2002) and is superior to
ALT in detecting liver injury in muscle injury patients (Zhang
et al., 2010). MiR-122 is an early marker of liver injury (Wang
et al., 2009) and found in protein rich fraction of plasma and spe-
cifically packaged into exosomes (Bala et al., 2012) during liver
injury. GLDH, MCSF, MCSFR, and OPN may also be used as
mechanistic biomarkers. GLDH, a mitochondrial protein,
reflects loss of mitochondrial integrity. MCSFR, a receptor for
MCSF, is shed from activated macrophages during DILI (Church
et al., 2019) and is a biomarker of inflammation. Notably, we ob-
serve high levels of MCSFR in patients with cirrhosis relative to
the other candidate biomarkers. OPN may also be a marker of
liver inflammation and necrosis (Roth et al., 2020).

In summary, our results identify a 3-biomarker model with
K18, GLDH, and miR-122 for sensitive and specific detection of
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APAP DILI and liver damage due to other causes. Whether these
biomarkers either alone or in combination outperform tradi-
tional markers such as ALT as safety biomarkers for diagnosis
and prediction of DILI remains to be tested in larger multicen-
tered longitudinal cohort.
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online.
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