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Abstract

This study analyses the relationship between the epidemic spread of COVID-19 and urban
population migration in Hubei Province, China. Based on an improved gravity model, the
population inflow numbers for each city from 10 January to 23 February are estimated. A
correlation analysis is done to reveal the impact of population inflow on the number of infected
people in the 14 days after 23 January, the day Wuhan was locked down. The results show that: (i)
the population outflow from Wuhan was mostly distributed between Xiaogan, Huanggang, Ezhou
and Huangshi in Hubei Province; (ii) the number of accumulated confirmed patients is closely
associated with inflows from Wuhan, which displayed by correlation coefficient 1 with a mean of
0.88 and a maximum of 0.93. Meanwhile, there is a weak correlation between the number of
people that came from cities except Wuhan and accumulated confirmed patients, which
indicated by correlation coefficient 2 with a mean of 0.65 and a maximum of 0.75; and (iii) the
total population inflow is a greater predictor of epidemic spread than the population inflow from
Wuhan.
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1 Introduction

At the end of 2019, coronavirus disease 2019
(COVID-19) was first discovered in China and
rapidly reported by various overseas regions. As

one of the early disaster areas of the COVID-
19, Wuhan, is located at the hub of the trans-
portation network, and the outbreak coincided
with the Spring Festival travel rush (also known

Received: 23 June 2020; Revised: 6 October 2020; Accepted: 12 November 2020

C© The Author(s) 2021. Published by Oxford University Press on behalf of Central South University Press. This is an Open Access article distributed
under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-
commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact
journals.permissions@oup.com

D
ow

nloaded from
 https://academ

ic.oup.com
/tse/article/3/1/21/6103956 by guest on 25 April 2024

http://www.oxfordjournals.org
mailto:925544687@qq.com
http://creativecommons.org/licenses/by-nc/4.0/
mailto:journals.permissions@oup.com


22 Qun et al.

as Chunyun), the annual period of mass migra-
tion, large-scale population movement became
a booster for the spread of the disease [1, 2].
COVID-19, a new respiratory infection, showed
a high correlation with population migration [3,
4], and their relationship is mainly reflected in
the incidence of COVID-19 in cities adjacent to
Wuhan, Guangzhou, Shenzhen, Shanghai, Chang-
sha and so on, which was significantly higher than
the national average. These cities had conducted
high-intensity migration movements with Wuhan
before the Spring Festival in 2020, according to
Baidu migration data. Consequently, it is neces-
sary to conduct research on the mechanism of
population migration and epidemic transmission
when studying the transmission dynamics and
spatial distribution characteristics of COVID-19.

The earliest mathematical model of population
migration is the classic gravity model. Zipf for-
mally proposed the gravity model based on the
research of British demographer Lewinstein [5].
Subsequently, the model was widely applied to the
study of population migration [6, 7]. However, due
to the major shortcomings of the classic gravity
model, such as the loss of characteristics related
to individual movement and its poor adaptability
to different spatial scales, many scholars began
more sophisticated theoretical research after the
1950s.

Migration theories can be divided into micro-
level, meso-level and macro-level theories. Macro-
theories of migration regard migration as a
social phenomenon and usually explain migra-
tion as geographical differences in the supply
and demand of labour or income differentials
[8, 9]. The typical representatives of macro theo-
ries of migration are neoclassical macro-migration
theory and dual labour-market theory. But some
scholars also take the political setting as an impor-
tant factor in migration [10]. DaVanzo proposed
a life-cycle model of population migration after
studying mobility in Philadelphia [11]. A com-
mon shortcoming of macro-level models is their
overly narrow focus, with only one specific pull
factor and with no deeper analysis of migrant
decision-making [12], and their failure to con-
sider different types of migration and individual
differences. Micro theories of migration focus on
the study of migration motivation and decision-
making on the individual or family level. Lee pro-
vided a push–pull framework to predict the vol-
ume of immigration under various conditions [13].
Sjaastad proposed the human-capital approach
based on individual investment decisions and

revealed that people migrate when the positive
result is expected [14]. Crawford derived a formula
to calculate the expected benefits and migration
costs and introduced some non-economic fac-
tors into the value-expectancy model [15]. Com-
pared to individual behavioural decision-making
models, the New Economics of Labour Migration
weakens the impact of income differences and
emphasizes the significance of remittances from
migrants [16]. At the end of the 20th century, the
immigrant-network theory was born. Migrant net-
works, combinations of a series of relationships,
decrease the costs and risks of migration and
thus attract more migrants, and the new migrants
will in turn expand the migration networks [17].
Moreover, some scholars have associated cross-
border migration with economic globalization and
global capital flow and have established the world-
system theory [18, 19].

Due to the limited power of individual char-
acteristics or macroeconomic or social factors to
explain population migration, some scholars tend
to combine macro theories with micro theories
and census data to conduct research. In view of
the 1988 Chinese fertility-sampling survey data,
Liang and White found that the young adults
and the more educated dominated the migra-
tion stream with a balanced sex ratio between
1983 and 1988, and that marital status and sex
have no significant effect on migration [20]. Duan’s
research showed that men are more prone to
interprovincial migration than women [21]. How-
ever, Tang and Ma found that more females in
their early twenties were on the move than males
in the late 1990s, based on microdata from the
2000 Chinese census [22]. Yuan et al. applied
a multi-level logit model to analyse the choice
of migration destination in large cities [23]. Fan
pointed out that migration is related to regional
development [24]. Gonzáles et al. studied the tra-
jectory of 100 000 anonymized mobile phone users
to determine a general law of human mobility [25].
Zhang and Cen used the ordinary multivariate-
regression and spatial-regression models to anal-
yse intra- and interprovincial population migra-
tion, respectively [26]. Using the Baidu Migration
big data, Jiang and Wang measured the charac-
teristics of an urban population-mobility network
covering 334 cities [27].

With the unprecedented increase in popula-
tion migration worldwide, the existence of a mass
floating population has not only promoted the
development of the economy and society, but also
caused a series of social problems, among which
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the most concerning is the spread of diseases. His-
torically, population movement has contributed
to disease transmission [28, 29]. Neouimine stud-
ied the causes of increased incidence of leish-
maniasis in some member states of the East-
ern Mediterranean Region, and found that the
influx of a non-immune population into natural
foci of transmission is a very important factor
[30]. Gushulak and MacPherson found that some
groups of migrants and mobile populations will
face a higher risk of certain infections [31]. Gar-
nett and Lewis proposed that population migra-
tion will increase the contact rate in the SIR
(susceptible-infected-recovered) model [32]. Gani
et al. built a variety of models of the spread
and quarantine of HIV infection in a prison sys-
tem by assuming a constant flow into and out
of the population and a constant total popula-
tion size [33]. Brauer and Driessche constructed an
SIS (susceptible-infected-susceptible) model that
included the immigration of infective individu-
als and variable population size [34]. Wang and
Mulone established an epidemic model to explain
the dynamics of disease spread between two areas
caused by population dispersal [35]. Takeuchi et
al. proved that travel restrictions for infected indi-
viduals are important for controlling the spread of
disease [36].

Recently, some scholars have introduced
migration into the infectious disease dynam-
ics models to study the impact of migration
on COVID-19 transmission. Wu et al. used the
SEIR (susceptible-exposed-infectious-removed)
model to predict the COVID-19 infection cases
imported from Wuhan to five cities in China
[37]. Based on population migration before and
after the quarantine, the team of Zhong Nanshan
used the SEIR model and a machine-learning
artificial-intelligence approach to predict that the
epidemic in China would peak by late February
[2]. Tang et al. assessed the impact of public-
health interventions on infection based on a
deterministic compartmental model and empha-
sized the importance of strict isolation [38]. Read
ang Bridgen estimated the number of immi-
grants using flight information, and obtained
the number of infected people in Wuhan and
other parts of the country as of 22 January [39].
Tang et al. examined the impact of migration
patterns and the proportion of infected people
within the imported population on the risk of
secondary outbreaks based on a novel stochastic
discrete transmission model for COVID-19 [40].
Xu et al. provide a statistical analysis of the

destination distribution of people leaving Wuhan,
and studied the influence of population outflow
on epidemic spread [41]. Liu et al. studied the
spatio-temporal spreading characteristics of
COVID-19 at the county spatial scale, and further
evaluated the risk owing to population movement
after the Spring Festival [42].

The existing literature in this field, however, has
focused on long-term population migration cen-
tred on the household-registration system. The
intensity of migration is usually equal to the num-
ber of people moving in or out, or the size of
the urban floating population [43]. These mod-
els also ignore cross-regional migration move-
ments for non-residence purposes (such as work,
study, holiday home stays) and short-term migra-
tion movements (such as tourism, visiting rela-
tives), which are closely related to epidemic trans-
mission [44]. Another limitation lies in the fact
that this work overlooks the differences between
inter- and intra-provincial human mobility. Schol-
ars have proved that inter- and intra-provincial
floating populations are two groups with signifi-
cant differences [45], but few studies have distin-
guished between or compared them. Recent evi-
dence has proved the significant effect of spatial
scales on human mobility, raising the need for
formulating a universal model suited to human
mobility at different levels and spatial scales [46].
In addition, due to the fact that the COVID-19 out-
break in China coincided with Chunyun, the total
population and the population inflow and out-
flow changed rapidly and dynamically. In addition,
COVID-19 has an incubation period and unobvi-
ous early-onset symptoms. Despite their explana-
tory power, existing infectious disease dynamics
models still have certain limitations on the simu-
lation and prediction of epidemic transmission in
the first stage of free migration.

In response to the above two limitations, our
study draws on Fan and Yan’s argument and
extends it to the gravity model. Recent studies
on the dynamic model of COVID-19 have sug-
gested the complementarity of population migra-
tion, statistical data, control measures, clinico-
pathologic features and infectious disease dynam-
ics theories in explaining epidemic transmission
[2, 47]. Following their conclusions, we develop
an improved gravitational model to explore the
interrelation between population migration and
the spread of COVID-19 in Hubei Province.

This study extends research on popula-
tion migration and infectious disease in two
major dimensions. First, it is among the first
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attempts to analyse short-term migration within
a province based on an improved gravitational
model. Despite the long-standing research on
population flow, the literature is still lacking in the
calculation of short-term migration and the holis-
tic analysis of migration networks within an area.
By introducing the direction coefficient and traffic
accessibility, this model achieves a better under-
standing of the choice of destination and seasonal
fluctuation of human mobility. Second, in light
of the mass migration before the strict epidemic
prevention and control measures, we conduct an
analysis of the correlation between population
flow and the spread of COVID-19 and put forward
interesting insights into the impact of population
inflow from Wuhan and the total population
inflow, which provide a method for predicting the
geographical distribution of infectious diseases at
an early stage.

2 Methods

The first application of the gravity model in pop-
ulation studies was the analysis of population
migration in Britain by the demographer Lewin-
stein in 1880 [48]. The original gravity model
included only two variables: population size and
spatial distance. Many scholars subsequently
expanded the model, and factors such as educa-
tion, age, income, politics and so on have been
gradually incorporated into the model to enhance
its explanatory power for the study of migration
[49–51].

The definition of the gravity model is simi-
lar to the mechanism of human mobility. Com-
pared with the micro model, the gravity model
shows less dependence on data, with a sim-
pler model-parameter calibration. This model is
a comprehensive consideration of both moving
into and moving out of an area, rather than
only one of these. The migration intensity calcu-
lated by the model represents the total potential
of human mobility between cities without direc-
tion. The directional coefficient needs to be deter-
mined according to the trait of migration at dif-
ferent stages. Compared to the traditional grav-
ity model, the improved gravity model can reflect
the dynamic mechanism of population flow more
objectively and accurately, with the inclusion of
transportation accessibility, employment oppor-
tunities and public services, and the seasonal law
of the fluid population. The difference in demo-
graphic characteristics between non-provincial
cities is relatively small, and the increase in the

proportion of urban-to-urban migration has led to
the insignificant impact of factors such as gender,
marital status and household registration type on
the probability of intra-provincial migration [23,
45]. Taking all the above-mentioned into account,
we opt for an improved gravity model for this
study.

Human mobility results from the joint effects
of attraction and resistance. Existing studies have
proved that the factors associated with attrac-
tion of migration include population size, socio-
economic development level, public services and
resources, and distance between cities [26, 52, 53].
Cities with high levels of economic development
and large populations are more attractive to immi-
grants, and regions with more employment oppor-
tunities also have greater competitiveness. The
resistance to population movement comes mainly
from spatial distance; the greater the distance
between cities, the greater the increase in mobility
costs [54].

Traffic is also an important factor affecting
population mobility. There is a significant cor-
relation between transportation networks and
human mobility. The improvement of transporta-
tion network can greatly improve the ability of
migration and, consequently, promote human
mobility [55, 56].

The factors related to population migration are
shown in Fig. 1. In this study, a gravity model
describing the spatial interaction is used to pre-
dict migration between cities. The gravity model
is defined as follows:

Mi j = Ai j
Qi � Q j

dε
i j

(1)

where Mij represents the intensity of population
migration between city i and city j; Qi and Qj

respectively indicate the quality of city i and city j;
Aij is the traffic accessibility between city i and city
j, which is a specific value of the comprehensive
traffic accessibility; dij shows the spatial distance
between city i and city j; and ε is the distance-
attenuation coefficient.

The distance-attenuation coefficient reflects
the sensitivity of migration to spatial distance,
and is generally taken as 1 or 2 [54, 57]. Migra-
tion shows considerable power to conquer dis-
tance during the Spring Festival travel rush, as
past experience has proved. Therefore, this study
sets the distance-attenuation coefficient as 1 to fit
the low sensitivity of human mobility to distance.

D
ow

nloaded from
 https://academ

ic.oup.com
/tse/article/3/1/21/6103956 by guest on 25 April 2024



Transportation Safety and Environment, 2021, Vol. 3, No. 1 25

Fig. 1. Factors influencing population migration

Population flow as calculated by this model con-
veys the capability of human mobility without
directionality. Nonetheless, population migration
in different periods expresses obvious directional-
ity. For instance, the floating population before the
Spring Festival is composed mainly of returnees,
showing characteristics of moving from developed
areas to underdeveloped areas. In contrast, after
the Spring Festival, population migration shows
characteristics of moving from underdeveloped
regions to developed regions for the resumption
of work and school. Hence, this study defines M′

i j
as movement from city i to city j, and M′′

i j as that
from city j to city i, and Equation (2) is obtained.

M′
i j + M′′

i j = Mi j

M′
i j : M′′

i j = a (2)

where a is direction coefficient.
The specific implementation process of the

model is shown in Fig. 2.

2.1 City quality

City quality is a comprehensive manifestation of a
city’s urban population, socio-economic level and
employment opportunities, and constitutes a pos-
itive correlation with these. The existing literature
has proved that socio-economic level, measured
by GDP per capita, has a significant impact on pop-
ulation mobility [58]. In addition, the proportion of
tertiary industry reflects the employment oppor-
tunities and public facilities of the city to a certain
extent. For these reasons, the formula for calcu-
lating city quality is as follows:

Qi = Pi � Gi � Ti (3)

where Pi refers to the number of permanent res-
idents in city i, Gi delineates the GDP per capita
in city i, and Ti presents the proportion of tertiary
industry in city i.

2.2 Comprehensive traffic accessibility between
cities

Traffic accessibility refers to the convenience of
and lack of impediment to transportation between
two cities, which is the combined effect of differ-
ent traffic modes. In view of the low proportion
of water transport, this study analyses only three
traffic modes: road, rail and aviation. By means of
the topology-analysis method, their accessibility
is obtained separately, and thus the comprehen-
sive traffic accessibility is calculated by weighted
superposition. The specific formula for complete
traffic accessibility is as follows:

Ai j = α � hi j + β � ri j + γ � ai j (4)

where hij, rij and aij respectively delineate the
accessibility of the road, rail and civil aviation
networks between city i and city j; and α, β and
γ are the weight coefficients of road travel, rail
travel and civil aviation in the regional passenger-
transport network, where α + β + γ = 1. Taking
road transportation as an example, the calculation
of road network accessibility is done as follows:

(i) Sketch the topology map of the road network:
Cross-city passenger transport is achieved

mostly by expressways connecting cities; con-
sequently, only the expressway is premedi-
tated in the road passenger transport net-
work. First, we construct a regional road
(expressway) network topology map based
on the distribution of road (expressway)
routes, and mark the number when the route
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Fig. 2. Implementation of the improved gravity model

between adjacent cities exceeds one. This
study assumes that there is no difference
in the transport capacity of different road
(expressway) routes.

(ii) Construct road-network accessibility matrix
H:

Taking the city as a node, a node-connection
matrix (road network-accessibility matrix) is
constructed, where hij represents the accessi-
bility of the road network between city i and
city j. The formula for calculating network
accessibility is as follows:

hi j = 1
/

h′
i j

h′
i j =

⎧⎨
⎩

1
/

nh
i j city i and city j are adjacent

min{h′
ir + h′

r j }, city i and city j are not adjacent

(5)

where nh
i j represents the number of roads

connecting city i and city j, r stands for the
central city between them, and h′

i j represents
the obstruction coefficient of road transport
between them. The larger nh

i j is, the larger hij

is, and the better the accessibility of the road
network is.

(iii) Define the traffic-mode split rate:
Given that demand for transportation ser-

vices seriously outstrips supply during the
Spring Festival travel rush, the differences
between travel modes are ignored to the great-
est extent. In other words, the traffic-mode
split rate is determined by each mode’s trans-
portation capacity.

2.3 Urban population inflow and outflow

Assuming that there are n cities in the study
region, the formulas for calculating the total out-
flows and total inflows of a city are as shown in
Equations (6) and (7):

M′
i =

n∑
j �=i

M′
i j , i, j = 1, 2, . . . n (6)

M′′
i =

n∑
j �=i

M′′
i j , i, j = 1, 2, . . . n (7)
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Table 1. Quality of each city in Hubei Province
City Wuhan Xiaogan Huanggang Jingzhou Ezhou

Code 1 2 3 4 5
Quality 9.40 0.81 0.96 0.89 0.45

City Suizhou Xiangyang Huangshi Jingmen Yichang
Code 6 7 8 9 10
Quality 0.44 1.94 0.65 0.79 1.79

City Xianning Shiyan Xiantao Tianmen Enshi
Code 11 12 13 14 15
Quality 0.59 0.87 0.35 0.24 0.47

City QianJiang Shennongjia
Code 16 17
Quality 0.33 0.02

where M′
i represents the number of outflows from

city i and M′′
i indicates the number of inflows into

city i.

3 Hubei Province as a case study

Since the outbreak of COVID-19 in late Decem-
ber 2019, 66337 confirmed cases in total had been
reported in Hubei as of 24:00 on 28 February
2020. This section will estimate human migration
between subordinate cities in Hubei Province and
analyse the relationship between the spread of
COVID-19 and population migration.

3.1 Study region and data preparation

Our research scope covers 17 cities in Hubei
Province, including 12 prefecture-level cities,
one autonomous prefecture, three provincial-
controlled divisions, and one provincial-
controlled forest area. The information sources
include: (i) territory, population, economic and
industrial structure data from the Statistical
Yearbook published on the official website of
the Hubei Provincial Bureau of Statistics, which
includes statistics up to the beginning of 2019;
(ii) the linear distance between cities, calculated
based on longitude and latitude data for each city
centre provided by Baidu Maps; and (iii) adminis-
trative division and transportation network maps
from the Hubei Natural Resources Department.

3.2 Calculation of city quality

Table 1 shows the city quality calculated using
Equation (3). Unless otherwise specified, all data
in this paper refers to the results after mean nor-
malization, and the dimension of each parameter
is 1, without labelling.

3.3 Calculation of distance between cities

From the longitude and latitude information for
each city centre, the distance between cities, dij, is
obtained, as shown in Table 2.

d̄i j = di j �
n(n − 1)

2
∑n

i
∑n

j di j
, n = 17, i, j = 1, 2, . . . 17 (8)

In Equation (8), d̄i jrepresents the result of stan-
dardized dij.

3.4 Construction of accessibility matrix of a
regional comprehensive traffic network

Step 1: Figs 3 and 4 provide the geometric dia-
grams of the rail and road networks, respec-
tively. In addition, there are three non-stop
flights in Hubei Province: Wuhan–Shiyan, Wuhan–
Shennongjia and Wuhan–Enshi. The numbers in
these figures indicate the number of roads (rail
links) between adjacent cities.

Step 2: Accessibility matrixes corresponding to
different traffic are generated using Equation (5).

Step 3: The traffic-mode split rate is deter-
mined.

In the past 10 years, road, rail and air travel
have shown a synchronous development trend,
with each retaining a stable proportion of the
passenger-transportation network, and thus their
portion of passenger capacity as of 2018 (shown
in Table 3) is adopted as the traffic-mode split
rate.

Step 4: Three traffic-accessibility matrixes are
weighted and superimposed to obtain the regional
comprehensive traffic-accessibility matrix H, as
shown in Table 4.

3.5 Calculation of the intensity of population
migration

The intensity matrix of population migration
between cities is calculated using Equation (1),
and the results are shown in Table 5.

4 Correlation analysis of the epidemic spread
of COVID-19 and human mobility

After the lethal case of COVID-19 reported in
Wuhan on 9 January 2020, the Spring Festival
travel rush began. During the Spring Festival
travel rush—10 to 23 January—a great number of
people moved freely between cities. To contain
the spread of COVID-19, cities in Hubei Province
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Table 2. Matrix of standard distances between cities

City City 1 City 2 City 3 City 4 City 5 City 6 City 7 City 8 City 9 City 10 City 11 City 12 City 13 City 14 City 15 City 16 City 17

City 1 – 0.24 0.27 0.92 0.27 0.71 1.20 0.37 0.94 1.31 0.36 1.84 0.43 0.52 2.10 0.69 1.74
City 2 0.24 – 0.49 0.80 0.50 0.47 0.96 0.61 0.75 1.15 0.55 1.61 0.40 0.38 1.95 0.59 1.53
City 3 0.27 0.49 – 1.17 0.03 0.93 1.45 0.13 1.21 1.58 0.39 2.09 0.67 0.78 2.36 0.94 2.01
City 4 0.92 0.80 1.17 – 1.16 0.86 0.89 1.23 0.36 0.45 0.93 1.32 0.50 0.42 1.19 0.23 1.00
City 5 0.27 0.50 0.03 1.16 – 0.94 1.46 0.11 1.21 1.58 0.37 2.11 0.66 0.78 2.35 0.93 2.01
City 6 0.71 0.47 0.93 0.86 0.94 – 0.55 1.05 0.61 1.03 1.01 1.20 0.72 0.55 1.82 0.75 1.25
City 7 1.20 0.96 1.45 0.89 1.46 0.55 – 1.57 0.53 0.79 1.45 0.65 1.05 0.84 1.47 0.92 0.77
City 8 0.37 0.61 0.13 1.23 0.11 1.05 1.57 – 1.31 1.66 0.37 2.21 0.73 0.87 2.42 1.00 2.11
City 9 0.94 0.75 1.21 0.36 1.21 0.61 0.53 1.31 – 0.42 1.08 1.01 0.64 0.44 1.24 0.43 0.80
City 10 1.31 1.15 1.58 0.45 1.58 1.03 0.79 1.66 0.42 – 1.38 0.99 0.93 0.79 0.81 0.67 0.57
City 11 0.36 0.55 0.39 0.93 0.37 1.01 1.45 0.37 1.08 1.38 – 2.06 0.45 0.65 2.11 0.71 1.88
City 12 1.84 1.61 2.09 1.32 2.11 1.20 0.65 2.21 1.01 0.99 2.06 – 1.63 1.42 1.30 1.44 0.55
City 13 0.43 0.40 0.67 0.50 0.66 0.72 1.05 0.73 0.64 0.93 0.45 1.63 – 0.21 1.69 0.27 1.42
City 14 0.52 0.38 0.78 0.42 0.78 0.55 0.84 0.87 0.44 0.79 0.65 1.42 0.21 – 1.59 0.22 1.24
City 15 2.10 1.95 2.36 1.19 2.35 1.82 1.47 2.42 1.24 0.81 2.11 1.30 1.69 1.59 – 1.42 0.78
City 16 0.69 0.59 0.94 0.23 0.93 0.75 0.92 1.00 0.43 0.67 0.71 1.44 0.27 0.22 1.42 – 1.18
City 17 1.74 1.53 2.01 1.00 2.01 1.25 0.77 2.11 0.80 0.57 1.88 0.55 1.42 1.24 0.78 1.18 –

Fig. 3. Topology of Hubei Province rail network

Fig. 4. Topology of Hubei Province road network

Table 3. Structure of Hubei Province passenger-transportation network, 2018

Traffic mode Road Rail Civil aviation

Proportion of passenger capacity (%) 82.58 16.01 1.41

successively announced lockdowns from 23 Jan-
uary onwards, the date on which Wuhan issued
a lockdown notice. Population migration between
and within cities was then strictly controlled.
Cases of COVID-19 infection started to appear all
over the country from 17 January 2020 (date of

first report) onwards, especially in Hubei Province,
which was the main receiving area of the popula-
tion outflow from Wuhan. The mass epidemic out-
break after the Spring Festival was closely related
to the population migration before the holiday.
It is thus critical to assess the effect of human
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Table 4. Accessibility matrix of comprehensive traffic network in Hubei Province

City City 1 City 2 City 3 City 4 City 5 City 6 City 7 City 8 City 9 City 10 City 11 City 12 City 13 City 14 City 15 City 16 City 17

City 1 – 2.48 2.38 0.45 1.19 0.85 0.49 0.76 0.35 0.32 1.29 0.36 0.80 0.58 0.26 0.37 0.01
City 2 2.48 – 1.21 0.55 0.80 1.29 0.61 0.58 0.40 0.37 0.85 0.41 1.19 0.79 0.28 0.43 0.00
City 3 2.38 1.21 – 0.37 0.79 0.62 0.41 1.07 0.30 0.28 0.83 0.31 0.60 0.46 0.22 0.32 0.00
City 4 0.45 0.55 0.37 – 0.32 0.40 0.43 0.41 0.69 1.29 0.54 0.32 1.06 0.40 0.57 1.09 0.00
City 5 1.19 0.80 0.79 0.32 – 0.49 0.35 1.19 0.27 0.25 0.71 0.27 0.48 0.38 0.21 0.28 0.00
City 6 0.85 1.29 0.62 0.40 0.49 – 1.19 0.40 0.59 0.38 0.51 0.61 0.61 0.48 0.28 0.32 0.00
City 7 0.49 0.61 0.41 0.43 0.35 1.19 – 0.30 0.69 0.57 0.36 1.29 0.40 0.41 0.37 0.25 0.00
City 8 0.76 0.58 1.07 0.41 1.19 0.40 0.30 – 0.25 0.30 1.57 0.24 0.39 0.31 0.23 0.32 0.00
City 9 0.35 0.40 0.30 0.69 0.27 0.59 0.69 0.25 – 0.61 0.30 0.45 0.40 1.09 0.38 0.40 0.00
City 10 0.32 0.37 0.28 1.29 0.25 0.38 0.57 0.30 0.61 – 0.37 0.39 0.55 0.38 1.09 0.57 0.00
City 11 1.29 0.85 0.83 0.54 0.71 0.51 0.36 1.57 0.30 0.37 – 0.28 0.49 0.40 0.27 0.40 0.00
City 12 0.36 0.41 0.31 0.32 0.27 0.61 1.29 0.24 0.45 0.39 0.28 – 0.31 0.31 0.29 0.21 0.00
City 13 0.80 1.19 0.60 1.06 0.48 0.61 0.40 0.39 0.40 0.55 0.49 0.31 – 0.69 0.37 0.69 0.00
City 14 0.58 0.79 0.46 0.40 0.38 0.48 0.41 0.31 1.09 0.38 0.40 0.31 0.69 – 0.28 0.35 0.00
City 15 0.26 0.28 0.22 0.57 0.21 0.28 0.37 0.23 0.38 1.09 0.27 0.29 0.37 0.28 – 0.37 0.00
City 16 0.37 0.43 0.32 1.09 0.28 0.32 0.25 0.32 0.40 0.57 0.40 0.21 0.69 0.35 0.37 – 0.00
City 17 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 –
Total 12.92 12.24 10.18 8.88 7.99 9.03 8.12 8.31 7.19 7.74 9.15 6.06 9.03 7.31 5.49 6.35 0.01

Table 5. Matrix of population migration between cities

City City 1 City 2 City 3 City 4 City 5 City 6 City 7 City 8 City 9 City 10 City 11 City 12 City 13 City 14 City 15 City 16 City 17

City 1 – 78.18 80.38 4.08 18.46 4.94 7.47 12.58 2.72 4.14 20.24 1.61 6.08 2.52 0.55 1.64 0.00
City 2 78.18 – 1.93 0.50 0.58 0.98 1.01 0.51 0.34 0.47 0.74 0.18 0.84 0.41 0.05 0.19 0.00
City 3 80.38 1.93 – 0.27 10.80 0.28 0.52 5.06 0.19 0.31 1.21 0.12 0.30 0.13 0.04 0.11 0.00
City 4 4.08 0.50 0.27 – 0.11 0.18 0.83 0.19 1.35 4.52 0.31 0.19 0.66 0.20 0.20 1.38 0.00
City 5 18.46 0.58 10.80 0.11 – 0.10 0.21 3.19 0.08 0.13 0.52 0.05 0.11 0.05 0.02 0.04 0.00
City 6 4.94 0.98 0.28 0.18 0.10 – 1.84 0.11 0.34 0.29 0.13 0.19 0.13 0.09 0.03 0.06 0.00
City 7 7.47 1.01 0.52 0.83 0.21 1.84 – 0.24 1.98 2.53 0.28 3.33 0.26 0.23 0.23 0.17 0.00
City 8 12.58 0.51 5.06 0.19 3.19 0.11 0.24 – 0.10 0.21 1.64 0.06 0.12 0.06 0.03 0.07 0.00
City 9 2.72 0.34 0.19 1.35 0.08 0.34 1.98 0.10 – 2.04 0.13 0.30 0.17 0.47 0.12 0.24 0.00
City 10 4.14 0.47 0.31 4.52 0.13 0.29 2.53 0.21 2.04 – 0.28 0.61 0.37 0.21 1.14 0.50 0.00
City 11 20.24 0.74 1.21 0.31 0.52 0.13 0.28 1.64 0.13 0.28 – 0.07 0.23 0.09 0.04 0.11 0.00
City 12 1.61 0.18 0.12 0.19 0.05 0.19 3.33 0.06 0.30 0.61 0.07 – 0.06 0.05 0.09 0.04 0.00
City 13 6.08 0.84 0.30 0.66 0.11 0.13 0.26 0.12 0.17 0.37 0.23 0.06 – 0.27 0.04 0.29 0.00
City 14 2.52 0.41 0.13 0.20 0.05 0.09 0.23 0.06 0.47 0.21 0.09 0.05 0.27 – 0.02 0.12 0.00
City 15 0.55 0.05 0.04 0.20 0.02 0.03 0.23 0.03 0.12 1.14 0.04 0.09 0.04 0.02 – 0.04 0.00
City 16 1.64 0.19 0.11 1.38 0.04 0.06 0.17 0.07 0.24 0.50 0.11 0.04 0.29 0.12 0.04 – 0.00
City 17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 –
Total 245.60 86.91 101.67 14.98 34.47 9.71 21.14 24.16 10.55 17.77 26.00 6.95 9.91 4.93 2.64 5.01 0.00

mobility on the epidemic’s progression. With the
aim of examining the population migration during
the Spring Festival travel rush, we used a modi-
fied gravity model to predict inflows and outflows.
The correlation between them was studied using
epidemiological data from 24 January to 8 Febru-
ary (the first incubation period of COVID-19). The
analysis in this section is based on the following
assumptions:

(i) Due to the lack of interprovincial population
migration data and the particularity of Wuhan
(the outbreak first reported in China), this data
will be ignored in the correlation analysis.

(ii) The infected people were evenly distributed
among the floating population (population
inflow or outflow).

(iii) Intra-city travel intensity (related to contact
rate) and secondary infection (related to con-
tact rate) was the same in different cities; that
is, if the same number of virus carriers were

received, there should have the same number
of infected people after the same time.

(iv) The destination choice of emigrants from
Wuhan was not affected by the epidemic
before the introduction of strict travel controls,
which has been confirmed by some scholars
[41].

The epidemic data used in this study was
retrieved from the daily COVID-19 bulletin
provided by the Health Commission of Hubei
Province.

4.1 Analysis of urban population inflow before
the Spring Festival

In consequence of the distinct characteristics of
moving from developed areas to underdeveloped
areas before the Spring Festival, the direction coef-
ficient of moving from Wuhan to other cities is
set as 1:9 and the opposite direction is set as 9:1,
in addition, the direction coefficient of migration
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Table 6. Population inflows of each city

Inflow origin
Inflows from

Wuhan

Inflows from
cities except

Wuhan
Total population

inflow

City 2 70.36 4.37 74.73
City 3 72.35 10.64 82.99
City 4 3.68 5.45 9.12
City 5 16.62 8.00 24.62
City 6 4.45 2.38 6.83
City 7 6.73 6.83 13.56
City 8 11.32 5.79 17.11
City 9 2.45 3.92 6.37
City 10 3.73 6.81 10.54
City 11 18.21 2.88 21.10
City 12 1.45 2.67 4.12
City 13 5.47 1.92 7.39
City 14 2.27 1.20 3.47
City 15 0.49 1.05 1.54
City 16 1.47 1.69 3.16
City 17 0.00 0.00 0.00
Mean 13.82 4.10 17.92

between cities except Wuhan is 1:1. The popula-
tion migration data is shown in Table 6.

4.2 Relationship between urban epidemic
infection and population inflow

To distinguish between inflows from Wuhan,
inflows from cities except Wuhan, and the total
inflows, their association with the number of
infected people is discussed separately, expressed
by correlation coefficient 1 (A = 0.87, s = 0.04, R =
0.12), correlation coefficient 2 (A = 0.65, s = 0.07,
R = 0.25) and correlation coefficient 3 (A = 0.88,
s = 0.04, R = 0.14). Fig. 5 shows a curve diagram
describing the fluctuation of these inflows.

According to the statistics of the Chinese Spring
Festival travel rush in 2020, the migration peaked
on 22 January, and there was also mass migration
before 24:00 on 23 January, when Wuhan was thor-
oughly locked down [41]. After a two-to-seven-day
incubation period, virus carriers in the urban pop-
ulation inflow should have shown symptoms of
COVID-19. Correspondingly, the correlation coef-
ficient between the population inflow and accu-
mulated confirmed patients should have reached
a peak from 24 to 30 January. It is apparent from
the graph that the correlation coefficients 1 and
3 showed a distinct growth from 26 January (the
fourth day after 22 January) onwards, and stabi-
lized at 0.9 after 28 January (the fifth day after
cities were locked down), when it reached 0.9
for the first time. The mean incubation period of
COVID-19 was claimed as 5.2 days by a paper pub-
lished in the New England Journal of Medicine [47],

while further study proposed a four-day median
incubation period, with a five-day interquartile
range (two to seven) [59]. Therefore, we consider
that this trend revealed by Fig. 5 is consistent with
the conclusion that the average incubation period
of COVID-19 concentrates on the fourth and fifth
days.

Correlation coefficient 2 started to drop from
its peak of 0.75 on 1 February (the ninth day after
cities were locked down) and stabilized at 0.63
around 5 February (the 13th day after the cities
were closed), which is considerably different from
related research results. Further analysis reveals
that: (i) non-Wuhan population inflow shows the
weakest explanatory power, related to its low pro-
portion within the total population inflow, with a
mean of 0.23; (ii) the three curves maintained the
same rate of increase, with a stable gap between
correlation coefficient 2 and correlation coefficient
1 (or 3) from 24 to 30 January. Correlation coef-
ficient 1 (or 3) began to decline after 30 January,
while correlation coefficient 2 continued to grow,
narrowing the gap between them. The epidemic-
prevention measures taken at different stages
may explain this phenomenon: more attention
was paid to the observation and quarantine of
returnees among the inflow people from Wuhan
at the early stage of the epidemic, with little atten-
tion paid to those from non-Wuhan cities; and (iii)
to contain the spread of the epidemic, the govern-
ment strengthened the management of the inflow,
including of that from cities except Wuhan, and all
suspected patients were put in quarantine after
2 February, prefiguring the decrease of correla-
tion coefficient 2 at the end of the first incubation
period.

A paired sample t-test was conducted to anal-
yse the difference between correlation coefficients
1 and 3. The result (t = -9.596, P = 0.000) shows
that there is a significant difference between the
two at 0.01, which indicates that the inflow from
Wuhan cannot be seen as equivalent to the total
population inflow when we assess the impact of
migration on epidemic transmission.

Correlation coefficient 1 still needs to be com-
pared with correlation coefficient 3 for this reason,
despite the similarity between them. We selected
the infection data for 28 January, the fourth day
after Chunyun, and 8 February, the first day after
the first incubation period. The curves in Fig. 6
illustrate the epidemiological data and migration
data.

As we can see from Fig. 6, the broken line repre-
senting the total population inflow is closer to that
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Fig. 5. Curve diagram of correlation coefficients 1, 2 and 3

Fig. 6. Correlation between population inflow and accumulated confirmed patients

indicating the accumulated confirmed patients on
28 January and 8 February. Accordingly, we con-
sider that the total population inflow is more rel-
evant to the spread of the epidemic, with a higher
correlation coefficient. In other words, the predic-
tive power of the total population inflow is greater
than that of the population inflow from Wuhan.
And there is a positive linear correlation between
the two, as shown in Fig. 7.

It is notable that overestimated results, based
on the total population inflow, were obtained
for Xianning, Ezhou, Qianjiang, Xiantao, Tianmen
and other cities; in contrast, low predicted values

appeared in Shiyan, Jingmen, Jingzhou, Suizhou
and Xiangyang. We performed a geographical dis-
tribution analysis on the basis of the heat map
(Fig. 8 and Fig. 9) to explain this prediction devia-
tion. For the convenience of observation, the index
of Wuhan on the heat map was set as the max-
imum value, which has no practical significance
and cannot compare with other cities. The results
show that: (i) cities with higher prediction results
are closer to Wuhan, and cities with lower pre-
dicted values are located far from Wuhan. We
believe that the impact of distance on population
migration is overestimated in the gravity model;
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Fig. 7. Scatter plot of total population inflow and accumu-
lated confirmed patients: (a) 28 January; (b) 8 February

(ii) most of the cities with higher prediction results
are provincial-controlled divisions with smaller
populations, while those with lower predicted val-
ues are mostly large cities. It is generally believed
that cities with smaller populations have more
advantages in travel control and epidemic preven-
tion; (iii) almost all areas with low predicted val-
ues are located at the provincial boundary, and
are therefore more susceptible to interprovincial
migration. Furthermore, transportation hub cities
may face a greater threat from an epidemic, due to
their large traffic volume. For instance, population
movements from east to west within the province
pass through Jingmen, the central railway hub of
Hubei, bringing a higher risk of human infection;
and (iv) tourism was hit by the epidemic, with
fewer tourists arriving than expected, although

Fig. 8. Heat map of accumulated confirmed patients: (a) 28
January; (b) 8 February

Fig. 9. Heat map of total population inflow

strict travel control was not adopted before 24 Jan-
uary. This accounted for the overestimated infec-
tions in the tourist cities, such as Enshi and Shen-
nongjia.

5 Conclusions

In this paper, we calculated the population migra-
tion between cities using an improved grav-
ity model. Using epidemic data and prediction
results, a correlation between population migra-
tion and the epidemic spread of COVID-19 in
major cities in Hubei Province was performed to
show how migration is associated with epidemic
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transmission. This research provides the follow-
ing conclusions:

(i) Forces associated with intra-provincial human
mobility included population, distance, socio-
economic development level, public services
and resources, and traffic accessibility. Migra-
tion took place primarily from developed areas
to underdeveloped areas before the Spring Fes-
tival, and the main destinations were the cities
of Xiaogan, Huanggang, Ezhou and Huangshi.

(ii) Human migration had a significant impact on
epidemic spread. Different functionary mech-
anisms existed in immigration from differ-
ent regions: the mean correlation coefficient
between the inflows from Wuhan and the
number of infected people was 0.87, and that
between the population inflow from cities
except Wuhan and accumulated confirmed
patients was 0.65. The total inflows accounted
for epidemic transmission to a greater extent
than Wuhan’s immigration, despite the simi-
larity in the correlation coefficients.

(iii) Compared with actual epidemic data, cities
with small populations or tourist cities were
overestimated, yet lower prediction results
occurred in the interprovincial boundary
region and traffic hub city. Additionally, the
effect of distance on human mobility was
amplified in the modified gravity model.

This study makes significant contributions to
the current scholarly research. First, the exist-
ing literature has revealed that intra-provincial
human mobility remains poorly understood. This
study fills this important void by exploring
which factors are more likely to dominate intra-
provincial migration, with an eye toward the
unique features of intra-provincial migration.
Holding that public services and resources and
traffic factors are critical to the choice of des-
tination, a modified gravity model incorporating
these was developed. Second, and relatedly, we
highlight the time-dependent variations of migra-
tion with a direction coefficient, which increases
the adaptability of the model. Urban status can
be assessed by the migration networks associated
with spatial pattern on population mobility. Third,
many academics have proposed a close connec-
tion between the infection rate and human mobil-
ity. Echoing their argument, our findings demon-
strate the direct impact of migration on epidemic
transmission and deepen the understanding of
the mechanism between these factors, suggest-
ing the necessity of strict measures limiting travel

nationwide, especially epidemic monitoring in the
rural areas of cities around Wuhan. The geograph-
ical distribution of urban inflows and outflows is
conducive to the analysis of the difference in epi-
demic spread between different cities. Further-
more, this research proves the feasibility of fore-
casting the development trend of COVID-19, in the
case of missing epidemic data, which provides an
essential reference for epidemic prevention and
control.

Some limitations of this study should be noted.
First, the empirical direction coefficient in a par-
ticular period and the distance-attenuation coef-
ficient in the gravity model need to be verified by
short-term migration data, which requires data
collection and statistics. Another limitation lies
with the epidemic data used for correlation anal-
ysis. Some cases of COVID-19 are not discov-
ered and counted in time, given the existence
of asymptomatic patients and the shortage of
medical resources. Finally, the findings of this
study may not reflect the impact of interprovincial
migration, control policies and inner-city travel on
disease transmission. Thus, we should be cautious
in predicting the n numerical values of infections.

In view of these limitations, future research
needs to gather information on intra-provincial
human mobility with a significantly larger sam-
ple size to conduct the gravity-model coefficient
calibration. Moreover, we have to collect adequate
epidemic data to discuss the interaction between
population movement and epidemic transmis-
sion with greater consideration for comprehen-
sive influence mechanisms.

Nomenclature

Mij Intensity of population migration between
city i and city j

Qi Quality of city i
Qj Quality of city j
Aij Comprehensive traffic accessibility between

city i and city j
dij Spatial distance between city i and city j
M′

i j Population flow from city i to city j
M′′

i j Population flow from city j to city i
a Direction coefficient of population migra-

tion
Pi Number of permanent residents of city i
Gi GDP per capita of city i
Ti Proportion of tertiary industry in city i
hij Accessibility of road network between city i

and city j
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rij Accessibility of rail network between city i
and city j

aij Accessibility of civil aviation network
between city i and city j

α Weight coefficients of roads in passenger-
transport network

β Weight coefficients of railway in passenger-
transport network

γ Weight coefficients of civil aviation in
passenger-transport network

h′
i j Obstruction coefficient of road transporta-

tion between city i and city j
nh

i j Number of roads connecting city i and city j
M′

i Outflows from city i
M′′

i Inflows into city i
d̄i j Result of normalized distance dij

Supplementary data

Supplementary data is available at Transportation
Safety and Environment online.
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