Molecular phylogeny of the limacoid snail family Dyakiidae in Southeast Asia, with the description of a new genus and species

PARIN JIRAPATRASILP ${ }^{1}$, PIYOROS TONGKERD ${ }^{1}$, EKGACHAI JERATTHITIKUL ${ }^{2}$, THOR-SENG LIEW ${ }^{3}$, ARTHIT PHOLYOTHA ${ }^{1}$, CHIRASAK SUTCHARIT¹,* and SOMSAK PANHA ${ }^{1,4, *}$
${ }^{1}$ Animal Systematics Research Unit, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
${ }^{2}$ Animal Systematics and Molecular Ecology Laboratory, Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
${ }^{3}$ Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, 88450 Kota Kinabalu, Sabah, Malaysia
${ }^{4}$ Academy of Science, The Royal Society of Thailand, Bangkok 10330, Thailand

Received 6 June 2020; revised 6 September 2020; accepted for publication 28 September 2020

Abstract

Members of the terrestrial snail family Dyakiidae from Southeast Asia show a distinct geographical distribution pattern and possess different degrees of complexity in their amatorial organ gland. This study is the first molecular phylogeny of ten of the 12 genera in this family, performed to provide insights into the origin of Dyakiidae and the evolution of their shells and amatorial organ gland structure. A new genus and new species, Pseudoquantula lenticularis Jirapatrasilp \& Panha gen. \& sp. nov., was uncovered based on its distinct morphological characters and molecular divergence. All other genera were retrieved as monophyletic except for Dyakia. Mainland Southeast Asia was inferred to be the ancestral range of the Dyakiidae, and the lineages then dispersed to and diversified in Borneo. Cladistic analysis showed that all 14 morphological characters used in this study were homoplastic. These results disagree with the previous amatorial organ transformation series, in which neither Pseudoplecta nor Quantula was ancestral to the other genera. The enigmatic genus Pseudoplecta, which lacks an amatorial organ gland, exhibited secondary loss.

ADDITIONAL KEYWORDS: biogeography - cladistic analysis - homoplasy - molecular systematics phylogenetics - plesiomorphy - Southeast Asia.

INTRODUCTION

Terrestrial snails in the family Dyakiidae Gude \& Woodward, 1921 belong to the infraorder Limacoidei ('limacoid clade'; Bouchet et al., 2017) or superfamily Limacoidea ('Limacacea') s.l. (Baker, 1941; Hausdorf, 1998, 2000). At present, the family contains 11 genera restricted to Southeast Asia, including mainland Indochina, the Malay Peninsula and the Indo-Malay

[^0]Archipelago (Table 1). The members of Dyakiidae exhibit both dextral and sinistral forms and various shell shapes that range from lens-shaped, subglobose to trochiform. Accordingly, their classification based on only shell morphology might lead to confusion with other families in the same infraorder, such as Ariophantidae and Helicarionidae.

The family was first defined by Laidlaw (1931) based on the possession of an amatorial organ complex consisting of an amatorial organ (dart sac) furnished with accessory glands attached to its upper pole by one or more coiled tubules, a gametolytic sac attached to the amatorial organ, and the absence of shell lobes. Laidlaw (1931) included the four genera, Dyakia Godwin-Austen, 1891, Everettia Godwin-Austen,

Table 1. An updated list of genera in the family Dyakiidae, its type species, diagnostic morphological characters, distributional range and number of species

Genera (type species)	Diagnostic morphological characters	Distributional range	Number of species	References*
Bertia Ancey, 1887	Shell: sinistral, semi-globose, well rounded	Cambodia and Vietnam	4	1, 2
(Helix cambojiensis Reeve, 1860)	Genitalia: amg four lobes, each lobe with thick amd; go attached to am without distinct division, slightly swollen near atrium, then tapering to small and cylindrical tube			
Dyakia Godwin-Austen, 1891	Shell: sinistral, turbinate, keeled	Peninsular Malaysia and Greater Sunda Islands	~ 20	1, 3, 4
(Helix hugonis Pfeiffer, 1863)	Genitalia: amg three or four lobes, each lobe with slender amd before fusion into common duct; go attached to am, with gd large and cylindrical and gs elongated and bulbous			
Everettia Godwin-Austen, 1891	Shell: dextral, depressed conical, well rounded	Endemic to Borneo	~ 30	1, 4, 5
(Helix jucunda Pfeiffer, 1863)	Genitalia: amg more than ten lobes, each lobe with slender amd; go attached to am without distinct division			
Asperitas Gude, 1911	Shell: dextral, subglobose to trochiform, well rounded to more or less angled	Lesser Sunda Islands, south-western Sulawesi and islands surrounding Banda Sea	$\sim 1-6$	1, 4, 6
(Xestina rugosissima Möllendorff, 1903 (= Helix trochus Müller, 1774))	Genitalia: amg alveolar, three or four lobes, their upper parts integrated to tissue of vagina walls; each lobe with slender amd; go attached to am without distinct division			
Elaphroconcha Gude, 1911	Shell: amphidromous, depressed orbicular and well rounded	Sumatra, Java and Lesser Sunda Islands	~ 10	1,4, 7
(Ariophanta internota Smith, 1898 (= Nanina fruhstorferi Martens, 1896))	Genitalia: amg three or four lobes, each lobe with slender amd before fusion into common duct; go attached shortly above atrium, with gd long and gs well defined, with stretched out tip			
Sasakina Rensch, 1930	Shell: dextral, conical trochiform and keeled	Lesser Sunda Islands	4	1, 4
(Trochonanina oxyconus Martens, 1896)	Genitalia: amg three lobes, with common amd; go attached to atrium without distinct division			
Kalamantania Laidlaw, 1931	Shell: dextral, depressed subglobose, well rounded and with limacisation	Endemic to Sabah in Borneo	1	1, 4
(Helicarion? whiteheadi Godwin-Austen, 1891)	Genitalia: amg about six or seven lobes, each lobe with slender amd; go attached to boundary between am and fo without distinct division; additional compact gg attached to lower half of go by several short ducts			

Table 1. Continued

Genera (type species)	Diagnostic morphological characters	Distributional range	Number of species	References*
Rhinocochlis Thiele, 1931 (Helix nasuta Metcalfe, 1852)	Shell: sinistral, lens shaped, keeled Genitalia: amg two lobes, each lobe with slender amd; go large attached to am without distinct division	Endemic to Borneo	1-2	1, 4
Pseudoplecta Laidlaw, 1932 (Rotula bijuga Stoliczka, 1873)	Shell: dextral, obesely lenticular, keeled Genitalia: amg and amd absent; go attached to tip of am, with gd cylindrical and gs elongated and bulbous	Peninsular Malaysia and Sumatra	1	1, 4
Quantula Baker, 1941 (Nanina striata Gray, 1834)	Shell: dextral, depressed to subglobose, more or less angled Genitalia: amg more than ten lobes, whose ducts enter long common amd; go small attached to am, with gd short and gs ovate	Indochina and introduced to Fiji and Line Archipelago	4	1, 4, 8
Phuphania Tumpeesuwan et al., 2007 (Phuphania globosa Tumpeesuwan et al., 2007)	Shell: dextral, semi-globose to globose and well rounded Genitalia: amg fused lobes, forms an ovate cap covering am and consists of two to six clusters of numerous amd; go attached to am, with gd cylindrical and gs gradually swollen to the end	Central and Northeastern Thailand	4	9, this study
Pseudoquantula	Shell: dextral, depressed subglobose and keeled	Eastern Thailand	1	This study
(Pseudoquantula lenticularis)	Genitalia: amg two lobes, each lobe with thick amd; go attached to am, with gd cylindrical and gs slightly swollen			

The list of genera is given in chronological order. The term 'short' or 'long' is compared in relationship to the penis.
*1 = Schileyko (2003); 2 = Thach (2015); Hun et al. (2019); Sutcharit et al. (2019); 3 = Laidlaw (1963); Sutcharit et al. (2012); $4=$ Hausdorf (1995); 5 = Liew et al. (2009); Hyman \& Ponder (2010); 6 = Dharma (1999); Köhler et al. (2020); 7 = Dharma (1991); $8=$ Abu-Bakar et al. (2014); BEDO (2017); 9 = Kongim \& Panha (2013); Tumpeesuwan et al. (2007); Tumpeesuwan \& Tumpeesuwan (2014).

1891, Kalamantania Laidlaw, 1931 and Staffordia Godwin-Austen, 1907. Later, eight additional genera were included in this family based on diagnostic characteristics identified by Laidlaw (1931) (Thiele, 1934;Baker, 1941;Schileyko, 2003;Tumpeesuwan et al., 2007). However, Staffordia was subsequently excluded from Dyakiidae and placed in its own family owing to the combined characteristics of both Ariophantidae and Dyakiidae, such as the presence of an amatorial organ complex and shell lobes, a gametolytic sac attached to the vagina, and the absence of caudal foss and horn (Schileyko, 2003). This present classification has followed Bouchet et al. (2017), excluding the tribe Vitrinulini Schileyko, 2003, which is now treated as a junior synonym of the subfamily Macrochlamydinae of Ariophantidae.

Hausdorf(1995) was the first to propose a hypothesis of the evolutionary relationships of Dyakiidae based on a cladistic analysis of morphological data. Later, two species of Asperitas Gude, 1911 were sequenced as representatives from this family and added to a molecular phylogenetic and phylogenomic analyses of a higher-level classification (Wade et al., 2001, 2006; Teasdale, 2017). Those molecular phylogenetic studies confirmed the phylogenetic position of Asperitas within Limacoidei and that this genus represented a distinct clade closely related but not identical to the families Ariophantidae and Helicarionidae. Hausdorf (1995) claimed that the understanding of the relationships among dyakiid genera could provide insights into the evolution of Stylommatophora and Limacoidei, because dyakiid
genera exhibited a unique transformation series of an amatorial organ complex, which functions as a stimulator during copulation. In addition, the different distribution pattern of each genus could provide insights into the historical biogeography of Southeast Asia, an area that received attention from biogeographers for a long period of time (e.g. Wallace, 1860; Lohman et al., 2011; de Bruyn et al., 2014). However, since the discovery of Phuphania Tumpeesuwan, Naggs \& Panha, 2007 (Tumpeesuwan et al., 2007), there has been no further updated phylogeny and biogeographical analysis of Dyakiidae as a whole based on either morphological or molecular data. The molecular phylogenetic studies of Dyakiidae up to now were conducted only on the genus Everettia in northern Borneo owing to the endemism and high species diversity of the genus there (Liew et al., 2009, 2020).

The present study is the first since the paper by Hausdorf (1995) to elucidate the relationships within Dyakiidae and the first to use a molecular phylogenetic analysis constructed from two mitochondrial [cytochrome c oxidase subunit I (COI) and 16 S ribosomal (r)DNA] and one nuclear (28 S rDNA) marker. We also test the hypotheses of Hausdorf (1995) by conducting a cladistic analysis of the morphological data and estimating the ancestral ranges of the genera in this family in order to reveal the evolution of morphological characters and biogeographical history of this family. In addition, one new genus and new species are described herein based on its distinct morpho-anatomical characters and its evolutionary distinctiveness as estimated by means of molecular phylogenetics.

MATERIAL AND METHODS

PREPARATION OF SPECIMENS AND MORPHOLOGICAL EXAMINATION

Voucher specimens of the family Dyakiidae collected from Thailand and surrounding countries in Southeast Asia since 2006 and deposited in Chulalongkorn University Museum of Zoology (CUMZ), Bangkok, Thailand, were examined. Additional Bornean specimens deposited in the BORNEENSIS mollusc collection at Universiti Malaysia Sabah (BOR/MOL) and Bertia Ancey, 1887 specimens deposited in the Natural History Museum, London (NHMUK) were also used in the molecular analyses. Two genera, Inozonites Pfeffer, 1883 and Pliotropis Möllendorff, 1899, which are presently classified in Dyakiidae (MolluscaBase, 2020), were not included in this study, because without any anatomical data their taxonomic positions remain dubious (Schileyko, 2003). In addition, two sinistral
taxa from southern Thailand, Dyakia retrorsa (Gould, 1844) and Dyakia salangana (Martens, 1883), which were excluded from Dyakiidae by Sutcharitet al.(2012), were also not included in the present study. Thus, a total of 51 specimens belonging to 29 morphospecies and ten genera of Dyakiidae sampled from mainland Southeast Asia, Peninsular Malaysia and Sabah were included in the molecular phylogenetic analysis (Fig. 1; Table 2). Genetic data were not obtained from two genera of Dyakiidae, namely, Elaphroconcha Gude, 1911 and Sasakina Rensch, 1930, and the outgroup Staffordia (Staffordiidae) in the study by Hausdorf (1995). Hence, these three genera were not included in the phylogenetic analysis. Four species of Ariophantidae, Cryptozona siamensis (Pfeiffer, 1856), Hemiplecta distincta (Pfeiffer, 1850), Sarika resplendens (Philippi, 1846) and Sarika sp., were used as the outgroup.

The living snails were photographed and killed by the two-step method for euthanasia (AVMA, 2013). Some specimens from each locality were fixed and preserved in 70% (v / v) ethanol for anatomical studies, and the remaining specimens were preserved in 95% (v/v) ethanol for molecular analyses. The handling of

Figure 1. Distribution map of the samples in the family Dyakiidae used in this study. The shaded colours correspond to those in Figure 4. Abbreviations: Bali, Bali Island; Bor, Borneo Island; Car, Cardamom Range; Kho, Khorat Plateau; Mal, Malay Peninsula; NAm, northern Annamite Range; SAm, southern Annamite Range.
Table 2. List of specimens used in the molecular phylogenetic analysis with species name, locality details and GenBank accession numbers

No.	Specimen no.	Taxa	Locality name	Area code	Latitude, longitude coordinates	Collection no.	Accession numbers		
							COI	16S rDNA	28S rDNA
1	H31	Asperitas trochus (Müller, 1774)	Taman Tirtagangga, Bali, Indonesia	Bali	$\begin{aligned} & 8^{\circ} 24^{\prime} 44.4^{\prime \prime} \mathrm{S} \\ & 115^{\circ} 35^{\prime} 12.3^{\prime \prime} \mathrm{E} \end{aligned}$	CUMZ 5154	MT654630	MT651546	MT651601
2	H34	Bertia cambojiensis (Reeve, 1860)*	Cave Site, Cat Tien National Park, Dong Nai, Vietnam	SAm	$\begin{aligned} & 11^{\circ} 26^{\prime} 8.8^{\prime \prime} \mathrm{N}, \\ & 107^{\circ} 25^{\prime} 38.6^{\prime \prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { NHMUK } \\ & 20130833 \end{aligned}$	MN296022	MN296390	-
3	H58	Bertia cambojiensis (Reeve, 1860)*	Near Lake, Cat Tien National Park, Dong Nai, Vietnam	SAm	$\begin{aligned} & 11^{\circ} 26^{\prime} 8.8^{\prime \prime} \mathrm{N}, \\ & 107^{\circ} 25^{\prime} 38.6^{\prime \prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { NHMUK } \\ & 20130833 \end{aligned}$	MN296023	MN296391	MN296349
4	E13946	Dyakia hugonis (Pfeiffer, 1863)*	Segaliud Lokan Forest Reserve, Sandakan, Sabah, Malaysia	Bor	$\begin{aligned} & 5^{\circ} 26^{\prime} 45.0^{\prime \prime} \mathrm{N}, \\ & 117^{\circ} 31^{\prime} 50.0^{\prime \prime} \mathrm{E} \end{aligned}$	BOR/MOL 13946	MT803064	MT741748	MT741915
5	H9	Dyakia janus (Beck, 1837)	Pulau Besar, Johor, Malaysia	Mal	$\begin{aligned} & 2^{\circ} 25^{\prime} 48.0^{\prime \prime} \mathrm{N}, \\ & 103^{\circ} 59^{\prime} 00.6^{\prime \prime} \mathrm{E} \end{aligned}$	CUMZ 4918	MT654622	MT651538	MT651593
6	H57	Dyakia janus (Beck, 1837)	Pulau Tioman, Pahang, Malaysia	Mal	$\begin{aligned} & 2^{\circ} 48^{\prime} 36.9^{\prime \prime} \mathrm{N} \\ & 104^{\circ} 08^{\prime} 46.8^{\prime \prime} \mathrm{E} \end{aligned}$	CUMZ 5180	MT654623	MT651539	MT651594
7	E126	Dyakia sp. 1	Lanjak Entimau, Sibu, Sarawak, Malaysia	Bor	$\begin{aligned} & 1^{\circ} 42^{\prime} 21.6^{\prime \prime} \mathrm{N}, \\ & 112^{\circ} 32^{\prime} 55.9^{\prime \prime} \mathrm{E} \end{aligned}$	BOR/MOL 5476	MT803065	MT741749	MT741916
8	E14362	Dyakia sp. 2	Taman Negara, Jerantut, Pahang, Malaysia	Mal	$\begin{aligned} & 4^{\circ} 35^{\prime} 10.3^{\prime \prime} \mathrm{N} \\ & 102^{\circ} 28^{\prime} 14.4^{\prime \prime} \mathrm{E} \end{aligned}$	BOR/MOL 14362	MT803066	MT741750	-
9	E16	Everettia corrugata (Laidlaw, 1937)	Mt Kinabalu northwestern slope, 3000 m S142, Sabah, Malaysia	Bor	$\begin{aligned} & 6^{\circ} 10^{\prime} 24.4^{\prime \prime} \mathrm{N} \\ & 116^{\circ} 29^{\prime} 29.3^{\prime \prime} \mathrm{E} \end{aligned}$	BOR/MOL 12936	FJ160666	FJ160619	-
10	E14411	Everettia dominiki Liew et al., 2009	Mount Trusmadi, Keningau, Sabah, Malaysia	Bor	$\begin{aligned} & 5^{\circ} 33^{\prime} 05.2^{\prime \prime} \mathrm{N} \\ & 116^{\circ} 31^{\prime} 44.0^{\prime \prime} \mathrm{E} \end{aligned}$	BOR/MOL 14411	MT803067	MT741751	MT741917
11	E26	Everettia interior Liew et al., 2009	Sapulut, Batu Tinagas, Sabah, Malaysia	Bor	$\begin{gathered} 4^{\circ} 38^{\prime} 17.3^{\prime \prime} \mathrm{N}, \\ 116^{\circ} 37^{\prime} 3.3^{\prime \prime} \mathrm{E} \end{gathered}$	BOR/MOL 1137	FJ160684	FJ160637	-
12	E1	Everettia jucunda (Pfeiffer, 1863)*	Beaufort, Klias, Sabah, Malaysia	Bor	$\begin{aligned} & 5^{\circ} 19^{\prime} 29.9^{\prime \prime} \mathrm{N} \\ & 115^{\circ} 40^{\prime} 21.0^{\prime \prime} \mathrm{E} \end{aligned}$	BOR/MOL 4261	FJ160682	FJ160635	-
13	E2	Everettia jucunda (Pfeiffer, 1863)*	Pulau Tiga, Sabah, Malaysia	Bor	$\begin{gathered} 5^{\circ} 43^{\prime} 33.3^{\prime \prime} \mathrm{N} \\ 115^{\circ} 39^{\prime} 3.7^{\prime \prime} \mathrm{E} \end{gathered}$	BOR/MOL 4237	FJ160683	FJ160636	-
14	E30	Everettia jucundior Liew et al., 2009	Tawau Hills Park (HQ), Sabah, Malaysia	Bor	$\begin{aligned} & 4^{\circ} 28^{\prime} 0^{\prime \prime} \mathrm{N} \\ & 117^{\circ} 55^{\prime} 0^{\prime \prime} \mathrm{E} \end{aligned}$	BOR/MOL 1376	FJ160661	FJ160612	-

Table 2. Continued

| No. | Specimen
 no. | Taxa | Locality name | Area
 code | Latitude,
 longitude
 coordinates | Collection no. | Accession numbers |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Table 2. Continued

No.	Specimen no.	Taxa	Locality name	Area code	Latitude, longitude coordinates	Collection no.	Accession numbers		
							COI	16S rDNA	28S rDNA
27	H73	Pseudoplecta bijuga (Stoliczka, 1873)*	Air Bunum, Banding, Perak, Malaysia	Mal	$\begin{aligned} & 5^{\circ} 38^{\prime} 13.4^{\prime \prime} \mathrm{N}, \\ & 101^{\circ} 42^{\prime} 41.1^{\prime \prime} \mathrm{E} \end{aligned}$	CUMZ 5150	MT654627	MT651543	MT651598
28	H21	Pseudoquantula lenticularis Jirapatrasilp \& Panha, 2020	Khao Yai, Nakhon Nayok Province, Thailand	Kho	$\begin{gathered} 13^{\circ} 59^{\prime} 13.6^{\prime \prime} \mathrm{N} \\ 102^{\circ} 12^{\prime} 18.3^{\prime \prime} \mathrm{E} \end{gathered}$	CUMZ 5172	MT803074	MT741756	MT741922
29	H33	Pseudoquantula lenticularis Jirapatrasilp \& Panha, 2020	Pang Srida Waterfall, Sa Kaeo, Thailand	Kho	$\begin{gathered} 13^{\circ} 59^{\prime} 13.6^{\prime \prime} \mathrm{N} \\ 102^{\circ} 12^{\prime} 18.3^{\prime \prime} \mathrm{E} \end{gathered}$	CUMZ 5152	MT803075	MT741757	MT741923
30	H72	Pseudoquantula lenticularis Jirapatrasilp \& Panha, 2020	Pang Srida Waterfall, Sa Kaeo, Thailand	Kho	$\begin{aligned} & 13^{\circ} 59^{\prime} 13.6^{\prime \prime} \mathrm{N}, \\ & 102^{\circ} 12^{\prime} 18.3^{\prime \prime} \mathrm{E} \end{aligned}$	CUMZ 5152	MT803076	-	MT741924
31	H30	Quantula godwinausteni (Laidlaw, 1931)	Wat Khao Sukim, Chanthaburi, Thailand	Car	$\begin{aligned} & 12^{\circ} 45^{\prime} 48.9^{\prime \prime} \mathrm{N}, \\ & 102^{\circ} 02^{\prime} 00.2^{\prime \prime} \mathrm{E} \end{aligned}$	CUMZ 5171	MT803077	MT741758	MT741925
32	H17	Quantula striata (Gray, 1834)*	Yan Tao San, Ipoh, Perak, Malaysia	Mal	$\begin{gathered} 4^{\circ} 36^{\prime} 34.6^{\prime \prime} \mathrm{N}, \\ 101^{\circ} 6^{\prime} 49.9^{\prime \prime} \mathrm{E} \end{gathered}$	CUMZ 5188	-	MT741759	MT741926
33	H23	Quantula striata (Gray, 1834)*	Singapore Botanic Gardens, Singapore	Mal	$\begin{aligned} & 1^{\circ} 18^{\prime} 49.6^{\prime \prime} \mathrm{N} \\ & 103^{\circ} 48^{\prime} 56.6^{\prime \prime} \mathrm{E} \end{aligned}$	CUMZ 5165	MT654628	MT651544	MT651599
34	H26	Quantula striata (Gray, 1834)*	Singapore Botanic Gardens, Singapore	Mal	$\begin{aligned} & 1^{\circ} 18^{\prime} 49.6^{\prime \prime} \mathrm{N} \\ & 103^{\circ} 48^{\prime} 56.6^{\prime \prime} \mathrm{E} \end{aligned}$	CUMZ 5165	MT803078	MT741760	MT741927
35	H56	Quantula striata (Gray, 1834)*	Pulau Tioman, Pahang, Malaysia	Mal	$\begin{aligned} & 2^{\circ} 45^{\prime} 44.0^{\prime \prime} \mathrm{N} \\ & 104^{\circ} 07^{\prime} 24.7^{\prime \prime} \mathrm{E} \end{aligned}$	CUMZ 5179	MT803079	-	MT741928
36	H18	Quantula weinkauffiana (Crosse \& Fischer, 1863)	Khao Panom Sawai, Surin, Thailand	Kho	$\begin{gathered} 14^{\circ} 45^{\prime} 46.4^{\prime \prime} \mathrm{N} \\ 103^{\circ} 22^{\prime} 10.6^{\prime \prime} \mathrm{E} \end{gathered}$	CUMZ 5163	MT803080	MT741761	MT741929
37	H52	Quantula weinkauffiana (Crosse \& Fischer, 1863)	Khong Sedon, Salavan, Laos	Kho	$\begin{gathered} 15^{\circ} 37^{\prime} 40.0^{\prime \prime} \mathrm{N}, \\ 105^{\circ} 47^{\prime} 38.7^{\prime \prime} \mathrm{E} \end{gathered}$	CUMZ 5177	MT803081	-	MT741930
38	H53	Quantula weinkauffiana (Crosse \& Fischer, 1863)	Tad Pha Suam, Champasak, Laos	Kho	$\begin{gathered} 15^{\circ} 16^{\prime} 36.8^{\prime \prime} \mathrm{N} \\ 105^{\circ} 55^{\prime} 21.1^{\prime \prime} \mathrm{E} \end{gathered}$	CUMZ 5178	MT803082	MT741762	MT741931

Table 2. Continued

No.	Specimen no.	Taxa	Locality name	Area code	Latitude, longitude coordinates	Collection no.	Accession numbers		
							COI	16S rDNA	28S rDNA
39	CA11	Quantula weinkauffiana (Crosse \& Fischer, 1863)	Phnom Kampong Trach Cave Temple, Kampong Trach, Kampot, Cambodia	Car	$\begin{aligned} & 10^{\circ} 34^{\prime} 1.77^{\prime \prime} \mathrm{N} \\ & 104^{\circ} 28^{\prime} 6.13^{\prime \prime} \mathrm{E} \end{aligned}$	CUMZ-CM215	MT803083	MT741763	MT741932
40	CA13	Quantula weinkauffiana (Crosse \& Fischer, 1863)	Phnom Chhngok Cave, Tuek Chhou, Kampot, Cambodia	Car	$\begin{gathered} 10^{\circ} 38^{\prime} 34.91^{\prime \prime} \mathrm{N} \\ 104^{\circ} 16^{\prime} 4.07^{\prime \prime} \mathrm{E} \end{gathered}$	CUMZ-CM216	MT803084	MT741764	MT741933
41	H122	Quantula sp. 1	Nang Rong Waterfall, Nakhon Nayok, Thailand	Kho	$\begin{gathered} 14^{\circ} 19^{\prime} 41.4^{\prime \prime} \mathrm{N} \\ 101^{\circ} 19^{\prime} 05.2^{\prime \prime} \mathrm{E} \end{gathered}$	CUMZ 5185	MT803085	MT741765	-
42	H24	Quantula sp. 1	Wang Ta Krai Waterfall, Nakhon Nayok, Thailand	Kho	$\begin{gathered} 14^{\circ} 19^{\prime} 58.9^{\prime \prime} \mathrm{N}, \\ 101^{\circ} 18^{\prime} 17.0^{\prime \prime} \mathrm{E} \end{gathered}$	CUMZ 5170	MT803086	-	MT741934
43	H50	Quantula sp. 1	Khao Ang Rue Nai, Chacheongsao, Thailand	Car	$\begin{aligned} & 13^{\circ} 25^{\prime} 08.0^{\prime \prime} \mathrm{N}, \\ & 101^{\circ} 53^{\prime} 00.5^{\prime \prime} \mathrm{E} \end{aligned}$	CUMZ 5175	MT803087	-	MT741935
44	H60	Quantula sp. 1	Wat Khao Sala, Surin, Thailand	Kho	$\begin{aligned} & 14^{\circ} 25^{\prime} 09.5^{\prime \prime} \mathrm{N}, \\ & 103^{\circ} 56^{\prime} 00.0^{\prime \prime} \mathrm{E} \end{aligned}$	CUMZ 5181	MT803088	-	MT741936
45	H94	Quantula sp. 1	Wang Ta Krai Waterfall, Nakhon Nayok, Thailand	Kho	$\begin{gathered} 14^{\circ} 19^{\prime} 58.9^{\prime \prime} \mathrm{N}, \\ 101^{\circ} 18^{\prime} 17.0^{\prime \prime} \mathrm{E} \end{gathered}$	CUMZ 5170	MT803089	MT741766	-
46	H97	Quantula sp. 1	Khao Ang Rue Nai, Chacheongsao, Thailand	Car	$\begin{aligned} & 13^{\circ} 25^{\prime} 08.0^{\prime \prime} \mathrm{N}, \\ & 101^{\circ} 53^{\prime} 00.5^{\prime \prime} \mathrm{E} \end{aligned}$	CUMZ 5175	MT803090	MT741767	-
47	H51	Quantula sp. 2	Kam Hom Waterfall, Sakon Nakhon, Thailand	Kho	$\begin{aligned} & 17^{\circ} 07^{\prime} 20.3^{\prime \prime} \mathrm{N}, \\ & 104^{\circ} 01^{\prime} 07.4^{\prime \prime} \mathrm{E} \end{aligned}$	CUMZ 5176	MT803091	MT741768	-
48	H124	Quantula sp. 3	Cuc Phuong, Nho Quan, Ninh Binh, Vietnam	NAm	$\begin{gathered} 20^{\circ} 15^{\prime} 04.0^{\prime \prime} \mathrm{N}, \\ 105^{\circ} 42^{\prime} 49.5^{\prime \prime} \mathrm{E} \end{gathered}$	CUMZ 5186	MT803092	MT741769	-
49	E6297	Rhinocochlis moluensis (Godwin-Austen, 1891)	Crocker Range Park, Keningau, Sabah, Malaysia	Bor	$\begin{aligned} & 5^{\circ} 20^{\prime} 14.6^{\prime \prime} \mathrm{N} \\ & 116^{\circ} 09^{\prime} 24.1^{\prime \prime} \mathrm{E} \end{aligned}$	BOR/MOL 6297	MT803093	MT741770	MT741937
50	H19	Rhinocochlis nasuta (Metcalfe, 1852)*	Fairy Cave, Bau, Sarawak, Malaysia	Bor	$\begin{aligned} & 1^{\circ} 22^{\prime} 52.4^{\prime \prime} \mathrm{N}, \\ & 110^{\circ} 07^{\prime} 07.4^{\prime \prime} \mathrm{E} \end{aligned}$	CUMZ 5162	MT654629	MT651545	MT651600
51	E127	Rhinocochlis nasuta (Metcalfe, 1852)*	Lanjak Entimau, Sibu, Sarawak, Malaysia	Bor	$\begin{aligned} & 1^{\circ} 42^{\prime} 21.6^{\prime \prime} \mathrm{N}, \\ & 112^{\circ} 32^{\prime} 55.9^{\prime \prime} \mathrm{E} \end{aligned}$	BOR/MOL 5479	MT803094	MT741771	MT741938

Table 2. Continued

No.	Specimen no.	Taxa	Locality name	Area code	Latitude, longitude coordinates	Collection no.	Accession numbers		
							COI	16S rDNA	28S rDNA
52	H54	Hemiplecta distincta (Pfeiffer, 1850)	Tad Pha Suam, Champasak, Laos	-	$\begin{gathered} 15^{\circ} 16^{\prime} 36.8^{\prime \prime} \mathrm{N}, \\ 105^{\circ} 55^{\prime} 21.1^{\prime \prime} \mathrm{E} \end{gathered}$	CUMZ 5267	MT654617	MT651532	MT651588
53	S129	Cryptozona siamensis (Pfeiffer, 1856)	Wat Tha Mai Lai, Chumphon, Thailand	-	$\begin{gathered} 10^{\circ} 29^{\prime} 49.5^{\prime \prime} \mathrm{N}, \\ 98^{\circ} 57^{\prime} 17.8^{\prime \prime} \mathrm{E} \end{gathered}$	CUMZ 7240	MT364992	MT365774	MT365718
54	W4	Sarika resplendens (Philippi, 1846)	Khao Cha Ngum, Ratchaburi, Thailand	-	$\begin{gathered} 13^{\circ} 43^{\prime} 32.7^{\prime \prime} \mathrm{N} \\ 99^{\circ} 44^{\prime} 35.1^{\prime \prime} \mathrm{E} \end{gathered}$	CUMZ 7234	MT364982	MT365763	MT365707
55	H48	Sarika sp.	Bukit Sarang Helang, Bandar Seri Begawan, Brunei	-	$\begin{aligned} & 4^{\circ} 54^{\prime} 54.9^{\prime \prime} \mathrm{N} \\ & 114^{\circ} 57^{\prime} 14.7^{\prime \prime} \mathrm{E} \end{aligned}$	CUMZ 5187	MT803095	MT741772	MT741939

Specimen numbers correspond to the numbers in Figure 2. Asterisk indicates the type species of its respective genus. Area codes follow those in Figure 1.
animals in this study was approved by Chulalongkorn University Animal Care and Use Committee (CU-ACUC) under the approval number 1723018. No material from BORNEENSIS was exported from Sabah, Malaysia, and all the sampling and laboratory procedures of the BOR/MOL specimen were performed by T.-S. Liew at Universiti Malaysia Sabah.

Intact adult shells were measured for whorl number, shell height (h) and maximum diameter or shell width (d) using a digital vernier calliper. The genitalia of three to ten specimens of each species were dissected and examined under an Olympus SZX2-TR30 stereoscopic light microscope. Shells and reproductive organs were imaged using a digital camera and a stereo microscope with Cell'D Imaging Software. Radulae were extracted, soaked in 10% (w/v) sodium hydroxide, cleaned with distilled water and then imaged by scanning electron microscopy (JEOL, JSM-6610 LV). Species identification and generic assignment followed Hausdorf (1995), Schileyko (2003), Tumpeesuwan et al. (2007), Liew et al. (2009) and Sutcharit et al. $(2012,2019)$, and specimens were compared with the relevant type specimens of the type species if possible. The morphological examination of the genera that could not be obtained in this study was done based on figures in the paper by Schileyko (2003).

Shell characters described refer to empty shells, whereas non-shell characters were derived from specimens preserved in ethanol. The general vouchers and type specimens were deposited in CUMZ and NHMUK.

ACQUISITION OF DNA SEQUENCE DATA

Whole genomic DNA was extracted from a small piece of foot muscle tissue using the NucleoSpin Tissue Kit (Macherey-Nagel, Germany) or DNeasy Blood \& Tissue Kits (QIAGEN). Sequences of the two partial mitochondrial markers (COI and 16S rDNA) were amplified using the LCO1490 and HCO2198 (Folmer et al., 1994) and the 16Sar and 16Sbr (Palumbi et al., 1991) universal primers, respectively. Sequences of the large subunit of the nuclear rRNA gene (28S rDNA) were amplified using the 28SF4 and 28SR5 primers (Morgan et al., 2002). A nested polymerase chain reaction (PCR) was performed for unsuccessful amplifications by using the internal primers given in the Supporting Information (Table S1). The PCR thermal cycling conditions were as follows: $94{ }^{\circ} \mathrm{C}$ for 2 min , followed by 36 cycles of $94{ }^{\circ} \mathrm{C}$ for 30 s , the annealing temperature specific to each gene fragment (Supporting Information Table S1) for 2 min , and $72^{\circ} \mathrm{C}$ for 2 min , and then a final extension step of $72{ }^{\circ} \mathrm{C}$ for 5 min . The PCR products were sent for commercial sequencing at Bioneer Co., Korea or Apical Scientific Sdn Bhd, Malaysia.

SEQUENCE ALIGNMENT AND MOLECULAR PHYLOGENETIC ANALYSES

Chromatograms were checked manually for misreads, and sequences were then trimmed in MEGA v.7.0 (Kumar et al., 2016). The sequence alignments of each gene fragment were performed separately using MAFFT v.7, which is available online (https://mafft. cbrc.jp/alignment/server/index.html), with default options (Katoh et al., 2017). The newly generated sequences have been deposited in the GenBank database with accession numbers given in Table 2.

The concatenated dataset was prepared in KAKUSAN4 (Tanabe, 2011) with the best-fitting model adjustment for maximum likelihood (ML) and Bayesian inference (BI) analyses. The ML analysis was performed by applying the best-fitting model (GTR+G for all gene fragments) to separate partitions for each gene at the default settings of RAxML-HPC2 on XSEDE v.8.2.10 (Stamatakis, 2014) in the CIPRES Science Gateway (Miller et al., 2010). Nodal support values of ML were assessed by performing 1000 bootstrap replicates and reported as bootstrap support (BS). The BI analysis was performed with the best-fitting models of each gene fragment (COI and 16S rDNA, GTR+G; 28S rDNA, HKY85+G) using MRBAYES on XSEDE v.3.2.6 (Ronquist et al., 2012) in the CIPRES Science Gateway. Two independent analyses were run simultaneously and consisted of four chains of 50 million generations. The sampling rate was 500 generations, and the first 50% of sampled trees were discarded as burn-in. For each node, BS values $\geq 70 \%$ were considered highly supported (Hillis \& Bull, 1993) and BI posterior probability (PP) values ≥ 0.95 were considered statistically significant (San Mauro \& Agorreta, 2010). Uncorrected pairwise genetic distances (p-distances) among different genera based on the COI, 16S and 28S sequences were calculated in MEGA v.7.

CLADISTIC ANALYSIS OF THE MORPHOLOGICAL DATA

The morphological characters and their states used for the cladistic analysis were modified from the study by Hausdorf (1995) (Table 3). The coding of each morphological character was compiled from the study by Hausdorf (1995) with the updated data of Asperitas, Kalamantania, Quantula Baker, 1941 and Rhinocochlis Thiele, 1931 from Schileyko (2003), Phuphania from Tumpeesuwan et al. (2007), Everettia from Liew et al. (2009), Dyakia from Sutcharit et al. (2012), Bertia from Sutcharit et al. (2019) and Pseudoplecta Laidlaw, 1932 and the new genus (Pseudoquantula, described below) from this study (Table 4). The maximum parsimony (MP) analysis of morphological data was conducted in PAUP* v.4.0a167 (Swofford, 2002) using Staffordia as the outgroup.

The first unconstrained analysis recovered either a polytomy of all genera (strict consensus) or some intergeneric relationships (majority-rule consensus; Supporting Information, Fig. S1). Therefore, we used the generic relationship based on the Bayesian tree, in which the nodes with PP values < 0.95 decayed into polytomy, as the constraint for the cladistic analysis of the morphological data. Elaphroconcha, Sasakina and Staffordia were excluded from the constrained topology because they were not analysed in the molecular phylogenetic analyses.

ANCESTRAL RANGE RECONSTRUCTION

An ultrametric tree was constructed in BEAST v.1.8.4 (Drummond et al., 2012), with a relative rate of 1.0, on XSEDE in the CIPRES Science Gateway. All the dyakiid taxa were grouped as the 'ingroup' and enforced to be monophyletic. Two runs of 20 million generations were executed using an uncorrelated lognormal relaxed-clock model and coalescent (constant size) model for a tree prior with a random starting tree. The appropriate substitution models for each gene partition were selected with JMODELTEST 2 v.2.1.6 on XSEDE (Darriba et al., 2012) in the CIPRES Science Gateway (GTR+I+G for all gene fragments). We sampled parameters every 1000 generations and assessed the convergence ($\mathrm{ESS} \geq 200$) in TRACER v.1.6 (Rambaut et al., 2014). LogCombiner v.1.8.4 (Drummond \& Rambaut, 2007) was used to combine the two runs, and TreeAnnotator v.1.8.4 (Drummond \& Rambaut, 2007) was used to construct a single maximum clade credibility tree using median heights as node heights after tree files from both runs were combined, discarding the first 10% of trees as burn-in and rechecking the effective sample size. For each node, PP values of ≥ 0.95 were considered statistically significant (Drummond \& Rambaut, 2007).

The division of the geographical area in this study follows Gupta (2005), yielding a total of seven areas (Fig. 1). The resulting ultrametric tree, excluding the outgroup, together with geographical area information (Table 2), was subjected to an ancestral range reconstruction in RASP v. 4.2 (Yu et al., 2019). The R package BioGeobEARS (Matzke, 2014) was implemented in the program, and DEC+J was selected as the best model indicated by the highest Akaike information criterion (with a correction for small sample sizes) weight (AICc_wt) value (Supporting Information, Table S2). In addition, the dispersal-extinction-cladogenesis (DEC) (Ree \& Smith, 2008) module, which is also implemented in the program, was applied for comparison. The maximum number of areas that could be occupied at each node was set as seven areas. Because DIVALIKE and BAYAREALIKE

Table 3. List of morphological characters and their states modified from the study by Hausdorf (1995)

Character	State
1. Number of major lobes of the amatorial organ gland	$0=1$
	$1=2$
	$2=3-5$
	$3=\sim 6-7$
	$4=>10$
	5 = absent
2. Length of the amatorial organ duct(s)	$\begin{aligned} & 0=\text { longer than the } \\ & \text { terminal amatorial } \\ & \text { organ section } \end{aligned}$
	$1=1 / 2$ to the same length as the terminal amatorial organ section
	$2=1 / 4-1 / 2$ of the length of the terminal amatorial organ section
	$3=<1 / 4$ of the length of the terminal amatorial organ section
	$\begin{aligned} & 4=\text { amatorial organ duct } \\ & \text { absent } \end{aligned}$
3. Type of amatorial organ duct	$0=$ common
	$1=$ multiple
	$2=$ absent
4. Terminal amatorial organ section (from insertion point of go to terminal end of am)	$0=<1 / 2$ of the penis length
	$1=1 / 2$ to the same length as the penis
	$2=$ longer than penis
5. Insertion of site of the amatorial organ	0 = atrium
	1 = penis
	$2=$ vagina
6. Insertion site of the gametolytic sac	$0=$ vagina
	$\mathrm{l}=$ near the opening of the amatorial organ
	2 = near the terminal end of the amatorial organ
7. Gametolytic sac	$\begin{aligned} & 0=\text { longer than free } \\ & \text { oviduct } \end{aligned}$
	$\begin{aligned} & \text { l = shorter than free } \\ & \text { oviduct } \end{aligned}$
8. Insertion site of the penial retractor	$0=$ near the junction between penis and epiphallus
	```l= near the insertion point of vas deferens to epiphallus```
9. Ectocone of radular marginals	$0=$ very small or absent
	l = almost as long as mesocone

Table 3. Continued

Character	State
10. Number of radular	$0=<200$   teeth per row
$1=>200$	
11. Coiling	$0=$ mostly dextral   $l=$ mostly sinistral
12. Number of whorls	$0=>4$   $l=<4$
	$0=$ mostly rounded or   13. Last whorl
	$l=$ mostly keeled   $0=$ usually $<25 \mathrm{~mm}$
14. Shell width	

models were retrieved as less fit in BioGeoBEARS, S-DIVA (Yu et al., 2010) and BayesArea (Landis et al., 2013) modules which are similar to DIVALIKE and BAYAREALIKE models, respectively, were not applied further.

## DESCRIPTIONS OF GENERA AND SPECIES

The genital terminology and abbreviations were used as defined by Godwin-Austen (1891), Tumpeesuwan et al. (2007) and Sutcharit et al. (2012): am, amatorial organ; amd, amatorial organ duct; amg, amatorial organ gland; amp, amatorial organ pilaster; ap, amatorial organ papilla; at, atrium; e, epiphallus; fo, free oviduct; gd, gametolytic duct; gg, gametolytic gland; go, gametolytic organ; gs, gametolytic sac; ov, oviduct; $\mathbf{p}$, penis; pp, penial pilaster; pr, penial retractor muscle; $\mathbf{p s}$, penial sheath; $\mathbf{v}$, vagina; vd, vas deferens; vp, vaginal pilaster. Some of the characters of the genitalia that were named differently in studies by other authors are given in the Supporting Information (Table S3).

Institutional abbreviations: BOR/MOL, BORNEENSIS mollusc collection, Universiti Malaysia Sabah; CUMZ, Chulalongkorn University, Museum of Zoology, Bangkok; MNHN, Muséum national d'Histoire naturelle, Paris; NHMUK, The Natural History Museum, London.

## RESULTS

The total number of sequences, sequence and alignment length, and the number of variable and parsimonyinformative sites for each of the three partial gene fragments (COI, 16 S and 28 S ) are reported in the Supporting Information (Table S4). The uncorrected intrageneric and pairwise intergeneric distances

Table 4. Character matrix used for the cladistic analysis

Taxon	Character													
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Asperitas	2	3	1	2	1	1	0	0	1	1	0	0	0	1
Bertia	2	1	1	2	2	1	0	0	0	1	1	0	0	1
Bornean Dyakia	2	3	0	2	1	1	0	0	0	0	1	0	1	1
Peninsular Dyakia	2	1	0	2	0	1	0	0	0	0	1	0	1	1
Elaphroconcha	2	2	0	2	0	1	0	1	0	0	0	0	0	1
Everettia	4	2	1	2	1	1	1	0	0	0	0	0	0	0
Kalamantania	3	2	1	2	2	1	0	0	0	0	0	1	0	1
Phuphania	2	1	1	2	1	1	0	0	0	0	0	0	0	1
Pseudoplecta	5	4	2	0	1	2	0	0	1	0	0	0	1	0
Pseudoquantula	1	1	1	1	2	1	0	0	1	0	0	0	1	0
Quantula	4	0	0	2	2	1	1	0	0	0	0	0	0	1
Rhinocochlis	1	2	1	2	0	1	0	0	1	0	1	0	1	1
Sasakina	2	2	0	2	0	1	0	1	1	1	0	0	1	0
Staffordia	0	0	0	0	0	0	0	0	0	0	0	0	0	0

within the Dyakiidae for the partial COI gene fragment ranged between 0.18 and $13.41 \%$ and between 9.14 and $17.38 \%$, respectively. For the partial 16 S rRNA gene fragment, the uncorrected intrageneric and pairwise intergeneric distances ranged between 0.28 and $11.74 \%$ and between 10.06 and $23.66 \%$, respectively (Supporting Information, Table S5). For the partial 28 S rRNA, the uncorrected intrageneric and pairwise intergeneric distances ranged between 0.00 and $2.64 \%$ and between 1.09 and $15.34 \%$, respectively (Supporting Information, Table S6).

The phylogenetic trees (Fig. 2, showing the MrBAYES topology) based on the concatenated datasets using both ML and BI methods (MrBAYES and BEAST) yielded largely consistent phylogenies that differed in the position of Pseudoplecta bijuga (Stoliczka, 1873) and Kalamantania whiteheadi (Godwin-Austen, 1891). In addition, all dyakiid taxa in this study clustered together as monophyletic ( $\mathrm{BS}=100 \%$, $\mathrm{PP}=1$ ). All multispecies genera were recovered as reciprocally monophyletic, except for Dyakia ( $\mathrm{BS}=94-100 \%$, $\mathrm{PP}=1$ ). For the genera that consisted of only a single species, a statement on their monophyly is not possible. Dyakia was retrieved as polyphyletic, with the studied species divided over two clades (one clade in the Malay Peninsula and one clade in Borneo), with highly supported values $(\mathrm{BS}=100 \%, \mathrm{PP}=1)$. The genera with sinistral coiling (Bertia, Dyakia and Rhinocochlis) did not form a monophyletic group.

Regarding the relationships among genera, the new genus has been retrieved as the sister taxon to all other genera ( $\mathrm{BS}=97 \%, \mathrm{PP}=1$ ), whereas Bertia was the sister clade to the remaining genera ( $\mathrm{BS}=98 \%$,
$P P=1$ ). The other genera have mainly been grouped into three clades, two of which were highly supported, namely the Phuphania + Quantula ( $\mathrm{BS}=88 \%, \mathrm{PP}=1$ ) and Asperitas + Dyakia + Rhinocochlis $(\mathrm{BS}=92 \%$, $\mathrm{PP} \geq 0.99$ ) clades. The Bornean species of Dyakia were sister to Rhinocochlis, with significant support in the MRBAYES analysis ( $\mathrm{PP}=0.96$ ), but not in the $\mathrm{ML}(\mathrm{BS}=59 \%)$ and BEAST $(\mathrm{PP}=0.65)$ analyses. Pseudoplecta was the sister clade to Everettia with low support values from the Bayesian analyses ( $\mathrm{BS}<50 \%$, MrBAYES $\mathrm{PP}=0.87$, $\mathrm{BEAST} \mathrm{PP}=0.91$ ). The relationship between Kalamantania and the other larger clades could not be resolved. Within the Quantula clade, Quantula striata (Gray, 1834) and Quantula weinkauffiana (Crosse \& Fischer, 1863) were sister clades, each with high support ( $\mathrm{BS}=100 \%$, $P P=1$ ). In contrast, the sister relationships of the other species were not supported by the analyses. There was high variability in shell form, in terms of the shell dimension and the keel at the shell periphery, within each of the Quantula clades (Fig. 3).

The results of the cladistic analysis were superimposed on the most parsimonious tree constrained with the Bayesian tree topology (Fig. 4) because the fit measures of the most parsimonious trees from unconstrained analysis indicated homoplasy from the dataset (Supporting Information, Table S7). This tree topology revealed Asperitas as the sister taxon to the polyphyletic Dyakia + Rhinocochlis clade. In addition, the analysis recovered the clade Everettia + Pseudoplecta,whichwasnotsupportedbythe molecular phylogeny, and Elaphroconcha + Sasakina, which was not included in the molecular analysis.


Figure 2. Phylogenetic tree based on the MrBAYES analysis. Nodal support values are given as bootstrap support (maximum likelihood)/posterior probability (MRBAYES)/posterior probability (BEAST). The symbols correspond to those in Figure 1. An asterisk indicates the type species of its corresponding genus. Red gradient bars indicate the genera with sinistral shell coiling. Representative shells of all genera in this study are shown below.


Quantula sp. 2


Figure 3. The phylogenetic relationships in the Quantula clade with its respective representative shell morphology. The specimen numbers correspond to those in Table 2. Nodal support values are given as bootstrap support (maximum likelihood)/posterior probability (MRBAYES)/posterior probability (BEAST).

Two morphological characters, the insertion site of the gametolytic sac (character 6) and the number of whorls (character 12), were uninformative and
thus not shown. There were no synapomorphies for the clades Asperitas + Dyakia + Rhinocochlis, Phuphania + Quantula and Everrettia + Pseudoplecta,


Figure 4. The most parsimonious tree superimposed with character state changes and the results from the ancestral range reconstructions. The character states correspond to those in Table 3. The area codes and colours correspond to those in Table 2 and Figure 1.
whereas one synapomorphy [insertion site of the penial retractor muscle (character 8) near the junction between the penis and epiphallus] supported the Elaphroconcha + Sasakina clade. The greatest number of autapomorphies (three) and character state changes (six) was found in Pseudoplecta.
The ancestral range estimations based on both the DEC module and the DEC+J model applied in BioGeoBEARS recovered the same ancestral ranges of all nodes (Supporting Information, Fig. S2). The results of ancestral ranges of each major node leading to each genus were superimposed on the most parsimonious tree (Fig. 4). The southern Annamite Range and Khorat Plateau, both located in mainland Southeast Asia, have been retrieved as the ancestral range of Dyakiidae. In addition, the ancestral ranges of the clade excluding Bertia and the new genus Pseudoquantula have been retrieved as the Khorat Plateau in BioGeoBEARS and the Khorat Plateau and Borneo Island in DEC. Lastly, Borneo Island has been retrieved as the ancestral range of the remaining taxa from the Malay Peninsula, Borneo and Bali. The full result of the ancestral range reconstruction is shown in the Supporting Information (Fig. S2).
Helix crossei Pfeiffer, 1862, for which the systematic relationships have until now remained unclear, is now confirmed as belonging to this family and assigned to the genus Phuphania based on the results of the
phylogenetic analyses ( $\mathrm{BS}=98 \%, \mathrm{PP}=1$ ) and the occurrence of fused lobes of the amatorial organ gland forming a cap covering the amatorial organ (Fig. 5C).The updated description of Phuphania has been provided because the boundary of this genus was extended by the addition of Phuphania crossei. Furthermore, the internal anatomical details of Pseudoplecta bijuga, the type and only species of this genus, were updated, and the external body features and radula are reported here for the first time based on recently collected material.

## SYSTEMATICS

Family Dyakidae Gude \& Woodward, 1921
Genus Pseudoquantula Jirapatrasilp \& Panha GEN. NOV.
Zoobank registration: urn:lsid:zoobank. org:act:B3250796-CC74-4E5E-A8EE-38E50885DA5D

Type species: Pseudoquantula lenticularis Jirapatrasilp \& Panha, sp. nov.

## Etymology

Compound word formed from the Greek prefix $\psi \varepsilon u \delta o-$, false, and the genus Quantula [in turn from Latin


Figure 5. A, B, Pseudoquantula lenticularis, paratype CUMZ 5152: A, whole genitalia; and B, internal wall sculpture of penis, vagina and amatorial organ chamber. C, D, Phuphania crossei, specimen CUMZ 5147: C, whole genitalia, with inset showing amatorial organ glands and ducts; and D, internal wall sculpture of penis, vagina and amatorial organ chamber with the corneous spike.


Figure 6. A, Pseudoquantula lenticularis, holotype CUMZ 5153. B, Phuphania crossei, specimen CUMZ 5147. C, possible syntype of Rotula bijuga Stoliczka, 1873, NHMUK 20200203. D, syntype of Macrochlamys pataniensis Morgan, 1885, MNHN-IM-2000-34171. E, Pseudoplecta bijuga, labelled as a paratype of Pseudoplecta cameroni n. gen.? n. sp. MSS, NHMUK 1933.3.24.2-3. F, Pseudoplecta bijuga, specimen CUMZ 5151.


Figure 7. Scanning electron microscope images of radula. A, Pseudoquantula lenticularis, paratype CUMZ 5152. B, Phuphania crossei, specimen CUMZ 5147. C, Pseudoplecta bijuga, specimen CUMZ 5150. Central tooth is indicated by 'C'. Numbers indicate the tooth order from lateral to marginal end.
meaning 'how little'], in reference to the similar shell to this genus in the family Dyakiidae.

## Diagnosis

As the type species.

## Description

Shell depressed conic, slightly thin, corneous and moderately translucent. Whorls five to seven slightly convex; suture shallow; embryonic shell finely ribbed. Last whorl angular with strong peripheral keel;
upper periphery with strong radial ridges. Aperture sub-ovate; lip simple or thickened inside peristome. Umbilicus perforate.

Genitalia with long and slender penis; epiphallus small; vas deferens connected near tip of epiphallus. Gametolytic organ (duct and sac) elongate and located about half of amatorial organ length. Amatorial organ gland composed of two major lobes extending into thick ducts and entering terminal tip of amatorial organ; corneous spike absent. Vagina cylindrical and of similar length to penis.


Figure 8. Live specimens of: A, Pseudoquantula lenticularis, paratype CUMZ 5155; B, Phuphania crossei, CUMZ 5272; and C, Pseudoplecta bijuga, CUMZ 5150.

## PSeUdOQUANTULA Lenticularis Jirapatrasilp \& PANHA SP. NOV.

(Figs 5A, B, 6A, 7A, 8A)
Zoobank registration: urn:lsid:zoobank. org:act:60 646 243-B878-4DF0-BC80-D3BD8646816A

## Type specimens

Holotype CUMZ 5153 (Fig. 6A). Paratypes from the type locality: CUMZ 5152 (two specimens in ethanol; Figs 5A, B, 7A), CUMZ 5155 (one specimen in ethanol; Fig. 8A) and NHMUK (one shell).

## Type locality

Dry dipterocarp forest with granite rocks at Pang Srida Waterfall, Sra Keo Province, Thailand ( $14^{\circ} 16^{\prime} 63^{\prime \prime} \mathrm{N}$, $101^{\circ} 55^{\prime} 307^{\prime \prime}$ E).

## Other material examined

CUMZ5172 (three specimens),Khao Yai, NakhonNayok Province, Thailand ( $13^{\circ} 59^{\prime} 13.6^{\prime \prime} \mathrm{N}, 102^{\circ} 12^{\prime} 18.3^{\prime \prime} \mathrm{E}$ ).

## Etymology

The epithet is derived from Latin lenticula, a small lens or lentil, referring to the thin and fragile lensshaped shell.

## Diagnosis

Shell depressed conic and thin, with sharp peripheral keel and strong radial ridges on upper shell surface. Amatorial organ gland well developed and consisting of two major lobes with two amatorial gland ducts.

## Description

Shell (Fig. 6A): Shell medium (width $\leq 26.9 \mathrm{~mm}$, height $\leq 15.3 \mathrm{~mm}$ ), dextral, slightly thin, conic to depressed conic, and moderately translucent. Whorls five to seven slightly convex and increasing regularly; suture wide and shallow. Shell colour brownish-yellow to corneous; upper and below periphery without distinct colour. Apex acute; embryonic shell with thin radial ridges and about two whorls. Following whorls with series of thin tubercles arranged on radial ridges; upper periphery with strong radial ridges and weaker below. Last whorl angulated, with strong peripheral keel. Aperture subovate and oblique; lip simple, slightly thickened and whitish inside peristome. Columella little dilated; parietal callus thin and transparent. Umbilicus perforate and deep.

Gentialia (Fig. 5A, B): Atrium short compared with penis ( $N=5$ ). Penis long, cylindrical tube covered with thin penial sheath. Penial retractor muscle long, thin, and attached to penis. Epiphallus cylindrical tube, about half length of penis and smaller in diameter than penis. Vas deferens relatively smaller diameter, thin tube, and


Figure 9. Genitalia of Pseudoplecta bijuga, specimen CUMZ 5150: A, whole genitalia; and B, internal wall sculpture of penis, vagina and amatorial organ chamber.
entering epiphallus apically; flagellum absent. Internal wall of penis with large penial pilasters for nearly entire length of chamber; penial verge absent.

Gametolytic organ (duct and sac) located close to genital opening about half of amatorial organ length. Gametolytic duct cylindrical tube; gametolytic sac slightly swollen and attached to ovary with thin connective tissues. Amatorial organ well developed, enlarged and bulbous and attached to atrium. Amatorial organ glands composed of two major lobes bounded with thin tissue. Each pair of major lobes extends into thick amatorial organ ducts, becoming bound together and entering tip of amatorial organ. Internal wall sculpture of amatorial organ consists of nearly smooth surface of enlarged longitudinal amatorial organ pilasters. Amatorial organ papilla large and conical; corneous spike absent.

Vagina about same length as penis and enlarged cylinder. Oviduct with enlarged lobules; prostate gland bound to oviduct. Internal wall of vagina sculptured with irregular undulated pilasters varying in size from small to large and arranged in longitudinal rows.

Radula (Fig. 7A): Teeth arranged in very wide-angled U-shaped rows, with $\sim 99$ (47-(20-22)-1-(20-23)-51) teeth. Central tooth symmetric tricuspid, with triangularshaped mesocone; ectocones small and dull cusp. Lateral teeth asymmetric tricuspid, triangular in shape and inclined towards central tooth. Endocone nearly wanting; ectocone with dull cusp. Marginal teeth start from tooth $23-25$, elongate bicuspid and sword shaped; mesocone large and pointed cusp; ectocone small and pointed cusp. Outermost teeth shorter than inner teeth.

External features (Fig. 8A): Living snail typical dyakiid form; body reticulated and brownish orange. Upper tentacles long and blackish brown; lower tentacles shorter and paler in colour. Dorsal part darker, with dark stripes running from base of tentacles to about one-third of body length. Foot aulacopod and unipartite; foot sole brownish to orange and unspotted.

## Distribution

Pang Srida Waterfall, Sra Keo Province and Khao Yai, Nakhon Nayok Province, Thailand.

## Remarks

This monotypic genus is only known to occur in the Dong Phayayen-Khao Yai Ranges. It differs from Quantula in both shell and genitalia characters as follows. Pseudoquantula lenticularis has a thin and fragile lens-shaped shell, with strong peripheral keel and apertural lip thickened and whitish inside aperture in adult specimens. In comparison, both $Q$. striata (the type species of Quantula) and $Q$. weinkauffiana have thick and robust dome- to conic-shaped shells, and the last whorl is well rounded to angular. In addition, this new genus and new species has two amatorial organ glands, each of which has its own short and thick ducts, whereas Quantula has only one common amatorial organ gland and one thinner and longer duct (Schileyko, 2003: fig. 1776). Furthermore, our molecular phylogeny strongly supported the distinct lineage of this new genus.

## Genus Phuphania Tumpeesuwan, NAGGS \& PANHA, 2007

Zoobank registration: urn:lsid:zoobank. org:act:44C02DD2-B4DE-42B3-9AF5-D613B72F5F30

## Type species

Phuphania globosa Tumpeesuwan, Naggs \& Panha, 2007, by original designation.

## Diagnosis

Shell thick or thin; globose to conic shell, with thin radial ridges. Amatorial organ complex well developed; amatorial organ gland fused lobes with two to six clusters of amatorial organ ducts and forming a cap over amatorial organ; amatorial organ papilla with or without corneous spike. Radula with elongate and unicuspid marginal teeth.

## Description

Shell conic to ovate conic, thin to thick, with corneous colour. Last whorl well rounded to angular; upper shell surface with prominent radial ridges; below periphery with nearly smooth surface. Aperture sub-ovate; lip simple and slightly thickened in adult snail. Umbilicus perforate.

Genitalia with penis enlarged close to atrium; epiphallus diameter smaller than penis. Gametolytic organ (duct and sac) located on amatorial organ. Amatorial organ well developed; amatorial organ gland fused lobe, with two to six clusters of amatorial organ ducts; corneous spike present or absent.

## Remarks

This genus is widely distributed in central and northeastern Thailand. Currently, the genus is composed
of four nominal species: Phuphania carinata Kongim \& Panha, 2013, Phuphania costata Tumpeesuwan C. \& Tumeesuwan S., 2014, Phuphania crossei and Phuphania globosa, which are distributed along the Phu Phan and Phetchabun Ranges.

## PhUPHANIA CROSSEI (PFEIFFER, 1862) COMB. NOV.

(Figs 5C, D, 6B, 7B, 8B)
Zoobank registration: urn:lsid:zoobank. org:act:8701796D-C54F-4A07-B29E-ADCD6351E3B4

## Synonymy

Helix crossei Pfeiffer, 1862: 39, pl. 5, figs 2, 3. Type locality: Siam [Thailand].

Helix danae Pfeiffer, 1863 [1862]: 268. Type locality: Laos Mountains, Camboja [Cambodia or Laos]. New Synonym.

Nanina (Xestina) crossei - Kobelt, 1900: 983, 984, pl. 255 , fig. 5, pl. 256, figs 3,4 .

Nanina (Xestina) danae - Kobelt, 1902: 1076, pl. 273, figs 4-6.

Euplecta danae - Gude, 1903: 6.
Hemiplecta crossei - Gude, 1903: 7.
Nanina (Hemiplecta) crossei - Fischer \& Dautzenberg, 1904: 393.

Nanina (Hemiplecta)danae - Fischer \& Dautzenberg, 1904: 393.

Hemiplecta (Hemiplecta) crossei - Hemmen \& Hemmen, 2001: 43.

Hemiplecta (Hemiplecta) danae - Hemmen \& Hemmen, 2001: 44.

Ariophanta (Cryptozona) crossei - Schileyko, 2011: 29.

Ariophanta (Cryptozona) danae - Schileyko, 2011: 29.

Ariophanta crossei - Inkhavilay et al., 2019: 74, fig. 34b.

Ariophanta danae - Inkhavilay et al., 2019: 74, fig. 34c.

## Type material examined

Syntype of Helix crossei Pfeiffer, 1862, MNHN-IM-2000-1869 (one shell; Inkhavilay et al., 2019: fig. 34b). Syntype of Helix danae Pfeiffer, 1863, NHMUK 20092043 (one shell; Inkhavilay et al., 2019: fig. 34c).

## Material examined

Sakunotayan Waterfall, Wang Thong District, Phitsanulok Province: CUMZ 5142 (nine shells), 5145 (two specimens in ethanol). Pa Ma Muang Temple, Ban Mung, Nern Maprang District, Phitsanulok Province: CUMZ 5137 (four shells), CUMZ 5141 (eight shells).

Tam Wang Daeng, Nern Maprang District, Phitsanulok Province: CUMZ 5138 (six shells), CUMZ 5140 (one shell), CUMZ 5164 (seven shells). Khao Look Chang, Pakchong District, Nakhon Ratchasrima Province: CUMZ 5139 (two shells), CUMZ 5148 (one specimen in ethanol), CUMZ 5167 (one shell). Tam Yai Nam-nao, Nam-nao District, Phetchabun Province: CUMZ 5144 (one shell). Sap Chomphu Arboretum, Nong Pai District, Phetchabun Province: CUMZ 5146 (one specimen in ethanol), CUMZ 5169 (39 shells). Muak Lek Waterfall, Muak Lek District, Saraburi Province: CUMZ 5143 (one shell). Jed Kot Waterfall, Kaeng Koy District, Saraburi Province: CUMZ 5147 (four specimens in ethanol; Figs 5C, D, 6B, 7B), CUMZ 5168 (seven shells). Wat Tham Phra Phothisat, Kaeng Koy District, Saraburi Province: CUMZ 5272 (four specimens in ethanol; Fig. 8B), CUMZ 5273 (22 shells). Khao Sala, Bau Chet District, Surin Province: CUMZ 5149 (one shell).

## Diagnosis

Shell conic, brownish, with last whorl angular and umbilicus narrow. Penis enlarged and cylindrical. Amatorial organ gland fused lobes with three clusters of amatorial organ ducts and forming a cap over amatorial organ; amatorial organ papilla with corneous spike.

## Description

Shell (Fig. 6B): Shell medium (width $\leq 35.0 \mathrm{~mm}$, height $\leq 24.5 \mathrm{~mm}$ ), conic to slightly depressed conic, thickened and dull, dextral and narrow perforate. Whorls six to eight, increasing regularly; suture wide and little depressed. Shell colour brownish to yellowish; below periphery with paler colour than upper periphery. Spire convex; apex acute; embryonic shell small and with fine radial ridges. Shell surface coarse, with nodule lines arranged on fine radial ridges; below periphery with nearly smooth surface around umbilicus. Last whorl angular, with weak peripheral keel. Aperture ovate; parietal callus transparent; lip simple, slightly thickened and little expanded near columellar area. Columella slightly dilated. Umbilicus perforate, narrow and deep.

Genitalia (Fig. 5C, D): Atrium very short compared with penis. Penis enlarged, cylindrical and suddenly tapering to small tube. Epiphallus long, almost same length as penis and approximately similar in diameter to penis. Penial retractor muscle thin and attached between penis and epiphallus. Flagellum absent. Vas deferens smaller in diameter than epiphallus and connected at tip of epiphallus. Internal wall of penis with large and nearly smooth-surfaced longitudinal pilasters for entire length of chamber; penial verge absent.

Gametolytic organ (duct and sac) locates very near the end of amatorial organ. Gametolytic duct cylindrical tube; gametolytic sac gradually swollen to the end. Amatorial organ well developed, enlarged cylinder and attached to atrium. Amatorial organ gland fused lobes, covered amatorial organ ducts and forming a cap over amatorial organ gland. Amatorial organ duct consists of three clusters of ducts; tip of amatorial organ with thin connective tissue. Internal wall sculpture of amatorial organ: region close to atrium consists of smooth surface of longitudinal amatorial organ pilasters; area surrounding papilla consists of corrugated wall. Amatorial organ papilla enlarged, smooth surface and obtuse in shape; tipped with dark spike.

Vagina about same length as penis and cylindrical. Oviduct with enlarged lobules; prostate gland bound to oviduct. Internal wall of vagina: area close to atrium sculptured with irregular, undulated pilasters of similar size and arranged in longitudinal rows then with unpattern irregular surface.

Radula (Fig. 7B): Teeth arranged in very wideangled U-shaped rows, with ~150 (90-(25-27)-1-(23-26)-60+) teeth. Central tooth relatively small, slightly asymmetric bicuspid, and with pointed cusps. Lateral teeth relatively large, asymmetric tricuspid, elongated in shape and inclined towards central tooth. Mesocone large and pointed cusp; endocone and ectocone very small and pointed cusps. Marginal teeth start from tooth 23-27, elongate, unicuspid and sword shaped; outermost teeth shorter, with apically pointed tip.

External features (Fig. 8B): Living snail typical dyakiid form; body reticulated and yellowish brown. Upper tentacles long and dark grey; lower tentacles shorter and paler in colour. Dorsal part darker, especially near the head. Foot aulacopod and unipartite; foot sole same colour as the body and unspotted.

## Remarks

This species has previously been assigned to the family Ariophantidae, for the lack of a prominent keel similar to some ariophantid genera, such as Ariophanta Des Moulins, 1829 and Hemiplecta Albers, 1850. However, its exact familial or generic assignment could not be resolved owing to the lack of anatomical data. Two nominal species, Helix crossei and H. danae, were described in consecutive years by L. Pfeiffer, with a rather generic type locality of 'Siam' and 'Lao Mountains, Camboja', respectively. The latter taxon was described based on the Cuming ex. Mouhot collection. Hence, the specimen probably originated from the last journey of H . Mouhot between

Bangkok, Thailand and Luang Phrabang, Laos (see Mouhot, 1864; Inkhavilay et al., 2019). We presume that the type specimen of $H$. danae was collected from the same geographical area as $H$. crossei. Specifically, the type localities were possibly in north-eastern Thailand, which is within the current distributional range of recently examined specimens. In addition, the syntypes of both nominal species were identical in all shell characters (Inkhavilay et al., 2019). Thus, we consider these names as synonyms.
Phuphania crossei differs from its congeners in having a stronger peripheral keel, more slender gametolytic organ with a longer and more distinct gametolytic duct, and possessing a corneous spike on the amatorial organ papilla, which is absent in other species. The shell and genitalia of this species are more similar to Phuphania costata and Phuphania carinata than to Phuphania globosa in having a peripheral keel and distinct radial ribs, elongate marginal teeth and the lobes of the amatorial organ gland fusing as a thick sac that contains two to four clusters of internal ducts (Kongim \& Panha, 2013; Tumpeesuwan \& Tumpeesuwan, 2014). However, Phuphania crossei has more compact amatorial organ glands and shows a less distinct demarcation between the amatorial organ and its glands. This morphological similarity among Phuphania carinata, Phuphania costata and Phuphania crossei agrees well with the molecular phylogenetic relationship (Fig. 2).

Genus Pseudoplecta Laidlaw, 1932
Zoobank registration: urn:lsid:zoobank. org:act:51FAB8D6-15A6-4D10-8C66-AC8B4F11FE81

## Type species

Rotula bijuga Stoliczka, 1873 by monotypy.

## Diagnosis

As the type species.

## Remarks

Currently, this genus is composed of only a single species. The genus has a narrow distribution in the central part of Malay Peninsula (southern Thailand to the central part of Peninsular Malaysia).

## PSEudoplecta bijuga (Stoliczka, 1873)

(Figs 6C-F, 7C, 8C, 9)
Zoobank registration: urn:lsid:zoobank. org:act:05AD59EE-788B-4597-BEA9-704F892F2184

## Synonymy

Rotula bijuga - Stoliczka, 1873: 14-16, pl. 1, figs 4-7, pl. 2, figs 16-18. Type locality: Penang.

Macrochlamys pataniensis - Morgan, 1885: 376, pl. 5, fig. 5. Type locality: Naxa dans le district de Rhaman, royaume de Patani.

Rotularia bijuga - Morgan, 1885: 378.
Nanina (Rotula) bijuga - Tryon, 1886: 22, pl. 4, figs 56-59.
Euplecta bijuga - Möllendorff, 1891: 332. - Collinge, 1903: 208.
Euplecta pataniensis - Möllendorff, 1891: 333.
Otesia bijuga convexospira - Möllendorff, 1902: 137. Type locality: Kelantan, Ostküste der Halbinsel Malacca. New synonym.

Pseudoplecta bijuga - Laidlaw, 1932: 91-93, figs 7, 8. - Laidlaw, 1933: 227, 228. - Schileyko, 2003: 1363, 1364, fig. 1779. - Schileyko, 2007: 2112, fig. 1779a. Foon et al., 2017: 65, fig. 25b.

Pseudoplecta bijuga bijuga- Maassen, 2001: 104.

## Type material examined

Possible syntypes of Rotula bijuga Stoliczka, 1873, NHMUK 20200203 (two shells; Fig. 6C). Syntype of Macrochlamys pataniensis Morgan, 1885, MNHN-IM-2000-34171 (three shells; Fig. 6D).

## Material examined

Berenchang Road, Cameron Highlands 4500 ft., NHMUK 1933.3.24.2-3 (two shells; labelled as paratypes of Pseudoplecta cameroni n. gen.? n. sp. MSS; Fig. 6E). Gua Matu Madu, Gua Musang, Kelantan, Malaysia: CUMZ 5150 (three specimens in ethanol; Figs 7C, 8C, 9), CUMZ 5151 (one shell; Fig. 6F).

## Diagnosis

Shell small, slightly thin, depressed to ovate conic, with fine radial ridges. Penis long, with penial verge inside. Gametolytic organ located close to terminal part of amatorial organ; amatorial organ gland and duct absent; amatorial organ papilla without corneous spike.

## Description

Shell (Fig. 6C-F): Shell small (width $\leq 17.8 \mathrm{~mm}$, height $\leq 11.3 \mathrm{~mm}$ ), dextral, slightly thin, strongly depressed to ovate conic and moderately translucent. Whorls six to eight, little convex and increasing regularly; suture wide and shallow. Shell colour corneous; upper and below periphery with indistinct colour. Apex acute; embryonic shell with nearly smooth surface and $\sim 1 / 2$
whorls. Following whorls with series of thin nodules arranged on fine radial ridges; upper periphery with strong radial ridges and weaker below. Last whorl angulated, with strong peripheral keel. Aperture subovate and oblique; lip simple and slightly thickened. Columella little dilated; parietal callus transparent. Umbilicus perforate and deep.

Genitalia (Fig. 9): Atrium short. Penis close to atrium enlarged, cylindrical and gradually tapering to small tube. Epiphallus long, almost the same length as penis and approximately similar diameter to penis. Penial retractor muscle with thick band, very short compared with penis, and attached between penis and epiphallus. Flagellum absent. Vas deferens relatively smaller diameter than epiphallus and connected at tip of epiphallus. Internal wall of penis with large and corrugated penial pilasters surrounding penial verge and nearly smooth surface close to atrium; penial verge small and low conical shape.

Gametolytic organ (duct and sac) close to terminal part of amatorial organ. Gametolytic duct cylindrical tube; gametolytic sac enlarged at the end. Amatorial organ well-developed cylinder and attached to atrium; region close to atrium swollen, round (with amatorial organ papilla inside); region close to gametolytic sac enlarged cylinder, with thick retractor muscle. Amatorial organ gland and duct absent. Internal wall sculpture of amatorial organ: close to atrium consists of irregular and smooth-surfaced amatorial organ pilasters, gradually modified to corrugated and nearly smooth wall. Amatorial organ papilla obtuse in shape, with corrugated surface; corneous spike absent.

Vagina about two-thirds the length of penis and cylindrical. Oviduct with enlarged lobules; prostate gland bound to oviduct. Internal wall of vagina mostly sculptured with irregular, undulated pilasters of similar size and arranged in longitudinal rows.

Radula (Fig. 7C): Teeth arranged in wide-angled U-shaped rows, with ~190 (93-(22-20)-1-(21-23)-98). Central tooth symmetric tricuspid with triangularshaped mesocone; ectocones small and dull cusp. Lateral teeth asymmetric tricuspid, triangular in shape and inclined towards central tooth; endocone and ectocone nearly wanting. Marginal teeth start from tooth 20-23, elongate, obliquely bicuspid and sword shaped; endocone large and pointed cusp; ectocone small and pointed cusp. Outermost teeth shorter than inner teeth and ectocone small.

External features (Fig. 8C): Living snail typical dyakiid form; body reticulated and pale orange. Tentacles long and brown. Dorsal part darker, with black stripes running from base of tentacles to pneumostome. Foot
aulacopod and unipartite; foot sole brownish to orange and unspotted.

## Remarks

This species was originally described from Penang [Island, Malaysia], with detailed description and illustration by Stoliczka (1873). Later, de Morgan (1885) described Macrochlamys pataniensis from 'Naxa dans le district de Rhaman, royaume de Patani' [Raman District, Pattani Province, Thailand] as a distinct species, without any detail on internal anatomy. These two nominal species have been treated as distinct ever since, and their generic placements were hypothetical. Later, Laidlaw (1932) could not affiliate Stoliczka's species to any existing genus and therefore introduced the genus Pseudoplecta, and Laidlaw (1933) treated M. pataniensis as a junior synonym to this species. Here, we synonymize M. pataniensis with Pseudoplecta bijuga because this species shows a large variation in spire height [see Stoliczka (1873): pl. 1, figs 4-7], and M. pataniensis is considered to be within the range of this variation. In addition, the shell-based description of Otesia bijuga convexospira by von Möllendorff (1902) is also contained within the variation, and the type locality was within the distributional range of this species. Hence, we treat this nominal taxon as a synonym of Pseudoplecta bijuga.

## DISCUSSION

## Phylogenetic Relationships within The DYAKIIDAE

This study is the first molecular phylogenetic investigation of the Dyakiidae since the morphologically based phylogeny published 25 years ago (Hausdorf, 1995). The present phylogeny confirms that all genera (except Elaphroconcha and Sasakina, which were not included in this study) are members of the family Dyakiidae. This validates the three synapomorphies of this family sensu Laidlaw (1931): (1) an amatorial organ furnished with accessory glands attached to its upper pole by one or more coiled tubules; (2) a gametolytic sac attached to the amatorial organ; and (3) an absence of shell lobes (except for Pseudoplecta; see the last paragraph of this section).

Given that Dyakia was retrieved as polyphyletic in this study, the sinistral keeled shell as one of the diagnostic characters of this genus requires further investigation (Laidlaw, 1963; Schileyko, 2003). However, there are differences in the number of amatorial organ gland lobes between the Bornean and the Malay Peninsular clades. For instance, Dyakia hugonis (Pfeiffer, 1863) of the Bornean clade possesses
five major lobes, whereas Dyakia janus (Beck, 1837) of the Peninsular clade possesses three major lobes (Godwin-Austen, 1891; Sutcharit et al., 2012).
Rhinocochlis is retrieved as the sister clade to the Bornean Dyakia, which was supported by the presence of the sinistral keeled shell. However, Rhinocochlis is distinct from Dyakia in having only two amatorial organ glands and the distinct lens-shaped semitransparent shell (Schileyko, 2003). Interestingly, the dextral Asperitas trochus (Müller, 1774) was included in the Dyakia + Rhinocochlis clade, although its relationships with Peninsular Dyakia and Bornean Dyakia + Rhinocochlis could not be resolved. Hence, to understand the evolution of the amatorial organ glands in Dyakiidae and improve the taxonomic classification of Asperitas, Dyakia and Rhinocochlis, more species of each of the genera, covering the entire distributional ranges, need to be included in a future study.
Previously, Phuphania was postulated to be related closely to Bertia, Everettia and Kalamantania based on the absence of a common amatorial organ duct and the occurrence of more than four amatorial organ gland lobes (Tumpeesuwan et al., 2007). However, our molecular phylogenetic analysis revealed a sistergroup relationship between Phuphania and Quantula despite the clear difference in the amatorial organ between the two genera. Phuphania possesses two to six clusters of numerous amatorial organ ducts that end with clusters of fused lobes of amatorial organ glands, forming an ovate cap covering an amatorial organ. In contrast, Quantula possesses only a long common amatorial organ duct that branches and ends with more than ten lobes of amatorial organ glands. Moreover, the shapes of the gametolytic sac and duct differ between these two genera, and Quantula also shows an absence of the gametolytic retractor muscle (Schileyko, 2003; Tumpeesuwan et al., 2007; Kongim \& Panha, 2013; Tumpeesuwan \& Tumpeesuwan, 2014). Thus, similarity in genital characters is not always shown among closely related land snail taxa, and the evolution of those characters has been attributed to the effect of ecological factors (Köhler \& Criscione, 2015).
Although Pseudoplecta lacks an amatorial organ gland, which is one of the diagnostic characters of the Dyakiidae, the genus had already been affiliated to this family by Baker (1941). Later, Thiele (1934) proposed the subfamily Pseudoplectinae to accommodate only this genus. Bouchet et al. (2017) synonymized this subfamily with Dyakiidae because Pseudoplecta did not form a sister group to the remaining Dyakiidae in the phylogeny proposed by Hausdorf (1995). However, this synonymization was disregarded by Schileyko (2003). Our phylogenetic analysis supports the synonymization of the Pseudoplectinae and the inclusion of Pseudoplecta in this family based on the
morphology, showing that Pseudoplecta possesses two out of three synapomorphies, namely the absence of shell lobes and the opening of the gametolytic sac at the terminal part of the amatorial organ (Laidlaw, 1931; Fig. 9A). Nevertheless, Pseudoplecta was not recovered as the sister to the other dyakiid genera but was revealed as the sister clade to Everettia in the Bayesian phylogenetic and the most parsimonious cladistic analysis. Hence, in contrast to previous suggestion (Baker, 1941), Pseudoplecta should not be recognized as ancestral. This also suggests the secondary loss of amatorial organ glands in Pseudoplecta. The complete or partial loss of the stimulatory organ is widespread in Stylommatophora (Barker, 2001; Koene \& Schulenburg, 2005; Hirano et al., 2014). Nonetheless, the exact relationship between Pseudoplecta and Everettia requires further scrutiny.

## MORPHOLOGICAL CONVERGENCE AND CRYPTIC DIVERSITY

Several studies have revealed that shell characters often contain weak phylogenetic signals, and convergence in genital characters has been more frequently identified as more land snail groups have been examined (Hyman \& Ponder, 2010; Criscione \& Köhler, 2013; Hirano et al., 2014; Köhler \& Criscione, 2015). Other studies on Camaenidae have suggested that shell shape and morphology of the genitalia might be characterized by the retention of plesiomorphic character states (Köhler \& Criscione, 2015), whereas radular morphology in general reflects ecological adaptations to different diets (Hausdorf, 1998; Barker \& Efford, 2004; Margry, 2013). Likewise, our cladistic analysis revealed that the characters related to shell shape, radula and genitalia used in this study are often homoplastic at the generic level of Dyakiidae, depicting that the combination of several characters is needed to distinguish each genus (Table 1). Regarding the species level, morphological cryptic diversity of both shell shape and genitalia was identified to be high in Bornean Everettia, whereas the interspecific differences are mainly based on shell sculptures, body coloration and mantle markings (Liew et al., 2009). In addition, Quantula has been found to be more diverse and widespread than previously thought (Hemmen \& Hemmen, 2001; Schileyko, 2003; Inkhavilay et al., 2019; Sutcharit et al., 2020). This study also displays both cases of similar shell shape among different clades and different shell shapes within the same clade (Fig. 3). Comprehensive study of finer morphological characters is thus needed to discover the diagnostic characters of each Quantula clade.

Several hypotheses of the transformation series within the Dyakiidae were made based on the number
of ducts and the complexity in gland structure of the amatorial organ. Hausdorf (1995) proposed that Quantula possesses the plesiomorphic state of an amatorial organ joining to its lobes by a long common duct, whereas Kalamantania and Everettia possess the synapomorphic state of amatorial organ lobes without a common duct. Furthermore, by extending Hausdorf's transformation series, Tumpeesuwan et al. (2007) hypothesized that the genitalia of Bertia are more derived than those of Everettia and that Phuphania possesses the most derived state in the Dyakiidae. However, our molecular phylogenetic analyses indicated that the amatorial organ lobes without a common duct is a plesiomorphic state. In contrast, the common amatorial organ duct found in Dyakia and Quantula is an apomorphic state but retrieved as homoplastic. Thus, we could formulate the hypothesis of evolution of the amatorial organ from possessing multiple ducts to a common duct, the condition of which evolved multiple times in dyakiid lineages.

## REVERSAL OF SHELL COILING

Multiple origins of the left-right coiling reversal in terrestrial snails seem to be the norm rather than the exception (Schilthuizen \& Davison, 2005; Gittenberger et al., 2012). In the Dyakiidae, at least two reversal events can be identified: the first leads to Bertia cambojiensis (Reeve, 1860) and the second to the ancestor of the Dyakia + Asperitas + Rhinocochlis and an additional reversal from the sinistral ancestor to dextral Asperitas. Shell coiling reversal has also been reported to occur multiple times at the species and population levels in other families, e.g. Camaenidae: Amphidromus Albers, 1850 (Sutcharit et al., 2007; Nakadera et al., 2010) and Satsuma Adams, 1868 (Hoso et al., 2010); Clausiliidae: Albinaria Vest, 1867 (Kornilios et al., 2015); and Orculidae: Schileykula Gittenberger, 1983 (Harl et al., 2020). The most prominent hypothesis explaining this phenomenon is sexual isolation or single gene speciation (Hoso et al., 2010; but see Ueshima \& Asami, 2003; Yamamichi \& Sasaki, 2013; Koch et al., 2017; Richards et al., 2017), which gives rise to new species or even new genera multiple times.

Past studies have reported that some dyakiid species exhibited both types of shell coiling within the same population; for example, in Elaphroconcha javacensis (Férrusac, 1821) reported by Dharma (1991) from East Java, and Dyakia mackensiana (Souleyet, 1841) reported by von Martens (1867) from Borneo, Sumatra and Singapore. It would be interesting to determine whether reversals in shell coiling at the
genus, species and population levels have the same molecular basis.

One of the selective advantages of reversal in shell coiling is an adaptation against predation by the snail-eating snake family Pareidae (Hoso et al., 2010), which is widespread in Southeast Asia (Uetz et al., 2019) and overlaps with the distribution of the sinistral dyakiid genera. Earlier experiments revealed that sinistral snails are more likely to survive snake predation (Hoso et al., 2010; Danaisawadi et al., 2016). Furthermore, the small population size caused by restricted distribution and fragmented populations, such as in Bertia (Hun et al., 2019), might accelerate the fixation of the non-adaptive shell coiling allele. This is similar to the taxa endemic to oceanic islands that exhibit a high number of sinistral genera in the absence of snail-eating snakes (Hoso, 2012).

## Historical biogeography of the Dyakiidae

Hausdorf (1995) proposed that mainland Southeast Asia and the Malay Peninsula represent the ancestral ranges of Dyakiidae based on a cladogram yielding Quantula as the first diverging lineage. Another sister lineage then diverged into one clade comprising Elaphroconcha, Pseudoplecta and Sasakina, mainly occupying Sumatra, Java, Bali to Flores, with another clade comprising Asperitas, Dyakia, Everettia and Kalamantania, mainly occupying Borneo and Sulawesi. In contrast, our analysis yielded mainland Southeast Asia (the Annamite Range and Khorat Plateau) as the ancestral range of Dyakiidae, after the addition of Bertia and Pseudoquantula, whereas Quantula was not retrieved as the first diverging lineage (Fig. 4). In addition, this scenario suggests that several lineages dispersed and diversified in Borneo and there was at least one dispersal event to Bali (as in Asperitas). North-to-south dispersal in Southeast Asia has also been reported in other animal taxa (e.g. Gorog et al., 2004; Wood et al., 2012; Gorin et al., 2020).

The proposed ancestral range of Asperitas + Dyakia + Kalamantania + Everettia in Borneo as suggested by Hausdorf (1995) agrees with our analysis. However, in this study, Borneo was also the ancestral range of Rhinocochlis and Pseudoplecta, whereas Hausdorf (1995) indicated the ancestral range of Pseudoplecta to be in Sumatra and the Lesser Sunda Islands. The position of the Bornean taxa at the terminal part of the tree is in accord with the later accretion of Borneo to Sundaland (Metcalfe, 2017), in which the dispersal from the Khorat Plateau into Borneo might occur. Some lineages of Dyakia and Pseudoplecta might have dispersed back to Peninsular Malaysia, which is a scenario of back colonization
similar to the case of mite harvestman (Clouse \& Giribet, 2010).
The future inclusion of more Asperitas, Dyakia, Elaphroconcha, Pseudoplecta and Sasakina species from the Greater and Lesser Sunda Islands in the phylogenetic framework would extend our understanding in the biogeographical scenario within Sundaland, and the inclusion of Craterodiscus and Staffordia might elucidate the origin of the Dyakiidae within the limacoid clade. Although fossils of the dyakiid snails have not yet been reported, time calibration of the phylogeny using other lines of evidence, e.g. geographical events (Liew et al., 2020), is crucial to discuss diversification events through time and space in this region.

## ACKNOWLEDGEMENTS

We thank all members of the Animal Systematics Research Unit (ASRU) at Chulalongkorn University, Thailand, for assistance in field sampling. Special thanks go to P. Bouchet, V. Héros and M. Caballer [RECOLNAT (ANR-11-INBS-0004), MNHN, Paris] and J. Ablett, F. Naggs and H. Taylor (NHM, London) for allowing the authors to examine the type material and photographs. We also thank Isabel Hyman, Bernhard Hausdorf and an anonymous reviewer for valuable comments that greatly improved the manuscript. This study was supported by the 2020 Postdoctoral Scholarship, Rachadapisek Sompote Endowment Fund, Chulalongkorn University, to S.P. and P.J. The main funding was provided by The Thailand Research Fund (grant no. TRF-DPG628001), TRF Strategic Basic Research (grant no. DBG 6080011; 2017-2019) and Center of Excellence on Biodiversity (grant no. BDC-PG2-161002). Additional funding was provided by Universiti Malaysia Sabah (grant no. GKP0011-STWN-2016 to T.-S.L.).

## REFERENCES

Abu-Bakar S-B, Razali NM, Naggs F, Wade C, MohdNor S-A, Aileen-Tan S-H. 2014. The mitochondrial 16 s rRNA reveals high anthropogenic influence on land snail diversity in a preliminary island survey. Molecular Biology Reports 41: 1799-1805.
AVMA. 2013. AVMA guidelines for the euthanasia of animals. Available at: https://www.avma.org/KB/Policies/Documents/ euthanasia.pdf
Baker HB. 1941. Zonitid snails from Pacific islands. Part 3 and 4. Bernice P. Bishop Museum Bulletin 166: 203-370.
Barker GM. 2001. Gastropods on land: phylogeny, diversity and adaptive morphology. In: Barker GM, ed. The biology of terrestrial molluscs. New York: CABI Publishing.

Barker GM,Efford MG. 2004. Predatory gastropods as natural enemies of terrestrial gastropods and other invertebrates. In: Barker GM, ed. Natural enemies of terrestrial molluscs. New York: CABI Publishing, 279-403.
BEDO. 2017. Land snails: checklist of molluscan biodiversity in Thailand. Bangkok: BEDO [in Thai].
Bouchet P, Rocroi J-P, Hausdorf B, Kaim A, Kano Y, Nützel A, Parkhaev P, Schrödl M, Strong EE. 2017. Revised classification, nomenclator and typification of gastropod and monoplacophoran families. Malacologia 61: 1-526.
de Bruyn M, Stelbrink B, Morley RJ, Hall R, Carvalho GR, Cannon CH, van den Bergh G, Meijaard E, Metcalfe I, Boitani L, Maiorano L, Shoup R, von Rintelen T. 2014. Borneo and Indochina are major evolutionary hotspots for Southeast Asian biodiversity. Systematic Biology 63: 879-901.
Clouse RM, Giribet G. 2010. When Thailand was an island - the phylogeny and biogeography of mite harvestmen (Opiliones, Cyphophthalmi, Stylocellidae) in Southeast Asia. Journal of Biogeography 37: 1114-1130.
Collinge WE. 1903. Report on the non-operculate land Mollusca. Fasciculi Malayensis Zoology 2: 205-218.
Criscione F, Köhler F. 2013. Conserved shell disguises diversity in Mesodontrachia land snails from the Australian Monsoon Tropics (Gastropoda: Camaenidae). Zoologica Scripta 42: 389-405.
Danaisawadi P, Asami T, Ota H, Sutcharit C, Panha S. 2016. A snail-eating snake recognizes prey handedness. Scientific Reports 6: 23832.
Darriba D, Taboada GL, Doallo R, Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772.
Dharma B. 1991. Collecting sinistral Elaphroconcha javacensis Férussac in East Java. The Papustyla 1: 2-3.
Dharma B. 1999. Asperitas stuartiae (Sowerby in Pfeiffer 1845) from Timor island, Indonesia with a description of two new subspecies (Gastropoda: Pulmonata: Ariophantidae). Schriften zur Malakozoologie 13: 19-24.
Drummond AJ, Rambaut A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7: 214.
Drummond AJ, Suchard MA, Xie D, Rambaut A. 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29: 1969-1973.
Duncan FM. 1937. On the dates of publication of the Society's 'Proceedings' 1859-1926, with an appendix containing the dates of publication 1830-1858, compiled by F.H. Waterhouse; also of the 'Transactions' 1833-1869 by Henry Peavot, originally published in P.Z.S. 1893, 1913. Proceedings of the Zoological Society of London, Series A 107: 71-84.
Fischer H, Dautzenberg P. 1904. Catalogue des mollusques terrestres et fluviatiles de IIndo-Chine orientale cites jusqu' à ce jour. In: Leroux E, ed. In: Leroux E, ed. Mission Pavie Indo-Chine 1879-1895. Paris: Leroux, E. 390-450.
Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. 1994. DNA primers for amplification of mitochondrial cytochrome c
oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294-299.
Foon JK, Clements GR, Liew T-S. 2017. Diversity and biogeography of land snails (Mollusca, Gastropoda) in the limestone hills of Perak, Peninsular Malaysia. ZooKeys 682: 1-94.
Gittenberger E, Hamann TD, Asami T. 2012. Chiral speciation in terrestrial pulmonate snails. PLoS One 7: e34005.
Godwin-Austen HH. 1891. On a collection of land shells made in Borneo by Mr. Everett, with descriptions of supposed new species. Part II. Zotinidae and Helicinidae. Proceedings of the Zoological Society of London 59: 22-47.
Gorin VA, Solovyeva EN, Hasan M, Okamiya H, Karunarathna DMSS, Pawangkhanant P, de Silva A, Juthong W, Milto KD, Nguyen LT, Suwannapoom C, Haas A, Bickford DP, Das I, Poyarkov NA. 2020. A little frog leaps a long way: compounded colonizations of the Indian Subcontinent discovered in the tiny Oriental frog genus Microhyla (Amphibia: Microhylidae). PeerJ 8: e9411.
Gorog AJ, Sinaga MH, Engstrom MD. 2004. Vicariance or dispersal? Historical biogeography of three Sunda shelf murine rodents (Maxomys surifer, Leopoldamys sabanus and Maxomys whiteheadi). Biological Journal of the Linnean Society 81: 91-109.
Gude GK. 1903. A classified list of the Helicoid land shells of Asia, Part V. Journal of Malacology 10: 5-16.
Gude GK, Woodward BB. 1921. On Helicella, Ferussac. Proceedings of Malacological Society of London 14: 174-190.
Gupta A. 2005. Chapter 3. Landforms of Southeast Asia. In: Gupta A, ed. The physical geography of Southeast Asia. Oxford: Oxford University Press, 38-64.
Harl J, Haring E, Páll-Gergely B. 2020. Hybridization and recurrent evolution of left-right reversal in the land snail genus Schileykula (Orculidae, Pulmonata). Journal of Zoological Systematics and Evolutionary Research 58: 633-647.
Hausdorf B. 1995. A preliminary phylogenetic and biogeographic analysis of the Dyakiidae (Gastropoda: Stylommatophora) and a biogeographic analysis of other Sundaland taxa. Cladistics 11: 359-376.
Hausdorf B. 1998. Phylogeny of the Limacoidea sensu lato (Gastropoda: Stylommatophora). Journal of Molluscan Studies 64: 35-66.
Hausdorf B. 2000. Biogeography of the Limacoidea sensu lato (Gastropoda: Stylommatophora): vicariance events and long-distance dispersal. Journal of Biogeography 27: 379-390.
Hemmen J, Hemmen C. 2001. Aktualisierte Liste der terrestrischen Gastropoden Thailands. Schriften zur Malakozoologie 18: 35-70.
Hillis DM, Bull JJ. 1993. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology 42: 182-192.
Hirano T, Kameda Y, Kimura K, Chiba S. 2014. Substantial incongruence among the morphology, taxonomy, and molecular phylogeny of the land snails Aegista, Landouria, Trishoplita, and Pseudobuliminus (Pulmonata:

Bradybaenidae) occurring in East Asia. Molecular Phylogenetics and Evolution 70: 171-181.
Hoso M. 2012. Non-adaptive speciation of snails by left-right reversal is facilitated on oceanic islands. Contributions to Zoology 81: 79-85.
Hoso M, Kameda Y, Wu SP, Asami T, Kato M, Hori M. 2010. A speciation gene for left-right reversal in snails results in anti-predator adaptation. Nature Communications 1: 133.
Hun S, Samorn V, Ith S, Chan B. 2019. Rediscovery of the critically endangered giant land snail Bertia cambojiensis (Reeve, 1860) in Cambodia. Cambodian Journal of Natural History 2019: 128-130.
Hyman IT, Ponder WF. 2010. A morphological phylogenetic analysis and generic revision of Australian Helicarionidae (Gastropoda: Pulmonata: Stylommatophora), and an assessment of the relationships of the family. Zootaxa 2462: 1-148.
Inkhavilay K, Sutcharit C, Bantaowong U, Chanabun R, Siriwut W, Srisonchai R, Pholyotha A, Jirapatrasilp P, Panha S. 2019. Annotated checklist of the terrestrial molluscs from Laos (Mollusca, Gastropoda). ZooKeys 834: 1-166.
Katoh K, Rozewicki J, Yamada KD. 2017. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics: 20: 1160-1166.
Kobelt W. 1900. Die Familie der Heliceen. Die Schnirkelschnecken nebst den zunächst verwandten Gattungen. Systematisches Conchylien-Cabinet von Martini und Chemnitz, Ersten Bandes 12: 941-988, pls. 246-257. [Published in parts; dates follow Welter-Schultes, 1999.]
Kobelt W. 1902. Die Familie der Heliceen. Die Schnirkelschnecken nebst den zunächst verwandten Gattungen. Systematisches Conchylien-Cabinet von Martini und Chemnitz, Ersten Bandes 12: 1061-1092, pls. 1270-1275. [Published in parts; dates follow Welter-Schultes, 1999.]
Koch EL, Neiber MT, Walther F, Hausdorf B. 2017. High gene flow despite opposite chirality in hybrid zones between enantiomorphic door snails. Molecular Ecology 26: 3998-4012.
Koene JM, Schulenburg H. 2005. Shooting darts: co-evolution and counter-adaptation in hermaphroditic snails. BMC Evolutionary Biology 5: 25.
Köhler F, Criscione F. 2015. A molecular phylogeny of camaenid land snails from north-western Australia unravels widespread homoplasy in morphological characters (Gastropoda, Helicoidea). Molecular Phylogenetics and Evolution 83: 44-55.
Köhler F, Criscione F, Hallan A, Hyman I, Kessner V. 2020. Lessons from Timor: Shells are poor taxonomic indicators in Asperitas land snails (Stylommatophora, Dyakiidae). Zoologica Scripta 49: 732-745.
Kongim B, Panha S. 2013. Karyotypic analysis of the terrestrial snail genus Phuphania (Pulmonata: Dyakiidae) with description of a new species from Thailand. Journal of Conchology 41: 319-325.
Kornilios P,Stamataki E, Giokas S. 2015. Multiple reversals of chirality in the land snail genus Albinaria (Gastropoda, Clausiliidae). Zoologica Scripta 44: 603-611.

Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33: 1870-1874.
Laidlaw FF. 1931. On a new subfamily Dyakiinae of the Zonitidae. Proceedings of the Malacological Society of London 19: 190-201.
Laidlaw FF. 1932. Notes on Ariophantidae from the Malay Peninsula, with descriptions of new genera. Proceedings of the Malacological Society of London 20: 80-94.
Laidlaw FF. 1933. A list of the land and fresh-water mollusca of the Malay Peninsula. Journal of the Malayan Branch of the Royal Asiatic Society 11: 211-234.
Laidlaw FF. 1963. Notes on the genus Dyakia, with a list of species. Journal of Conchology 25: 137-151.
Landis MJ, Matzke NJ, Moore BR, Huelsenbeck JP. 2013. Bayesian analysis of biogeography when the number of areas is large. Systematic Biology 62: 789-804.
Liew T-S, Marzuki ME, Schilthuizen M, Chen Y, Vermeulen JJ, Mohd-Azlan J. 2020. Molecular phylogenetics and evolutionary history of the endemic land snail genus Everettia in northern Borneo. PeerJ 8: e9416.
Liew T-S, Schilthuizen M, Vermeulen JJ. 2009. Systematic revision of the genus Everettia Godwin-Austen, 1891 (Mollusca: Gastropoda: Dyakiidae) in Sabah, northern Borneo. Zoological Journal of the Linnean Society 157: 515-550.
Lohman DJ, de Bruyn M, Page T, von Rintelen K, Hall R, Ng PKL, Shih H-T, Carvalho GR, von Rintelen T. 2011. Biogeography of the Indo-Australian Archipelago. Annual Review of Ecology, Evolution, and Systematics 42: 205-226.
Maassen WJM. 2001. A preliminary checklist of the nonmarine molluscs of West-Malaysia, "a handlist". De Kreukel Supplement: 1-155.
Margry CJPJ. 2013. Changes in radula and jaw during life stages of Eucobresia diaphana (Draparnaud, 1805) (Gastropoda, Pulmonata, Vitrinidae). Basteria 77: 3-12.
von Martens E. 1867. Die Preussische Expedition nach Ost-Asien. Berlin: Verlag der Königlichen Geheimen OberHofbuchdruckerei (R. v. Decker).
Matzke NJ. 2014. Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades. Systematic Biology 63: 951-970.
Metcalfe I. 2017. Tectonic evolution of Sundaland. Bulletin of the Geological Society of Malaysia 63: 27-60.
Miller MA, Pfeiffer W, Schwartz T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010, New Orleans, LA, 1-8.
von Möllendorff OF. 1891. On the land and freshwater shells of Perak. Proceedings of the Zoological Society of London 59: 330-348.
von Möllendorff OF. 1902. Binnenmollusken aus Hinterindien. 1. Landschnecken von Kelantan, Ostküste der Halbinsel Malacca. Nachrichtsblatt der Deutchen Malakozoologischen Gesellschaft 34: 135-149.
MolluscaBase. 2020. MolluscaBase. Available at: http://www. molluscabase.org
de Morgan J. 1885. Mollusques terrestres \& fluviatiles du royaume de Pérak et des pays voisins (presqu'ile Malaise). Bulletin de la Société Zoologique de France 10: 353-428.
Morgan JAT, DeJong RJ, Jung Y, Khallaayoune K, Kock S, Mkoji GM, Loker ES. 2002. A phylogeny of planorbid snails, with implications for the evolution of Schistosoma parasites. Molecular Phylogenetics and Evolution 25: 477-488.
Mouhot H. 1864. Travels in the central parts of Indochina (Siam), Cambodia, and Laos, during the Years 1858, 1859, and 1860, Vol. 1. London: John Murray.
Nakadera Y, Sutcharit C, Ubukata T, Seki K, Utsuno H, Panha S, Asami T. 2010. Enantiomorphs differ in shape in opposite directions between populations. Journal of Evolutionary Biology 23: 2377-2384.
Palumbi S, Martin A, Romano S, McMillan WO, Stice L, Grabowwski G. 1991. The simple fool's guide to PCR. Honolulu: Department of Zoology, University of Hawaii.
Pfeiffer L. 1862. Diagnoses de neuf espèces nouvelles provenant de Siam. Journal de Conchyliologie 10: 39-46.
Pfeiffer L. 1863. Descriptions of thirty-six new land shells from the collection of H. Cuming, Esq. Proceedings of the Zoological Society of London 30(1862): 268-278. [Published in parts; date follows Duncan, 1937.]
Rambaut A, Suchard MA, Xie D, Drummond AJ. 2014. Tracer v.1.6. Available at: http://tree.bio.ed.ac.uk/software/ tracer/
Ree RH, Smith SA. 2008. Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Systematic Biology 57: 4-14.
Richards PM, Morii Y, Kimura K, Hirano T, Chiba S, Davison A. 2017. Single-gene speciation: mating and gene flow between mirror-image snails. Evolution Letters 1: 282-291.
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539-542.
San Mauro D, Agorreta A. 2010. Molecular systematics: a synthesis of the common methods and the state of knowledge. Cellular \& Molecular Biology Letters 15: 311-341.
Schileyko AA. 2003. Treatise on recent terrestrial pulmonate mollusks. 10. Ariophantidae, Ostracolethaidae, Ryssotidae, Milacidae, Dyakiidae, Staffordiidae, Gastrodontidae, Zonitidae, Daudebardiidae, Parmacellidae. Ruthenica Supplement 2: 1309-1466.
Schileyko AA. 2007. Treatise on recent terrestrial pulmonate mollusks. 15. Oopeltidae, Anadenidae, Arionidae, Philomycidae, Succineidae, Athoracophoridae. Ruthenica Supplement 2: 2049-2209.
Schileyko AA. 2011. Check-list of land pulmonate molluscs of Vietnam (Gastropoda: Stylommatophora). Ruthenica 21: 1-68.
Schilthuizen M, Davison A. 2005. The convoluted evolution of snail chirality. Die Naturwissenschaften 92: 504-515.
Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics (Oxford, England) 30: 1312-1313.

Stoliczka F. 1873. On the land-shells of Penang Island, with descriptions of the animals and anatomical notes; part second, Helicacea. Journal of the Asiatic Society of Bengal 42: 11-38.
Sutcharit C, Asami T, Panha S. 2007. Evolution of wholebody enantiomorphy in the tree snail genus Amphidromus. Journal of Evolutionary Biology 20: 661-672.
Sutcharit C, Naggs F, Ablett J, Sang PV, Van Hao L, Panha S. 2019. Notes on the sinistral helicoid snail Bertia cambojiensis (Reeve, 1860) from Vietnam (Eupulmonata, Dyakiidae). ZooKeys 885: 1-14.
Sutcharit C, Thach P, Chhuoy S, Ngor PB, Jeratthitikul E, Siriwut W, Srisonchai R, Ng TH, Pholyotha A, Jirapatrasilp P, Panha S. 2020. Annotated checklist of the land snail fauna from southern Cambodia (Mollusca, Gastropoda). ZooKeys 948: 1-46.
Sutcharit C, Tongkerd P, Tan S-HA, Panha S. 2012. Taxonomic revision of Dyakia janus from Peninsular Malaysia (Pulmonata: Dyakiidae), with notes on other sinistrally coiled helicarionoids. The Raffles Bulletin of Zoology 60: 279-287.
Swofford DL. 2002. PAUP*. phylogenetic analysis using parsimony (* and other methods), Version 4. Sunderland: Sinauer Associates.
Tanabe AS. 2011. Kakusan4 and Aminosan: two programs for comparing nonpartitioned, proportional and separate models for combined molecular phylogenetic analyses of multilocus sequence data. Molecular Ecology Resources 11: 914-921.
Teasdale LC. 2017. Phylogenomics of the pulmonate land snails. Unpublished PhD Thesis, University of Melbourne.
Thach NN. 2015. Bertia setzeri, a new species of land snail from Vietnam (Gastropoda: Stylommatophora: Dyakiidae). The Festivus 47: 240-242.
Thiele J. 1931. Handbuch der systematischen Weichtierkunde. Bd. I, Teil 2. Jena, 377-778.
Thiele J. 1934. Handbuch der systematischen Weichtierkunde. Verlag von Gustav Fischer: Jena. Bd. II, Teil 3: 779-1022.
Tryon GWJ. 1886. Manual of conchology, structure and systematic, with illustrations of the species, 2nd ser., vol. 2 . Philadelphia: Academy of Natural Science.

Tumpeesuwan C, Naggs F, Panha S. 2007. A new genus and new species of dyakiid snail (Pulmonata: Dyakiidae) from Phu Phan Range, northeastern Thailand. The Raffles Bulletin of Zoology 55: 363-369.
Tumpeesuwan C, Tumpeesuwan S. 2014. Phuphania costata, a new species of dyakiid land snail (Pulmonata: Dyakiidae) from Phu Pha Lom limestone area, Loei Province, northeastern Thailand. The Raffles Bulletin of Zoology 62: 352-357.
Ueshima R, Asami T. 2003. Evolution: single-gene speciation by left-right reversal. Nature 425: 679.
Uetz P, Freed P, Hošek J. 2019. The reptile database. Available at: http://www.reptile-database.org
Wade CM, Mordan PB, Clarke B. 2001. A phylogeny of the land snails (Gastropoda: Pulmonata). Proceedings of the Royal Society B: Biological sciences 268: 413-422.
Wade CM, Mordan PB, Naggs F. 2006. Evolutionary relationships among the Pulmonate land snails and slugs (Pulmonata, Stylommatophora). Biological Journal of the Linnean Society 87: 593-610.
Wallace AR. 1860. On the zoological geography of the Malay Archipelago. Journal of the Proceedings of the Linnean Society of London. Zoology 4: 172-184.
Welter-Schultes FW. 1999. Systematisches ConchylienCabinet von Martini und Chemnitz (1837-1920), bibliography of the volumes in Göttingen. Archives of Natural History 26: 157-203.
Wood PL Jr, Heinicke MP, Jackman TR, Bauer AM. 2012. Phylogeny of bent-toed geckos (Cyrtodactylus) reveals a west to east pattern of diversification. Molecular Phylogenetics and Evolution 65: 992-1003.
Yamamichi M, Sasaki A. 2013. Single-gene speciation with pleiotropy: effects of allele dominance, population size, and delayed inheritance. Evolution; international journal of organic evolution 67: 2011-2023.
Yu Y, Blair C, He X. 2019. RASP 4: ancestral state reconstruction tool for multiple genes and characters. Molecular Biology and Evolution 37: 604-606.
Yu Y, Harris AJ, He X. 2010. S-DIVA (Statistical DispersalVicariance Analysis): A tool for inferring biogeographic histories. Molecular Phylogenetics and Evolution 56: 848-850.

## SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article at the publisher's web-site:
Figure S1. The 50 -majority rule consensus tree retrieved from the maximum parsimony analysis of morphological data.
Figure S2. The full results of ancestral area reconstructions applying: A, DEC+J model in BioGEOBEARS; and B, DEC module. The most likely state of each node is displayed in each pie chart.
Table S1. List of gene fragments, names and sequences of the forward (F) and reverse ( R ) primers, annealing temperatures and references.
Table S2. Results of model tests in BioGeoBEARS implemented in the RASP program.
Table S3. List of some characters of the genitalia and their abbreviations that were named and used in a different manner in other studies compared with the present study.
Table S4. General DNA sequence features of dyakiid snails in this study for each of the three gene fragments.

Table S5. Percentage of uncorrected pairwise intergeneric distances for the partial $C O I$ (above the diagonal) and 16 S rRNA (below the diagonal) gene fragments among the dyakiid genera. Intrageneric distances for COI/16S are shown on the diagonal.
Table S6. Percentage of uncorrected pairwise intergeneric distances for the partial 28S gene fragments among the dyakiid genera. Intrageneric distances for $28 S$ are shown on the diagonal.
Table S7. Results of tree length and fit measures of the maximum parsimony analysis of morphological data.


[^0]:    *Corresponding authors: jirasak4@yahoo.com; somsak.pan@ chula.ac.th
    [Version of record, published online 3 December 2020; http://zoobank.org/ urn:lsid:zoobank.org:pub: A01681DD-CD7B-4C9A-B763-5B282ED25B4E]

