Features Tutorial

QUESTIONS? Contact Rachel J. Lowery, Journal Editor, *Operative Neurosurgery*, rlowery@cns.org, 404-712-5969
SEARCH

QUESTIONS? Contact Rachel J. Lowery, Journal Editor, *Operative Neurosurgery*, rlowery@cns.org, 404-712-5969
TSA’s Search tool is intuitive, in that, as you begin entering a term, it lists selections commonly occurring in your search area. If needed, from here, you can select the term that you want and it will take you to all occurrences.
Your Search can be further specified from the menu on the left hand side of your screen to: Content Type, Publication Types, Article Types, Image Gallery, Video Type, Procedures, Sub-Specialties, Anatomical Areas and by Author.
VIDEOS

QUESTIONS? Contact Rachel J. Lowery, Journal Editor, Operative Neurosurgery, rlowery@cns.org, 404-712-5969
The Surgeon’s Armamentarium offers an extensive Video library, offering Videos on Clinical Scenarios, Endoscopy, Microsurgery and Simulation.

Begin by typing your search term into the search window.
Next, you can pinpoint your search by clicking on Video at the top of the menu or on the left side bar.
This will take you to all videos containing your search term, in this case, “Middle Cerebral Artery Aneurysms.”
By clicking on a particular video, this will take you directly into view mode.
By clicking the three white lines at the left side of the screen, this will reveal all pivotal points in this video.
You can also add your own notes to this video by clicking on the small clipboard at the top right hand side of the screen, and selecting the option to “Add My Note.” *Only authors of videos can utilize the “Add Author Note” feature.
Here, you can add your own note, and select the binder you would like to place it in.
CASES

QUESTIONS? Contact Rachel J. Lowery, Journal Editor, Operative Neurosurgery, rlowery@cns.org, 404-712-5969
Cases in The Surgeon’s Armamentarium are those Case Reports that have been published previously in either *Neurosurgery* or *Operative Neurosurgery*.

To search Cases in The Surgeon’s Armamentarium:

Begin with typing your term into the search field:
By clicking “Cases” on the left-hand side of the screen, this will pull up all Cases on this subject:

- **De Novo Arteriovenous Malformation Growth Secondary to Implantation of Genetically Modified Allogeneic Mesenchymal Stem Cells in the**
 By Makoto Nakamura.

- **Clinical Presentation**
 surgically evacuated. There was no evidence of an AVM. Alginate microcapsules containing genetically modified

- **Background and Importance**
 de novo development of a cerebral arteriovenous malformation (AVM) after implantation of genetically

- **Show more result from this case**

- **Vascular Orientation by Intra-arterial Dye Injection during Spinal Arteriovenous Malformation Surgery: Technical Note**
 By Satoshi Tani M.D.

- **Technical Notes.**

 - **Introduction**
 Spinal arteriovenous malformation (AVM) is one of the most complicated surgical abnormalities treated

 - **CONCLUSIONS**
 Vascular orientation during spinal AVM surgery by intra-arterial injection of indigo carmine seems to

- **Show more result from this case**

- **RADIOSURGERY FACILITATES RESECTION OF BRAIN ARTERIOVENOUS MALFORMATIONS AND REDUCES SURGICAL MORBIDITY**
 By Rene O.Sanchez-Mejia M.D.

- **CLINICAL STUDIES.**

 - **PATIENTS AND METHODS**
 Data were obtained from an ongoing registry of AVM patients treated at our institution, maintained prospectively

 - **COMMENTS**
 underwent surgical resection of a brain arteriovenous malformation (AVM). The 21 patients were matched with

- **Show more result from this case**
This search can be further honed by clicking on an author’s name on the left-hand side of the screen:

Content Type
- [x] Cases (1)
- [] Compendium
- [] Video

Author
- [x] Eichi Ishikawa M.D (1)
- [] A. Giancarlo Vishteh, M.D
- [] A. Giancarlo Vishteh, MD
- [] Abolghassem Sepehrnia, MD
- [] Adel M.Malek, M.D., Ph.D

DELAYED CYST FORMATION AFTER GAMMA KNIFE RADIOSURGERY FOR BRAIN METASTASES

By, Eichi Ishikawa M.D

CLINICAL STUDIES.

DISCUSSION

volume, complete nidus obliteration, and a lobar AVM location. Although there have been no previous reports

COMMENTS

complete radiosurgical obliteration of an arteriovenous malformation. Ishikawa et al. bring appropriate attention
Note, too, that this menu of author names can be expanded.
Radiosurgery facilitates resection of brain arteriovenous malformations and reduces surgical morbidity

By Rene O. Sanchez-Mejia M.D.

Clinical studies.

Patients and methods

Data were obtained from an ongoing registry of AVM patients treated at our institution, maintained prospectively.

Comments

underwent surgical resection of a brain arteriovenous malformation (AVM). The 21 patients were matched with
Local biological drug delivery in the brain is an innovative field of medicine that developed rapidly in recent years.

The use of mesenchymal stem cells (MSCs) has been reported to elicit neuroprotective and regenerative effects mainly through the release of neurotrophic and immunomodulatory peptides that may well be a source of trophic support, promoting endogenous repair such as neurogenesis, angiogenesis, and synaptogenesis.1

With regard to the safety of cell therapy using MSCs, a large meta-analysis of clinical trials under various pathological conditions did not show any evidence of severe side effects related to MSC transplantation, such as acute infusion-related toxicity, complications in peripheral organ systems, infection, death, and tumor formation.2 Although MSCs themselves are not tumorigenic, migration to existing primary tumors and modification or even stimulation of tumor growth due to their immunomodulatory properties cannot be completely excluded.3

Encapsulated cell biodelivery has been introduced as a novel clinical strategy for cell therapy in the central nervous system. Encapsulation with semipermeable hollow fibers4 as well as spherical polymeric microparticles5 protects cells transplanted into the brain from the immunological graft-versus-host response. Because the capsules permit the free passage of nutrients, oxygen, and smaller molecules, the cells are maintained within the capsules and can produce and deliver therapeutic peptides to the brain.4,5 Encapsulated cells have already been used for the treatment of diabetes mellitus,6 amyotrophic lateral sclerosis,7,8 chronic pain,9 Huntington disease,10 and malignant brain tumors.11–13

So far, no severe side effects have been reported concerning the use of encapsulated MSCs for biological drug delivery in the brain. Our report illustrates a unique case of the de novo development of a cerebral arteriovenous malformation (AVM) after implantation of genetically modified allogeneic MSCs.
Cases are also searchable through the Library feature. Begin by clicking Library on the left panel.
Then click Cases.
Cases are divided into nine distinct categories: Cerebrovascular, General, Neuroradiology, Neurotrauma, Pediatrics, Peripheral Nerve, Spine, Stereotactic and Functional and Tumor.
Within each subcategory, the cases are divided by year.
Cases can also be accessed directly, with the same results as above, by clicking on Cases on the initial menu.
QUESTIONS? Contact Rachel J. Lowery, Journal Editor, *Operative Neurosurgery*, rlowery@cns.org, 404-712-5969
Compendiums are indexes categorized by subject that contain all information related to a search term, whether Cases, articles, videos, or figures that are most pertinent to that subject.

These have been compiled by Operative Neurosurgery Editors.

To search Compendiums, begin by entering your term into the search field and press Enter:
This will bring up all instances of AVM, below.

Spontaneous Regression of a Dural Arteriovenous Malformation
By Multiple Authors: P. Sigouin, O. B., Miguel Elfan, MD, Michael McNeil, MD, and Andrew J. Salazar MD
The case of a 30-year-old man with a supratentorial dural arteriovenous malformation (AVM) associated with intracerebral hemorrhage is reported. Angiographically confirmed spontaneous regression of the AVM occurred without any form of surgical intervention. A possible m... Show more

High Altitude: An Unusual Cause of Neurological Detriment in a Patient with an Arteriovenous Malformation
By Multiple Authors: B.I. Tamminga MD and G.W. Koelt MD
High altitude associated with neurological detriment is an unusual presentation for an arteriovenous malformation (AVM). A case report of a man with a left temporal occipital AVM who developed symptoms that were markedly intensified by exposure to high altitude is p... Show more

Total Removal of a Brain Stem Arteriovenous Malformation: Case Report
By Multiple Authors: Yasuo Yonekawa MD, Y. Hidaka MD, and S. Yamada MD
The successful total removal of a brain stem arteriovenous malformation (AVM) in a two-stage operation is reported. The importance of selection of the approach for such an AVM because of the topographical anatomy is emphasized. (Neurosurgery 13:443-446, 1986) Show more
By clicking next to Compendiums on the left-hand side of the screen, you can find all Compendiums with the term “AVM” in them.
You can also filter a search to Compendiums by clicking that field at the very top of your page after a search has been performed.

Strokes In Children
By Edward Smith

Pediatric arteriovenous malformations are increasingly being treated with multimodality teams. This paper summarizes outcomes and strategies.

- **Proton Beam Stereotactic Radiosurgery for Pediatric Cerebral Arteriovenous Malformations**

The use of radiation is a key therapeutic modality in the management of pediatric arteriovenous malformations, with summary of proton beam therapy reviewed in this article.

- **Outcomes of Multimodality Therapy in Pediatric Patients With Ruptured and Unruptured Brain Arteriovenous Malformations**

Pediatric arteriovenous malformations are increasingly being treated with multimodality teams. This paper summarizes outcomes and strategies.

Intracranial Hemorrhage
By Edward Smith

Hemianectomy remains an important technique in the management of trauma, stroke and hemorrhage in children. This article reviews the data relevant to its use.

- **Proton Beam Stereotactic Radiosurgery for Pediatric Cerebral Arteriovenous Malformations**

The use of radiation is a key therapeutic modality in the management of pediatric arteriovenous malformations, with summary of proton beam therapy reviewed in this article.

Spinal Vascular Malformations
By Joseph Gemmela

- **EXTRADURAL THORACIC ARTERIOVENOUS MALFORMATION IN A PATIENT WITH KLIPPEL-TRENENAY-WEBER SYNDROME: CASE REPORT**

Clicking on a particular Compendium, for instance “Spinal Vascular Malformations,” will take you to all of the articles contained within that compendium.
Compiled articles will contain a Curator Note highlighting this article’s importance.
Clicking on an article title will take you directly into the article itself.

Intracranial Epidural Hematoma in Newborn Infants: Clinical Study of 15 Cases

Objective: Epidural hematoma (EDH) in newborn infants is rare. We have described the history of 15 newborns with EDH to provide a better understanding of this pathology.

Methods: This is a descriptive case series study using a retrospective review of the medical records of newborns who were admitted to the Pediatric Intensive Care Unit and Neurosurgery Department with the diagnosis of birth EDH over a 24-year period (1979–2002).

Results: There was no sex predominance, and most of the mothers were young, nulliparous women. The time latency from birth to the first signs varied from 0 to 24 hours. Clinical presentation was nonspecific: seizures and hypotonia were the main symptoms. The parietal area was the most frequent location. Surgical drainage was required in nine patients, and no deaths were reported.

Conclusion: This report highlights the clinical-radiological characteristics of newborn EDH, which occurs more frequently in newborns that experienced difficult delivery from a nulliparous mother. Surgery is not a rule; some patients can be managed with conservative treatment. The outcome is generally good.

Key Words: Birth trauma, Difficult delivery, Epidural hematoma, Intracranial, Newborn infants, Treatment

Epidural hematoma (EDH) in newborn infants is rare (2, 5, 24). According to Yamamoto et al. (38), only 31 cases have been reported and most often as case reports (4, 14, 20, 21, 22, 29).

The present study reports a descriptive case series study using a retrospective review of 15 cases of EDH to provide a better understanding of the clinical-radiological significance and to give a prognosis for newborns with EDH. To our knowledge, this is the largest series of and all had a computed tomographic (CT) scan or a magnetic resonance imaging (MRI) scan between Day 1 and Day 5, which revealed the EDH. Patient outcome was classified based on the follow-up evaluation assessed by neurological and neuropsychometric examinations. The Denver Developmental Screening Test is widely used in pediatric units for screening developmental delays in newborns and children. We have retrospectively classified these patients into three groups: Group 1 (G1) had a normal neurological and psychometric
Intracranial Epidural Hematoma in Newborn Infants: Clinical Study of 15 Cases

OBJECTIVE: Epidural hematoma (EDH) in newborn infants is rare. We have described the history of 15 newborns with EDH to provide a better understanding of this pathology.

METHODS: This is a descriptive case series study using a retrospective review of the medical records of newborns who were admitted to the Pediatric Intensive Care Unit and Neurosurgery Department with the diagnosis of birth EDH over a 24-year period (1979–2002).

RESULTS: There was no sex predominance, and most of the mothers were young, nulliparous women. The time latency from birth to the first signs varied from 0 to 24 hours. Clinical presentation was nonspecific: seizures and hypotonias were the main symptoms. The parietal area was the most frequent location. Surgical drainage was required in nine patients, and no deaths were reported.

CONCLUSION: This report highlights the clinicoradiological characteristics of newborn EDH, which occurs more frequently in newborns that experienced difficult delivery from a nulliparous mother. Surgery is not a rule; some patients can be managed with conservative treatment. The outcome is generally good.

KEY WORDS: Birth trauma, Difficult delivery, Epidural hematoma, Intracranial, Newborn Infants, Treatment

Reprint requests: Abderrahmane Hamlat, M.D., Service de Neurochirurgie, CHRU Pontchaillou, Rue Henri Le Guilloux, 35231 Rennes cedex, France

Epidural hematoma (EDH) in newborn infants is rare (2, 5, 24). According to Yamamoto et al. (38), only 31 cases have been reported and most often as case reports (4, 14, 20, 21, 22, 29).

The present study reports a descriptive case and all had a computed tomographic (CT) scan or a magnetic resonance imaging (MRI) scan between Day 1 and Day 5, which revealed the EDH. Patient outcome was classified based on the follow-up evaluation assessed by neurological and neuroimaging examinations. The former D.
Clicking on the “Back” box will take you back out to the Compendium.

INTRACRANIAL EPIDURAL HEMATOMA IN NEWBORN INFANTS: CLINICAL STUDY OF 15 CASES

OBJECTIVE: Epidural hematoma (EDH) in newborn infants is rare. We have described the history of 15 newborns with EDH to provide a better understanding of this pathology.

METHODS: This is a descriptive case series study using a retrospective review of the medical records of newborns who were admitted to the Pediatric Intensive Care Unit and Neurosurgery Department with the diagnosis of birth EDH over a 24-year period (1979–2003).

RESULTS: There was no sex predominance, and most of the mothers were young, nulliparous women. The time latency from birth to the first signs varied from 0 to 24 hours. Clinical presentation was nonspecific: seizures and hypotonia were the main symptoms. The parietal area was the most frequent location. Surgical drainage was required in nine patients, and no deaths were reported.

CONCLUSION: This report highlights the clinicoradiological characteristics of newborn EDH, which occurs more frequently in newborns that experienced difficult delivery from a nulliparous mother. Surgery is not a rule; some patients can be managed with conservative treatment. The outcome is generally good.

KEY WORDS: Birth trauma, Difficult delivery, Epidural hematoma, Intracranial, Newborn infants, Treatment

Epidural hematoma (EDH) in newborn infants is rare (2, 5, 24). According to Yamamoto et al. (38), only 31 cases have been reported and most often as case reports (4, 14, 20, 21, 22, 29). The present study reports a descriptive case series study using a retrospective review of 15 cases of EDH to provide a better understanding of the clinicoradiological significance and to give a prognosis for newborns with EDH. To our knowledge, this is the largest series of and all had a computed tomographic (CT) scan or a magnetic resonance imaging (MRI) scan between Day 1 and Day 5, which revealed the EDH.

Patient outcome was classified based on the follow-up evaluation assessed by neurological and neuropsychometer examinations. The Denver Developmental Screening Test is widely used in pediatric units for screening developmental delays in newborns and children. We have retrospectively classified these patients into three groups Group I (G1) had a normal neurodevelopment and neuropsychometric
The **Textbooks** feature allows you to access and compile articles strictly from the CNS textbooks, Apuzzo’s *Surgery of The Human Cerebrum* and Rhoton’s *Cranial Anatomy and Surgical Approaches*.

Begin with your search term, click Enter.
Click on Textbooks at either the top or left hand side of the screen.
Note that, on the left hand side of the screen, you can further specify your search to Article Type, Images, Sub-Specialties, Anatomical Areas and by Author.
Textbooks can also be accessed through the Library selection on the left hand side of the screen.
The **Tools** menu allows you access to any relevant information provided by an industry partner. Begin in this screen by creating your initial search in the search bar, click Enter.
By clicking on Tools either at the top or left hand side of the screen, this will take you to all industry content that specifically utilizes that search term.
Your search can be refined further on the left hand side by Tool Type, “Livery,” or name of the Manufacturer, Procedures, Sub-Specialties and by Author.
By clicking into the article, you have the option of reading, making notes or adding to your binder.
Tools can provide a direct link to a Manufacturer’s specific device, within the body of the article.

CONCLUSION: This large prospective clinical study shows that surgical treatment for CSM is associated with significant improvements in generic and patient-specific outcome measures at 1 year, which are sustained at 2-year follow-up. Surgical treatment appears to be a highly effective option for patients with symptomatic CSM and is an approach which can be recommended based on objective clinical and patient reported outcomes data from this study.

923

Combined Results of the 3 US IDE Randomized Cervical Arthroplasty Trials With 2-Years of Follow-up

Cheerag D. Upadhyaya, MD, MSc; Jau-Ching Wu; Gopalakrishnan Balamurali, MD, FRCS(SN); Regis W. Haid, MD; Vincent C. Traynelis, MD; Bobby Tay MD; Domagoj Coric, MD; Gregory R. Trost, MD; Praveen V. Mummaneni, MD, PhD

INTRODUCTION: There have been 3 prospective, randomized, multi-center trials of cervical disc arthroplasty evaluating the PRESTIGE cervical disc, the Bryan cervical disc, and the Pro-Disc C cervical disc. The 24-month data from these randomized, controlled trials has been published and all have found that cervical disc replacement is a reasonable alternative to anterior cervical discectomy and fusion. We performed an analysis of these 3 trials with unpublished 24-month follow-up from the PRESTIGE cervical disc trial.

METHODS: All included studies had at least 24 months of available follow-up. Heller et al evaluated the Bryan cervical disc enrolling 242 patients in the study arm and 221 in the control arm. Murray et al studied the ProDisc-C implant with 103 in the study arm and 106 in the...
Here, you can view all the links pertaining to that product.
Clicking on the information you want will take you directly to that catalog.
METHODS

Questions? Contact Rachel J. Lowery, Journal Editor, Operative Neurosurgery, rlowery@cns.org, 404-712-5969
My Binders is a function of The Surgeon’s Armamentarium that allows you to keep a dedicated collection of articles that you would like to refer back to.

Clicking in My Binders will bring you to the option of Creating a New Binder. Click on “Create New Binder.”
Create the name of your Binder here, press Enter.
Now perform your search in the search engine. Once you have identified an article of interest, click on that article.
Once in the article you want to add, click “Add to Binder.”
Now type in how you would like to identify the article, in this case, “Radiosurgery.” At the bottom of this pop up screen, click next to the box of the folder where you would like to save this article. Then click Save.
By going back into My Binders, you will see that the article you identified is now in your folder, ready to be accessed or added to at any time.
Additionally, you can simply add text to the file you have created, by highlighting it with your cursor and clicking “Add to Binder.”
First successful case of AVM radiosurgery

Steiner et al. (81) reported the first successful case of arteriovenous malformation (AVM) radiosurgery in 1972. Their subsequent publications provided additional strong evidence that radiosurgery, even without computerized dosimetry, could yield reasonable success rates for the treatment of carefully selected AVMs (78–80, 82). The gamma knife experience with radiosurgery for the treatment of AVMs is extensive and well documented (1, 8, 9, 16, 36, 42, 49, 53–55, 57–60, 64, 69).

Particle-beam radiosurgery has also been successfully used for the treatment of AVMs, as extensively documented (18–20, 34,

First reported the use of a linear accelerator radiosurgical system for the treatment of AVMs. Again, extensive literature has documented generally successful experiences (10–13, 27–29, 31, 32, 56, 70, 71, 74, 75, 83, 87, 88). Gamma knife, particle-beam, and linear accelerator radiosurgery have become increasingly important tools for the multimodality treatment of AVMs. In experienced hands, all three approaches have produced relatively high (60–80%) occlusion rates and relatively low (2%) radiation-induced complication rates. The practice of radiosurgery has radically changed since the first report by Steiner et al. (81), however; stereotactic angiography (a two-dimensional...
Pick the folder you would like to place your saved statement in and click Save.
After doing this, you will see that the text you’ve selected is permanently highlighted.

In addition, a number of patient and treatment factors, including Spetzler-Martin grade, presenting symptoms, dose, number of isocenters, radiological outcome, and clinical outcome, were subjected to multivariate analysis.

RESULTS: Two hundred twenty-five patients were treated with radiosurgery for the first time, and 44 patients underwent radiosurgical retreatment. One hundred forty-three patients had AVMs located in or near eloquent brain areas and 126 patients did not. Seventy patients demonstrated preoperative neurological findings related to the AVM and 199 did not. Twenty-six patients had previously undergone endovascular treatment and 10 patients had previously undergone surgical treatment of their AVMs. Of the 269 patients studied, 228 experienced no complication, 10 (3.7%) experienced a transient radiation-induced complication, 3 (1%) experienced a permanent radiation-induced complication, and 28 (10%) experienced posttreatment hemorrhage.

CONCLUSION: None of the analyzed factors was predictive of hemorrhage after radiosurgery in this study. The 12-Gy volume was predictive of permanent radiation-induced complications. Eloquent AVM location and 12-Gy volume were correlated with the occurrence of transient radiation-induced complications. Better conformity was correlated with a reduced incidence of transient complications. Lower Spetzler-Martin grades, higher doses, and steeper dose gradients were correlated with radiological success.

KEY WORDS: Aneurysm, malformation, Radiosurgery

Steiner et al. (81) reported the first successful case of arteriovenous malformation (AVM) radiosurgery in 1972. Their subsequent publications provided additional strong evidence that radiosurgery, even without computerized dosimetry, could yield reasonable success rates for the treatment of carefully selected AVMs (78–80, 82). The gamma knife experience with radiosurgery for the treatment of AVMs is extensive and well documented (1, 8, 9, 16, 36, 42, 49, 53–55, 57–60, 64, 69).

Particle-beam radiosurgery has also been successfully used for the treatment of AVMs, as extensively documented (10–20, 34, 37, 63–67, 52, 72, 77, 83). Betti (2) in 1987 and Betti et al. (3) in 1989 first reported the use of a linear accelerator radiosurgical system for the treatment of AVMs. Again, extensive literature has documented generally successful experiences (10–13, 27–29, 31, 32, 56, 70, 71, 74, 75, 85, 87, 88). Gamma knife, particle-beam, and linear accelerator radiosurgery have become increasingly important tools for the multimodality treatment of AVMs. In experienced hands, all three approaches have produced relatively high (60–80%) occlusion rates and relatively low (2%) radiation-induced complication rates. The practice of radiosurgery has radically changed since the first report by Steiner et al. (81), however; stereotactic angiography (a two-dimensional imaging modality) is now frequently supplemented with computed to-
Running your cursor back over this text allows you to erase this from your binder as well.

In addition, a number of patient and treatment factors, including Spetzler-Martin grade, presenting symptoms, dose, number of isocenters, radiological outcome, and clinical outcome, were subjected to multivariate analysis.

RESULTS: Two hundred twenty-five patients were treated with radiosurgery for the first time, and 44 patients underwent radiosurgical retreatment. One hundred forty-three patients had AVMs located in or near “eloquent” brain areas and 126 patients did not. Seventy-four patients demonstrated preoperative neurological findings related to the AVM, and 199 did not. Twenty-six patients had previously undergone endovascular treatment and 10 patients had previously undergone surgical treatment of their AVMs. Of the 269 patients studied, 228 experienced no complication, 10 (3.7%) experienced a transient radiation-induced complication, 3 (1%) experienced a permanent radiation-induced complication, and 28 (10%) experienced posttreatment hemorrhage.

CONCLUSION: None of the analyzed factors was predictive of hemorrhage after radiosurgery in this study. The 12-Gy volume was predictive of permanent radiation-induced complications. Eloquent AVM location and 12-Gy volume were correlated with the occurrence of transient radiation-induced complications. Better conformality was correlated with a reduced incidence of transient complications. Lower Spetzler-Martin grades, higher doses, and steeper dose gradients were correlated with radiological success.

KEY WORDS: Aneurysmal malformation, Radiosurgery

Stein et al. (81) reported the first successful case of aneurysmal malformation. In 1992, data from the subsequent publication strongly evidence that radiosurgery, even without computerized dosimetry, could yield reasonable success rates for the treatment of carefully selected AVMs (78-80, 82). The gamma knife experience with radiosurgery for the treatment of AVMs is extensive and well documented (1, 8, 9, 16, 36, 42, 49, 53-55, 57-60, 64, 69).

Particle-beam radiosurgery has also been successfully used for the treatment of AVMs, as extensively documented (18-20, 34, 37, 43-47, 52, 72, 77, 83). Betti (2) in 1987 and Betti et al. (3) in 1989 first reported the use of a linear accelerator radiosurgical system for the treatment of AVMs. Again, extensive literature has documented generally successful experiences (10-13, 27-29, 31, 32, 56, 70, 72, 74, 75, 83, 87, 88). Gamma knife, particle-beam, and linear accelerator radiosurgery have become increasingly important tools for the multimodality treatment of AVMs. In experienced hands, all three approaches have produced relatively high (60-80%) occlusion rates and relatively low (2%) radiation-induced complication rates. The practice of radiosurgery has radically changed since the first report by Steiner et al. (81), however; stereotactic angiography (a two-dimensional imaging modality) is now frequently supplemented with computed to-
You can also add specific moments in a video to folders you have created. By locating the video, and finding the moment you would like to save, click on the clipboard in the upper right hand corner of your screen, and click “Add My Note.”
Here, you can add your note and select the binder you would like to place it in, then click Save.
QUESTIONS? Contact Rachel J. Lowery, Journal Editor, *Operative Neurosurgery*, rlowery@cns.org, 404-712-5969
My Library is your personal collection of articles on a particular subject accessed by sources outside The Surgeon’s Armamentarium. To begin, click on My Library on the left-hand menu.
In this screen, you can create new folders and add to your existing ones.
To import articles from your computer, they must be in pdf format.
Choose the file to upload, which must be in either pdf or zip format only, name it and click Upload.
Here, you can view all articles you have compiled in your file. You can also move or delete this file by clicking on the buttons to the right side (see result on next screen).
Here, you have the option to either move this article to a folder that you have already created or delete it permanently.