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Abstract 	Comment by Wang Pu: Make sure to include the three parts: Aims, Methods and Important findings.
(reviews and forums should omit Methods)
Aims 
Clonal integration can increase performance of clonal plants suffering from environmental stress, and clonal plants in many wetlands commonly face stress of flooding accompanied by salinity. However, few studies have tested roles of clonal integration in amphibious plants expanding from terrestrial to aquatic saline habitats.
Methods 
Basal (older) ramets of clonal fragments of Paspalum paspaloides were grown in soil to simulate terrestrial habitats, whereas their apical (younger) ramets were placed at the surface of saline water containing 0, 50, 150 and 250 mmol L-1 NaCl to mimic different salinity levels in aquatic habitats. Stolons connecting the apical and basal ramets were either intact (connected) to allow clonal integration or severed (disconnected) to prevent integration. 
Important Findings 
Increasing salinity level significantly decreased the growth of the apical ramets of P. paspaloides, and such effects on the leaf growth were much higher without than with stolon connection after 60-d treatment. Correspondingly, Fv/Fm and F/Fm′ of the apical ramets were higher with than without stolon connection in highly saline treatments. Due to clonal integration, Na+ could be translocated from the apical to the basal ramets to alleviate ion toxicity in apical ramets. Our results suggest that clonal integration benefits the expansion of P. paspaloides from terrestrial to aquatic saline habitats via maintained photosynthetic capacities and changed biomass allocation pattern.
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Introduction
Soil salinization is increasing over large areas of the world’s land (Bazihizina et al. 2012; Deinlein et al. 2014; Flowers and Colmer 2015; Munns and Tester 2008). It negatively impacts the growth and reproduction of plants due to reduction in water availability and over-accumulation of ionic Na+ and Cl- (Alamri et al. 2013; Deinlein et al. 2014; Flowers and Colmer 2015; Zhang et al. 2010). When exposed to salt stress, tolerant species often maximize water uptake to reduce water loss (Munns and Tester 2008; Teakle and Tyerman 2010; Wang et al. 2011). Some species such as wheat (Triticum aestivum) and barley (Hordeum vulgare) can also avoid ion toxicity by restricting the entry of Na+ and Cl- and maintaining high retention of K+ in tissues (Garthwaite et al. 2005; Gorham et al. 1986). Some species that cannot efficiently exclude Na+ can compartmentalize Na+ into vacuoles to minimize ion toxicity (Deinlein et al. 2014; Munns and Tester 2008; Tester and Davenport 2003).
Flooding accompanied by salinity is a common stress encountered by plants in many wetlands such as salt marshes (Costa et al. 2003; Emery et al. 2001; Pennings et al. 2005; Wang et al. 2011; Xiao et al. 2011). Partial O2 deficiency caused by flooding increases the rate of Na+ uptake, decreases K+ retention in roots and prevents K+ uptake into the shoots (Alamri et al. 2013; Barrett-Lennard and Shabala 2013; Colmer and Greenway 2011; Pang et al. 2006), which may exacerbate ion imbalance in tissues and cause severe leaf necrosis or even plant death (Bazihizina et al. 2012; Munns et al. 1995; Munns and Tester 2008). Therefore, the ability of salt tolerance is important for plants growing in flooded salt marshes (Costa et al. 2003; Emery et al. 2001; Pennings et al. 2005).
Many amphibious clonal plants spread quickly by clonal growth and span from terrestrial to aquatic habitats and vice versa (Costa et al. 2003; Glover et al. 2015; Klimes 2008; Wang et al. 2009; Xiao et al. 2011). These species can establish a connected ramet system via stolons or rhizomes, which allows the translocation of resources such as water, carbohydrates and nutrients between the connected ramets through clonal integration (Wang et al. 2009; Xiao et al. 2011). Clonal integration has been shown to facilitate the performances of the ramets suffering from various environmental stresses such as shading, drought, flooding, sand burial and contamination of heavy metals in heterogeneously stressful habitats (Glover et al. 2015; Gruntman et al. 2016; Luo et al. 2014; Roiloa et al. 2014; Wang et al. 2009; Xu and Zhou 2016; Yu et al. 2004). However, only a few studies have examined how amphibious clonal plants expand populations in terrestrial-aquatic ecotones with the help of clonal integration (Liu et al. 2016; Luo et al. 2014; Wang et al. 2009; Xu and Zhou 2016; Yan et al. 2013). Moreover, in most of these studies, neither terrestrial nor aquatic habitats are contaminated by pollution (but see Xu and Zhou 2016).
Paspalum paspaloides grows vigorously at terrestrial-aquatic transition zones of flooded salt marshes (McCarthy et al. 2006; Semple et al. 2001; Watt et al. 2007). To investigate the roles of clonal integration in the expansion of this species from unpolluted terrestrial to aquatic saline habitats, the basal ramets of clonal fragments of P. paspaloides were grown in soil to simulate unpolluted terrestrial habitats, whereas their apical ramets were placed on the surface of saline water containing 0, 50, 150 and 250 mmol L-1 NaCl to mimic different salinity levels in aquatic habitats. The connecting stolons between the apical and basal ramets were either intact (connected) to allow clonal integration or severed (disconnected) to prevent integration. Eutrophication is a common phenomenon in wetlands (Bergstrom and Jansson 2006; Mackay et al. 2014). To simulate moderate eutrophication, certain amounts of nitrogen (N) and phosphorous (P) were added to the saline water. We expected that (1) salinity will reduce the growth and photosynthetic capacity of P. paspaloides; (2) clonal integration will alleviate such negative effects; (3) the benefits of clonal integration will be amplified with increasing the salinity level.
Material and methods
Plant species
Paspalum paspaloides (Michx.) Scribn is an amphibious, perennial, stoloniferous clonal grass (Bhattacharya et al. 2010; Chen et al. 2015). It is widely distributed in China, as well as in tropical and subtropical regions of the world. This species produces creeping stolons that bear leaves, roots and axillary stolons at each node. Each node along the stolon with its leaves and roots can form a ramet. Paspalum paspaloides grows frequently in flooded salt marshes, and can spread quickly by asexual propagation of stolon fragments to occupy transition zones ranging from terrestrial to aquatic areas. 

Experimental material
Paspalum paspaloides was collected from four riparian areas (geographical positions: 30°43'51"N, 104°32'19"E; 30°24'13"N, 103°58'59"E; 30°25'39"N, 103°49'39"E; 31°5'9"N, 103°50'54"E) in Chengdu, Sichuan Province, China. These areas are typical fluctuation zones along rivers with elevation ranging from 380 to 710 m and little disturbed by human activity. In these areas, P. paspaloides is a dominant species and its common, coexisting species include Phalaris arundinacea, Saccharum spontaneum and Polygonum hydropiper. In each area, plants were collected from four different locations spacing at least 10 m apart. These plants were mixed and vegetatively cultivated in a greenhouse of the Forest Science Company of Beijing Forestry University in Beijing. Before we started the experiment, the plant materials had been cultivated for > 2 years in the greenhouse to reduce potential maternal effects. Clonal fragments of P. paspaloides were propagated from stolon cuttings from these materials. 
On August 2015, we selected clonal fragments of P. paspaloides, each having eight ramets and an apex. For each clonal fragment, the four older ramets were termed as 'basal part', and the other four younger ones with the apex as 'apical part'. Each clonal fragment was grown in a plastic box (50 cm × 36 cm × 17.5 cm, long × wide × high) that was physically separated by a plastic partition into two equal sections (25 cm × 36 cm × 17.5 cm) to simulate the transition zones of flooded salt marshes. The left section of the box was filled with a mixture of riverbank soil and sand (1:1, v:v, containing 0.33 ± 0.03 mg total N g-1 and 0.75 ± 0.04 mg total P g-1) to a depth of 10 cm to simulate terrestrial habitats, and was grown with the basal part of the clonal fragment. The right section was filled with a medium level of eutrophic water (1.76 mg total N L-1 and 0.16 mg total P L-1) to a depth of 10 cm to simulate aquatic habitats, and was grown with the apical part of the clonal fragment. The partition was sealed to the side walls and the bottom of the box by glue so that neither water nor nutrients in the two sections could interfere with each other. After two weeks for recovery (15 August 2015), 102 clonal fragments of P. paspaloides were selected and used in the experiment described below. 

Experimental design
The experiment used a factorial design with four levels of salinity (0, 50, 150 and 250 mmol L-1 NaCl) crossed with two levels of stolon connection (connected or disconnected), resulting in a total of eight treatments (Fig. 1). Six clonal fragments were randomly selected and harvested to evaluate the initial dry mass of apical and basal ramets on day 0 (0.22 ± 0.02 g for apical ramets; 0.16 ± 0.03 g for basal ramets). The remaining 96 fragments were randomly assigned to each of the eight treatments, with 12 replicates for each treatment. 
For the treatments with salinity levels of 50, 150 and 250 mmol L-1, NaCl (Sigma-Aldrich, Shanghai, China) solutions of corresponding concentration were added to the right section of the boxes with the apical part, and for the treatment without salinity water (0 mmol L-1 NaCl), the same volume of deionised water was added. The salinity levels were set according to results of a pilot experiment which showed that P. paspaloides could 100% tolerate the saline level up to 250 mmol L-1. For the disconnected treatment, the stolon connecting the basal and apical part was severed. For the connected treatment, the stolon connecting the two parts remained untreated (intact) and passed over the top of the plastic partition (Fig. 1). 
The experiment lasted for two months. The photosynthetically active radiation measured at plant level at noon was 800 - 1800 μmol photons m-2 s-1 (Li-250A photometer, Li-Cor Biosciences, Lincoln, NE, USA). The daily maximum air temperature ranged between 25 and 33°C during the experiment. No extra NaCl solution was added and only deionised water was added to the boxes to compensate for the loss due to evaporation. All plants survived at harvest. 

Growth measurements
Six replicates were randomly selected and harvested on day 30 (14 September 2015), and the other six were harvested on day 60 (14 October 2015). Before harvest, we measured total number of ramets (the four original ramets plus their offspring ramets) of the apical and basal parts. Then, we harvested leaves, stolons and roots of the apical and basal parts separately, and dried them in oven at 80°C for at least 72 h. The dried samples were weighed, and then ground to fine powder for measuring Na+ and K+. 

Chlorophyll fluorescence measurements
On days 30 and 60 and before harvest, chlorophyll fluorescence was measured on the youngest, fully expanded leaves of both apical and basal ramets by using a portable modulated fluorometer (PAM-2500, Heinz Walz, Germany) at 09:00 - 12:00 h. The maximal (Fm) and minimal (Fo) fluorescence intensity of dark-adapted leaves were measured after 30 minutes of dark adaptation using leaf clips. Thereafter, the maximal (Fm′) and steady-state (Fs) fluorescence intensity of light-adapted leaves were determined after illumination at 800 µmol m-2 s-1 for 4 min. The intensity and duration of the saturation pulse used to determine Fm and Fm′ were 3500 μmol m-2 s-1 and 1 s, respectively. The maximal quantum yield of PSII (Fv/Fm) was calculated as Fv/Fm = (Fm - Fo)/Fm. Dark-adapted values of Fv/Fm are used as sensitive indicators of plant photosynthetic performance, in particularly, the phenomenon of photoinhibition (Maxwell and Johnson 2000). The effective quantum yield of PSII is calculated as ΔF/Fm′ = (Fm′ - Fs)/ Fm′, which is an indication of overall photosynthesis. Non-photochemical energy quenching in PSII (NPQ), i.e. NPQ = (Fm - Fm′)/ Fm′, is linearly related to heat dissipation (Lysenko et al. 2015).

Tissue Na+ and K+ measurements
Dried powder of leaf, stolon and root samples (ca. 200 mg) was used for Na+ and K+ concentration measurements. The samples were digested with HNO3/HClO4 (4:1, v:v) for three hours in heat-resistant glass tubes on a heating block at 180 °C and the digests were diluted in deionised water. The concentrations of Na+ and K+ in dilutions of digests were determined using an atomic absorption spectrophotometer (AA-7000, Shimadzu, Kyoto, Japan), according to the method described by Kotula et al. (2015). Data were calculated by taking standard curves of NaCl and KCl (Sigma-Aldrich, Shanghai, China) through the same procedures.

Statistical analyses
Data were checked for normality and homogeneity of variance before analyses. To increase normality and homogeneity of variance, data for root mass and ramet number of the apical ramets were transformed to logarithm, and data for root K+ concentration of the apical ramets were transformed to square root before analyses. Two-way ANOVA was used to examine the effects of stolon connection and salinity on growth parameters of the apical part, the basal part and the whole clonal fragment on days 30 and 60, and on chlorophyll fluorescence, Na+ and K+ concentration of the apical and basal parts on days 30 and 60. Planned contrasts following ANOVA were used to examine differences between the connected and disconnected treatments at each salinity level, using LMATRIX subcommands to control the family-wise error rate (Howell and Lacroix 2012; Sokal and Rohlf 1995). Leaf mass ratios and total mass ratios of the connected to the disconnected apical part were calculated as values of the connected treatment/mean values of the disconnected treatment. Differences in leaf mass ratios and total mass ratios of the apical part among salinity treatments were examined using one-way ANOVA followed by Duncan’s test. Some data of Na+ and K+ concentration in leaves or roots were not available because the sample amount was below the instrument detection. All analyses were done by using SPSS 16.0 (SPSS, Chicago, IL, USA). Effects were considered significant if p < 0.05.

Results
Growth performance of apical and basal parts
On day 30, salinity significantly decreased root mass, total mass and ramet number of the apical ramets of P. paspaloides (Table S1A; Fig. 2E, G and I). Leaf mass and ramet number of the apical ramets in saline water of 250 mmol L-1 NaCl were significantly higher with than without stolon connection to the basal ramets (Fig. 2A and I). Correspondingly, leaf mass ratio and total mass ratio of the connected to the disconnected apical part were significantly higher at the level of 250 mmol L-1 NaCl than at the other levels (Fig. 3A and C). However, root mass was higher without than with stolon connection in saline water of 50 mmol L-1 NaCl (Fig. 2E). For the basal ramets, biomass allocation to roots was higher with than without stolonconnection to the apical ramets (Table S2; Fig. S2). 
On day 60, increasing salinity level significantly decreased all growth variables of the apical ramets (Table S1D; Fig. 2B, D, F, H and J), and such effects on leaf and total mass were much higher without than with stolon connection (Fig. 2B and H). Correspondingly, leaf mass ratio of the connected to the disconnected treatment was higher at the level of 250 mmol L-1 NaCl and total mass ratio was higher at the levels of 150 mmol L-1 NaCl than at the levels of 0 and 50 mmol L-1 NaCl (Fig. 3B and D). Again, root mass of the apical ramets was significantly higher without than with the connection (Fig. 2F). Correspondingly, biomass allocation to leaves in the apical ramets was significantly higher with than without stolon connection, whereas biomass allocation to roots was lower (Table S2; Fig. S2). Consequently, stolon connection did not significantly affect total mass (Fig. 2H), but changed biomass allocation pattern of the apical ramets (Fig. S2). For the basal ramets, neither salinity nor stolon connection significantly affected their growth (Table S1B and E; Fig. S1). However, stolon connection greatly increased biomass allocation to roots, but decreased biomass allocation to leaves, showing counteracting effects of the apical and the basal ramets (Fig. S2).

Growth performance of the whole fragment
On day 30, neither salinity nor stolon connection significantly affected the growth of the whole fragment (Table S1C). On day 60, salinity significantly decreased stolon mass and total mass of the whole fragment (Table S1F; Fig. 4D and H), with higher values at the saline levels of 0 and 50 mmol L-1 NaCl than at the levels of 150 and 250 mmol L-1 NaCl. However, stolon connection had no significant effects on any growth variables. 

Photosynthetic capacities of apical and basal parts
On day 30, salinity significantly decreased Fv/Fm and ΔF/Fm′ of the apical ramets (Table S3A; Fig. 5A and C). ΔF/Fm′ was significantly higher with than without stolon connection (Fig. 5C). On day 60, Fv/Fm of the apical ramets significantly decreased with increasing salinity level, and was significantly higher with than without stolon connection (Table S3C; Fig. 5B). On the contrary, NPQ of the apical ramets was significantly smaller with than without stolon connection, and such effects increased with increasing salinity level (Table S3C; Fig. 5F). For the basal ramets, ΔF/Fm′ and NPQ were significantly smaller with than without stolon connection on day 60 (Table S3D; Fig. 5J and L). 

Na+ and K+ concentration in apical and basal parts
On day 30, salinity significantly increased Na+ in leaves and stolons of the apical ramets, but decreased K+ in stolons (Table S4A; Figs. 6 and S3). Na+ in roots of the apical ramets was only detected at saline levels of 50 and 150 mmol L-1 NaCl with stolon connection (Fig. 6E). K+ in stolons and roots of the apical ramets was higher with than without stolon connection at saline level of 50 mmol L-1 NaCl (Fig. S3C and E). On day 60, salinity significantly increased Na+ in leaves, stolons and roots of the apical ramets, but decreased K+ in stolons and roots (Table S4C; Figs. 6 and S3). Na+ in roots of the apical ramets was significantly smaller with than without stolon connection at saline levels of 150 and 250 mmol L-1 NaCl (Fig. 6F).
For the basal ramets, salinity significantly increased Na+ in stolons (Table S4B; Fig. 6I), and such effects were much higher with than without stolon connection on day 30. K+ in leaves and stolons of the basal ramets was also higher with than without stolon connection at saline level of 50 mmol L-1 NaCl (Table S4B; Fig. S3G and I). On days 60, salinity significantly increased Na+ in leaves of the basal ramets, and such effects were much higher with than without stolon connection (Table S4D; Fig. 6H). Similarly, Na+ in stolons of the basal ramets was higher with than without stolon connection (Fig. 6J). At the saline level of 250 mmol L-1 NaCl, K+ in leaves and roots of the basal ramets was significantly higher with than without stolon connection (Fig. S3H and L). 
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Discussion
As expected, salinity significantly reduced the growth and thus imposed stress on the apical ramets of P. paspaloides, agreeing with previous findings (Bazihizina et al. 2012; Munns et al. 1995; Munns and Tester 2008; Zhang et al. 2010). With increasing salinity level, leaf mass of the apical ramets decreased much less with than without stolon connection to the basal ramets on day 60. Meanwhile, leaf and total mass ratios of the connected to the disconnected apical ramets were higher at the high than at the low saline treatments. These results suggest that clonal integration could benefit the spread of apical ramets from the terrestrial habitats into saline water, and that such a positive effect increased with increasing salinity level. Correspondingly, salinity significantly decreased Fv/Fm and ΔF/Fm′ of the apical ramets without clonal integration, but had no negative impact on them with integration. The maintained photosynthetic capacities could well support the resource demand for the initial establishment and the production of new ramets to extend the population (Liu et al. 2016; Yu et al. 2001). Benefits of clonal integration to recipient ramets importing resources have been also found in many other clonal species in response to environmental stresses such as nutrient deficiency, shading and flooding (Elgersma et al. 2015; Glover et al. 2015; Roiloa et al. 2014; Wang et al. 2009; Wang et al. 2017; Xiao et al. 2011). The results suggest that clonal integration can alleviate the negative effects of salinity on the growth and clonal reproduction of the apical ramets of P. paspaloides during its expansion from terrestrial to aquatic saline habitats. 
Although clonal integration was found to reduce or increase the growth of donor ramets exporting resources in several studies (Glover et al. 2015; Pauliukonis and Gough 2004; Wang et al. 2017; Xiao et al. 2011; Xu and Zhou 2016), a meta-analysis has shown that clonal integration generally brings no significant costs to donor ramets (Song et al. 2013). We also found no cost of clonal integration to the basal ramets. As salinity did not significantly affect photosynthetic capacities of the apical ramets, the possible reasons for no costs to the basal ramets might be the independence of apical ramets or translocation of only surplus resources to the apical ramets (Liu et al. 2016; Song et al. 2013; Yu et al. 2001).  
The leaf and root growth of the apical and basal ramets showed different responses to clonal integration, showing counteracting effects of the apical and basal ramets. Under saline stress, biomass allocation to leaves of the apical ramets and that to roots of the basal ramets were significantly greater with than without clonal integration on day 60, whereas biomass allocation to roots of the apical ramets and to leaves of the basal ramets were smaller. Salt-tolerant species can avoid ion toxicity by restricting the entry of Na+ and Cl- (Bazihizina et al. 2012; Garthwaite et al. 2005; Gorham et al. 1986; Munns and Tester 2008). In this study, the roots of the apical ramets were directly subjected to saline stress in aquatic conditions. Thus, the inhibited root growth could reduce ion accumulation and alleviated saline injuries in the apical ramets. The results also indicate that with stolon connection resource demand for the apical ramets may be mainly supplied from the connected basal ramets through clonal integration other than through the roots in saline water. Decreased biomass allocation to roots of stressed ramets has also been found with stolon connection to unstressed ramets when subjected to alkalinity, nutrient deficiency or Cu contamination (Xu and Zhou 2016; Zhang et al. 2006; Zhang et al. 2015). Without clonal integration, the apical ramets allocated more biomass to roots to uptake nutrients and water from saline water, which is a possible reason for high Na+ accumulation in the roots and severe necrosis in leaves of the apical ramets. 
The integrative performance of apical and basal ramets determines the outcome of the whole fragment. Clonal integration greatly increased leaf growth of the apical ramets, but decreased their root growth. Such a contrasting effect on leaf and root growth led to no significant effect on the growth of the apical ramets. Meanwhile, the counteracting effects between apical and basal ramets discussed above resulted in no effect of the integration on the growth of the basal ramets. Furthermore, as the mass of the basal ramets accounted for about 60% of the total mass of the whole fragment during the experiment, the benefits to leaves and clonal reproduction of the apical ramets were not large enough to significantly increase the growth of the whole fragment. Therefore, clonal integration did not significantly increase the performance of the whole fragment. No benefits of integration at the level of the whole fragment was also observed in Spartina alterniflora under soil salt stress (Xiao et al. 2011), as well as S. alterniflora and Alternanthera philoxeroides when subjected to flooding (Wang et al. 2009; Xiao et al. 2010). 
Na+ was significantly higher in roots of the apical ramets without than with clonal integration under highly saline stress, but lower in leaves and stolons of the basal ramets. The results suggest that clonal integration allows Na+ to be translocated from the apical to the basal ramets. Therefore, the saline stress suffered by the apical ramets could be shared with the connected basal ramets, which may greatly alleviate accumulated ions toxicity to the apical ramets in highly saline water. The horizontal translocation of ions such as Cu2+ via connected stolons between interconnected ramets has been found in some other clonal species (Roiloa and Retuerto 2012; Xu and Zhou 2016; Yan et al. 2013). For the basal ramets, there will be a potential risk of ion toxicity when Na+ accumulation reaches a toxic level, so that their growth would be greatly decreased by clonal integration (Garthwaite et al. 2005; Munns and Tester 2008). In our study, the Na+ concentration of the apical ramets in the saline water was appropriately 50 times higher than that of the basal ramets in the terrestrial soil at the end of the experiment, which was apparently not higher enough to become toxic as the growth of the basal ramets was not significantly affected by clonal integration.
Paspalum paspaloides may take a double-edged adaptive strategy during its expansion from terrestrial to aquatic saline habitats. With stolon connection to the basal ramets, the apical ramets maintained photosynthetic capacities, decreased growth moderately, changed biomass allocation, translocated Na+ to the basal ramets and maintained high K+ concentration during their expansion in aquatic saline habitats. On the other hand, once terrestrial and aquatic ramets were disconnected, a large fraction of absorbed light energy became excessive due to decreased ΔF/Fm′ of apical ramets in highly saline stress. The up-regulated NPQ of the apical ramets could greatly protect the photosynthetic apparatus and minimize photoinhibition. Meanwhile, the basal ramets greatly increased their photosynthetic capacities, resulting in higher shoot growth and biomass allocation to leaves than those with stolon connection in highly saline stress, which may facilitate the expansion the population in terrestrial habitats. 

Conclusions	Comment by Wang Pu: The part of Conclusions is optional.
With the help of clonal integration, the apical ramets of P. paspaloides were able to establish and expand in highly saline water. However, the benefits of clonal integration to the apical ramets did not significantly increase the growth of the whole clonal fragments, which is probably due to counteracting effects of the apical and the basal ramets via changed biomass allocation pattern. As soil or water salinization happens at most (72 %) of the surface of the Earth (Flowers and Colmer 2015), resource translocation, risk sharing of ions (e.g. Na+, Cl-) and changed biomass allocation pattern between inter-connected ramets can benefit wetland clonal plants in aquatic-terrestrial ecotones of these regions. 

Funding
This research was supported by the Fundamental Research Funds for the Central Universities (2017ZY18, 2015ZCQ-BH-01), the National Natural Science Foundation of China (31670428, 31200314, 31570413). 

Acknowledgments
We thank Qi Shu, Ya-Nan Mu, Lin Liu and Xiao-Ya Zhang for their assistance during plant cultivation and harvesting. We are grateful to the Associate Editor and one anonymous referee for providing valuable comments.

References
Alamri SA, Barrett-Lennard EG, Teakle NL, et al. (2013) Improvement of salt and waterlogging tolerance in wheat: comparative physiology of Hordeum marinum-Triticum aestivum amphiploids with their H. marinum and wheat parents. Funct Plant Biol 40:1168–78.
Barrett-Lennard EG, Shabala SN (2013) The waterlogging/salinity interaction in higher plants revisited-focusing on the hypoxia-induced disturbance to K+ homeostasis. Funct Plant Biol 40:872–82.
Bazihizina N, Barrett-Lennard EG, Colmer TD (2012) Plant growth and physiology under heterogeneous salinity. Plant Soil 354:1–19.
Bergstrom AK, Jansson M (2006) Atmospheric nitrogen deposition has caused nitrogen enrichment and eutrophication of lakes in the northern hemisphere. Glob Change Biol 12:635–43.
Bhattacharya T, Chakraborty S, Banerjee DK (2010) Heavy metal uptake and its effect on macronutrients, chlorophyll, protein, and peroxidase activity of Paspalum distichum grown on sludge-dosed soils. Environ Monit Assess 169:15–26.
Chen MJ, Fu YW, Zhou QY, et al. (2015) Simulation of Cd2+ and Zn2+ migration among water, soil and Paspalum distichum. Environ Sci Technol 38:65–70.
Colmer TD, Greenway H (2011) Ion transport in seminal and adventitious roots of cereals during O2 deficiency. J Exp Bot 62:39–57.
Costa CSB, Marangoni JC, Azevedo AMG (2003) Plant zonation in irregularly flooded salt marshes: relative importance of stress tolerance and biological interactions. J Ecol 91:951–65.
Deinlein U, Stephan AB, Horie T, et al. (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19:371–9.
Elgersma KJ, Wildova R, Martina JP, et al. (2015) Does clonal resource translocation relate to invasiveness of Typha taxa? Results from a common garden experiment. Aqua Bot 126:48–53.
Emery NC, Ewanchuk PJ, Bertness MD (2001) Competition and salt-marsh plant zonation: stress tolerators may be dominant competitors. Ecology 82:2471–85.
Flowers TJ, Colmer TD (2015) Plant salt tolerance: adaptations in halophytes. Ann Bot 115:327–31.
Garthwaite AJ, von Bothmer R, Colmer TD (2005) Salt tolerance in wild Hordeum species is associated with restricted entry of Na+ and Cl− into the shoots. J Exp Bot 56:2365–78.
Glover R, Drenovsky RE, Futrell CJ, et al. (2015) Clonal integration in Ludwigia hexapetala under different light regimes. Aqua Bot 122:40–6.
Gorham J, Forster B, Jones RW, et al. (1986) Salt tolerance in the triticeae: solute accumulation and distribution in an amphidiploid derived from Triticum aestivum cv. Chinese spring and Thinopyrum bessarabicum. J Exp Bot 37:1435–49.
Gruntman M, Anders C, Mohiley A, et al. (2016) Clonal integration and heavy-metal stress: responses of plants with contrasting evolutionary backgrounds. Evol Ecol 31:305–16.
Howell GT, Lacroix GL (2012) Decomposing interactions using GLM in combination with the COMPARE, LMATRIX and MMATRIX subcommands in SPSS. Tutor Quant Methods Psychol 8:1–22.
Klimes L (2008) Clonal splitters and integrators in harsh environments of the Trans-Himalaya. Evol Ecol 22:351–67.
Kotula L, Clode PL, Striker GG, et al. (2015) Oxygen deficiency and salinity affect cell-specific ion concentrations in adventitious roots of barley (Hordeum vulgare). New Phytol 208:1114–25.
Liu L, Lin HF, Dong BC (2016) Clonal integration enhances expansion ability of Ipomoea aquatica in aquatic-terrestrial ecotones. Aqua Bot 128:33–40.
Luo FL, Chen Y, Huang L, et al. (2014). Shifting effects of physiological integration on performance of a clonal plant during submergence and de-submergence. Ann Bot 113:1265–74.
Lysenko EA, Klaus AA, Pshybytko NL, et al. (2015) Cadmium accumulation in chloroplasts and its impact on chloroplastic processes in barley and maize. Photosynth Res 125:291–303.
Mackay EB, Folkard AM, Jones ID (2014) Interannual variations in atmospheric forcing determine trajectories of hypolimnetic soluble reactive phosphorus supply in a eutrophic lake. Freshwater Biol 59:1646–58.
Maxwell K, Johnson GN (2000) Chlorophyll fluorescence-a practical guide. J Exp Bot 51: 659–68.
McCarthy B, Conallin A, D'Santos P, et al. (2006) Acidification, salinization and fish kills at an inland wetland in south-eastern australia following partial drying. Ecol Manage Restor 7:218–23.
Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–81.
Pang JY, Newman I, Mendham N, et al. (2006). Microelectrode ion and O2 fluxes measurements reveal differential sensitivity of barley root tissues to hypoxia. Plant Cell Environ 29:1107–21.
Pauliukonis N, Gough L (2004) Effects of the loss of clonal integration on four sedges that differ in ramet aggregation. Plant Ecol 173:1–15.
Pennings SC, Grant MB, Bertness MD (2005) Plant zonation in low-latitude salt marshes: disentangling the roles of flooding, salinity and competition. J Ecol 93:159–67.
Roiloa SR, Antelo B, Retuerto R (2014) Physiological integration modifies δ15N in the clonal plant Fragaria vesca, suggesting preferential transport of nitrogen to water-stressed offspring. Ann Bot 114:399–411.
Song YB, Yu FH, Keser LH, et al. (2013) United we stand, divided we fall: a meta-analysis of experiments on clonal integration and its relationship to invasiveness. Oecologia 171:317–27.
Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–27.
Wang L, Mu M, Li X, et al. (2011) Differentiation between true mangroves and mangrove associates based on leaf traits and salt contents. J Plant Ecol 4:292–301.
Wang N, Yu FH, Li PX, et al. (2009) Clonal integration supports the expansion from terrestrial to aquatic environments of the amphibious stoloniferous herb Alternanthera philoxeroides. Plant Biol 11:483–9.
Wang YJ, Müller-Schärer H, van Kleunen M, et al. (2017) Invasive alien plants benefit more from clonal integration in heterogeneous environments than natives. New Phytol 216:1072–8.
Watt S, García-Berthou E, Vilar L (2007) The influence of water level and salinity on plant assemblages of a seasonally flooded mediterranean wetland. Plant Ecol 189:71–85.
Xiao Y, Tang J, Hua Q, et al. (2010) Clonal integration enhances flood tolerance of Spartina alterniflora daughter ramets. Aqua Bot 92:9–13.
Xiao Y, Tang JB, Qing H, et al. (2011) Effects of salinity and clonal integration on growth and sexual reproduction of the invasive grass Spartina alterniflora. Flora 206:736–41.
Xu L, Zhou ZF (2016) Effects of Cu pollution on the expansion of an amphibious clonal herb in aquatic-terrestrial ecotones. PLOS ONE 11: e0164361.
Yan X, Wang H, Wang Q, et al. (2013) Risk spreading, habitat selection and division of biomass in a submerged clonal plant: responses to heterogeneous copper pollution. Environ pollut 174:114–20.
Yu FH, Chen Y, Dong M (2001) Clonal integration enhances survival and performance of Potentilla anserina, suffering from partial sand burial on ordos plateau, China. Evol Ecol 15:303–18.
Yu FH, Dong M, Krusi B (2004) Clonal integration helps Psammochloa villosa survive sand burial in an inland dune. New Phytol 162:697–704.
Zhang S, Song J, Wang H, et al. (2010) Effect of salinity on seed germination, ion content and photosynthesis of cotyledons in halophytes or xerophyte growing in central Asia. J Plant Ecol 3:259–67.
Zhang XQ, Liu J, Welham CVJ, et al. (2006) The effects of clonal integration on morphological plasticity and placement of daughter ramets in black locust (Robinia pseudoacacia). Flora 201:547–54.


Tables here (if there is any)


Figure legends
Figure 1: Schematic representation of the experimental design. Each clonal fragment of Paspalum paspaloides consists of four basal ramets (closed circles) grown in soil and four apical ramets (open circles) with a stolon apex (an arrow) subjected to eutrophic water with four salinity levels (0, 50, 150 and 250 mmol L-1). The apical and basal ramets were either connected (on the left) or disconnected by severing (on the right).

Figure 2: Leaf mass (A, B), stolon mass (C, D), root mass (E, F), total mass (G, H) and ramet number (I, J) of the apical part of Paspalum paspaloides grown in eutrophic water with four salinity levels measured on days 30 and 60, connected or disconnected with the basal part grown in soil. Asterisks represent statistically significant differences between the connected and the disconnected treatments at each salinity level (** p < 0.01 and * p < 0.05). Bars are mean values (± s.e., n = 6).

Figure 3: Leaf mass ratio (A, B) and total mass ratio (C, D) of the connected to the disconnected apical part of Paspalum paspaloides on days 30 and 60. The apical part was subjected to eutrophic water with four salinity levels, connected or disconnected with the basal part grown in soil. Means sharing the same letter for different salinity treatments are not significantly different at p = 0.05. Bars are mean values (± s.e., n = 6).

Figure 4: Leaf mass (A, B), stolon mass (C, D), root mass (E, F), total mass (G, H) and ramet number (I, J) of the clonal fragment of Paspalum paspaloides measured on days 30 and 60, with its apical part subjected to eutrophic water with four salinity levels and connected or disconnected with its basal part grown in soil. Asterisks represent statistically significant differences between the connected and the disconnected treatments at each salinity level (* p < 0.05). Bars are mean values (± s.e., n = 6).

Figure 5: Maximal quantum yield of photosystem II (Fv/Fm, A, B, G, H), effective quantum yield of photosystem II (ΔF/Fm′, C, D, I, J) and non-photochemical energy quenching (NPQ, E, F, K, L) of the apical (A - F) and the basal parts (G - L) of Paspalum paspaloides measured on days 30 and 60. The apical part was subjected to eutrophic water with four salinity levels, connected or disconnected with the basal part grown in soil. Asterisks represent statistically significant differences between the connected and the disconnected treatments at each salinity level (** p < 0.01 and * p < 0.05). Bars are mean values (± s.e., n = 2 - 6).

Figure 6: Na+ concentration in leaves (A, B, G, H), stolons (C, D, I, J) and roots (E, F, K, L) of the apical (A - F) and the basal parts (G - L) of Paspalum paspaloides measured on days 30 and 60. The apical part was subjected to eutrophic water with four salinity levels, connected or disconnected with the basal part grown in soil. Asterisks represent statistically significant differences between the connected and the disconnected treatments at each salinity level (** p < 0.01 and * p < 0.05). Bars are mean values (± s.e., n = 2 - 6).

Figure 1: Schematic representation of the experimental design. Each clonal fragment of Paspalum paspaloides consists of four basal ramets (closed circles) grown in soil and four apical ramets (open circles) with a stolon apex (an arrow) subjected to eutrophic water with four salinity levels (0, 50, 150 and 250 mmol L-1). The apical and basal ramets were either connected (on the left) or disconnected by severing (on the right).
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Figure 2: Leaf mass (A, B), stolon mass (C, D), root mass (E, F), total mass (G, H) and ramet number (I, J) of the apical part of Paspalum paspaloides grown in eutrophic water with four salinity levels measured on days 30 and 60, connected or disconnected with the basal part grown in soil. Asterisks represent statistically significant differences between the connected and the disconnected treatments at each salinity level (** p < 0.01 and * p < 0.05). Bars are mean values (± s.e., n = 6).
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Figure 3: Leaf mass ratio (A, B) and total mass ratio (C, D) of the connected to the disconnected apical part of Paspalum paspaloides on days 30 and 60. The apical part was subjected to eutrophic water with four salinity levels, connected or disconnected with the basal part grown in soil. Means sharing the same letter for different salinity treatments are not significantly different at p = 0.05. Bars are mean values (± s.e., n = 6).
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Figure 4: Leaf mass (A, B), stolon mass (C, D), root mass (E, F), total mass (G, H) and ramet number (I, J) of the clonal fragment of Paspalum paspaloides measured on days 30 and 60, with its apical part subjected to eutrophic water with four salinity levels and connected or disconnected with its basal part grown in soil. Asterisks represent statistically significant differences between the connected and the disconnected treatments at each salinity level (* p < 0.05). Bars are mean values (± s.e., n = 6).
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Figure 5: Maximal quantum yield of photosystem II (Fv/Fm, A, B, G, H), effective quantum yield of photosystem II (ΔF/Fm′, C, D, I, J) and non-photochemical energy quenching (NPQ, E, F, K, L) of the apical (A - F) and the basal parts (G - L) of Paspalum paspaloides measured on days 30 and 60. The apical part was subjected to eutrophic water with four salinity levels, connected or disconnected with the basal part grown in soil. Asterisks represent statistically significant differences between the connected and the disconnected treatments at each salinity level (** p < 0.01 and * p < 0.05). Bars are mean values (± s.e., n = 2 - 6).
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Figure 6: Na+ concentration in leaves (A, B, G, H), stolons (C, D, I, J) and roots (E, F, K, L) of the apical (A - F) and the basal parts (G - L) of Paspalum paspaloides measured on days 30 and 60. The apical part was subjected to eutrophic water with four salinity levels, connected or disconnected with the basal part grown in soil. Asterisks represent statistically significant differences between the connected and the disconnected treatments at each salinity level (** p < 0.01 and * p < 0.05). Bars are mean values (± s.e., n = 2 - 6).
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Supplementary Material
[bookmark: _GoBack]Figure S1: Leaf mass (A, B), stolon mass (C, D), root mass (E, F), total mass (G, H) and node number (I, J) of the basal part of Paspalum paspaloides grown in soil measured on days 30 and 60, connected or disconnected with the apical part grown in eutrophic water with four salinity levels. Asterisks represent statistically significant differences between the connected and the disconnected treatments at each salinity level (* p < 0.05). Bars are mean values (± s.e., n = 6).

Figure S2: Biomass allocation proportion in leaves, stolons and roots of the apical (A, B) and the basal parts (C, D) of Paspalum paspaloides measured on days 30 and 60. The apical part was subjected to eutrophic water with four salinity levels, connected or disconnected with the basal part grown in soil. Bars are mean values (± s.e., n = 6).

Figure S3: K+ concentration in leaves (A, B, G, H), stolons (C, D, I, J) and roots (E, F, K, L) of the apical (A - F) and the basal parts (G - L) of Paspalum paspaloides measured on days 30 and 60. The apical part was subjected to eutrophic water with four salinity levels, connected or disconnected with the basal part grown in soil. Asterisks represent statistically significant differences between the connected and the disconnected treatments at each salinity level (** p < 0.01 and * p < 0.05). Bars are mean values (± s.e., n = 2 - 6).
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