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Parameter-free H(div) preconditioning for a mixed finite element
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Mixed finite element formulations of generalised diffusion problems yield linear systems with ill-
conditioned, symmetric and indefinite coefficient matrices. Preconditioners with optimal work complex-
ity that do not rely on artificial parameters are essential. We implement lowest-order Raviart-Thomas el-
ements and analyse practical issues associated with so-called ‘H(div) preconditioning’. Properties of the
exact scheme are discussed in Powell & Silvester (2003), ‘Optimal preconditioning for Raviart-Thomas
mixed formulation of second-order elliptic problems,’SIAM J. Matrix Anal. Appl.,25(3), 718–738. We
extend the discussion, here, to practical implementation, the components of which are any available mul-
tilevel solver for a weightedH(div) operator and a pressure mass matrix. A new bound is established
for the eigenvalue spectrum of the preconditioned system matrix and extensive numerical results are pre-
sented.
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1. Introduction

Let Ω be a polygon inIRd (d= 2,3) and consider the boundary value-problem,

A −1~u−∇p= 0,

∇ ∙~u=− f in Ω ,
p= g on ∂ΩD,

~u∙~n= 0 on∂ΩN,

(1.1)

where∂ΩD 6= /0 andA =A (~x) is ad×d bounded, symmetric and uniformly positive definite matrix-
valued function with minimum eigenvalue bounded away from zero.

1.1 Second level section

The mixed first-order system (1.1) occurs in models of fluid flow in porous media (see Russell &
Wheeler (1983) and Ewinget al. (1983).) The macroscopic flow of groundwater satisfies~u=−kμ−1∇
PR, where~u denotes fluid discharge,PR is ‘residual pressure’,k is the permeability coefficient andμ
is viscosity. Coupling Darcy’s law with mass conservation yields (1.1) withf = 0, A = − k

μI and
p := PR. To fix ideas, we callp and~u=A ∇p the ‘pressure’ and ‘velocity’ solutions, respectively. Flow
domains are often comprised of different media with spatially varying permeability coefficients, leading
to heterogeneous problems with discontinuousA . In stratified media, the entries ofA corresponding to
different co-ordinate directions vary in magnitude, yielding anisotropicA . Mixed finite element meth-
ods are favoured when~u is the variable of interest as post-processing primal solutions leads to loss of
accuracy. Low order mixed methods also conserve mass locally.
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The Krylov subspace methodMINRES (see Paige & Saunder (1975)) is an optimal solver for (1.2).
The kth iterate minimises the Euclidean norm of thekth residual error over the corresponding Krylov
space and, sinceC is sparse, the cost per iteration depends linearly on the problem size. Popular alter-
native soltution schemes include Uzawa’s method and the augmented Lagrangian method (see Fortin
& Glowinski (1983, Ch. 1)). However, these methods require nested iteration and the user’s choice
of relaxation parameter determines the convergence of the outer iteration. Deficiencies associated with
this are highlighted in Rusten & Winther (1992). Fast convergence is obtained for the outer iteration if
the relaxation parameter is tuned in the right way but for the augmented Lagrangian method, that crip-
ples the inner-iteration. Preconditioners for the inner-solve have been suggested, see Hiptmair (1997),
but optimal parameter values have not been discussed. Vassilevski & Lazarov (1996) useMINRES but
introduce artificial parameters. ApplyingMINRES directly to (1.2) is simpler and more user-friendly.

LEMMA 1.1 The(n+m) eigenvalues of the generalised eigenvalue problem,

(
AI BT

B 0

)(
u
p

)

= σ
(

AI +D 0
0 N

)(
u
p

)

, (1.2)

arising in the Raviart-Thomas approximation of (2.7) are bounded by constants independent ofh and lie
in the intervals

[
−1,−β 2

∗

]
∪ [1] , whereβ∗ is the discrete inf-sup constant in (2.7).

Proof. It remains to prove the last assertion. The idea is to takeξ equal to gradθ in the first line of
(2.10). This yields

∫

Ω
|gradθ |2dx= 0.

So, sinceΩ is connected,θ is a constant and its nullity follows from the boundary conditions that it
satisfies onΓ0. �
WhenA =I , choosingP1 andP2 to represent the norms for which stability holds, leads to anh-optimal
eigenvalue bound. For problems with general coefficient tensors, however,P must also supply scaling
with respect toA . We chooseP1 = A+D, representing the weighted norm‖ ∙ ‖div,A , induced by the
inner-product (2.1).

2. Practical H(div) preconditioning

Now, letV be any symmetric and positive definite approximation toH = A+D. An ideal choice is a
V-cycle of multigrid, the cost of which is known to depend linearly on the problem size (see Trottenberg
et al. (2001, p. 74).) However,anyavailable approximation can be substituted, provided that there exist
positive constantsθ andΘ , satisfying,

0< θ 6
uTHu
uTVu

6Θ 6 1 ∀u∈ IRn\{0}. (2.1)

The conditionΘ 6 1 is not restrictive, since the chosenV can always be rescaled. It is purely to
simplify presentation in the sequel. In section 5 we perform numerical computations with a particular
V and compute corresponding values ofθ andΘ .

Now consider the preconditioner,

P=

(
V 0
0 N

)

. (2.2)
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We require bounds for the eigenvalues ofP−1C. To simplify notation further, let1

a=

(
cμmin

| T |min+μmin

)

, (2.3)

so that the ideal bound (2.2) reads[−1,−a]∪ [1]. In the proof, given in Powell & Silvester (2003,
Lemma 2.3), we establish that the negative eigenvalues of (2.3) are the values{λ} satisfying,BH−1

BT p=−λNp. In other words,

0< a6
pTBH−1BT p

pTNp
6 1 ∀ p∈ IRm\{0}. (2.4)

THEOREM 2.1 The(n+m) eigenvalues{λi}n+m
i=1 of the generalised eigenvalue problem,

(
A BT

B 0

)(
u
p

)

= λ
(

V 0
0 N

)(
u
p

)

, (2.5)

in the Raviart-Thomas approximation of (2.5), lie in the union of the intervals,
[

−1,
1
2

(

θ (1−a)−
√

θ 2 (a−1)2+4aθ
)]

∪ [θ ,1], (2.6)

whereθ is the constant satisfying (2.1) anda is the constant defined in (2.3).

Proof. First note that since the eigenvalues{λi}m+n
i=1 satisfy,

Au+BT p= λVu, Bu= λNp,

eliminatingp yieldsλuTAu+uTDu= λ 2uTVu. Applying (2.1) yields,

λ 2uTHu6 λuTAu+uTDu6 λ 2θ−1uTHu. (2.7)

From the left inequality we obtain,

(
λ 2−λ

)
uTAu+

(
λ 2−1

)
uTDu6 0, (2.8)

and sinceA is positive definite andD is semi-positive definite, we immediately establish|λ | 6 1. The
right inequality in (2.7) yields,

(1−λ )uTDu6
(
λ 2θ−1−λ

)
uTHu.

Since 06 1−λ it follows that 06 λ
(
λθ−1−1

)
. Hence ifλ > 0, we haveλ > θ , and the bound for

the positive eigenvalues is proved.

• Ω =
⋃

T∈M T;

• for any(T,T ′) ∈M 2, T 6= T ′ =⇒ T ∩T ′ = /0;

1In the context ofH -matrices, this twofold hierarchy is calledH 2-format.
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• for any(T,T ′) ∈M 2, T ∩T
′
= /0 or T ∩T

′
is a common edge (or a face in three-space dimensions)

or a common vertex ofT andT ′.

DEFINITION 2.1 Let
k

∑
j=0

α j u
n+ j−k = Δ t

k

∑
j=0

β j f (un+ j−k) (2.9)

be a linear multistep method for an ordinary differential equationu′(t) = f (u(t)), whereun ≈ u(tn).
Define

γ(ζ ) :=
∑k

j=0 α jζ k− j

∑k
j=0 β jζ k− j

as the quotient of its generating polynomials.

ALGORITHM 2.1 Sinceu is also the solution to (2.1), from (2.2) we have thatb(v, p) = 0 for all v∈ X.
Thanks to the inf–sup condition (2.1), the result follows immediately.

Now assume thatλ < 0. Eliminatingu yields,

B(λV−A)−1BT p= λNp. (2.10)

The values ofλ satisfying (2.10) are the eigenvalues of the matrix,

N−
1
2 B(λV−A)−1BTN−

1
2 = N−

1
2 B(λV−H+D)−1BTN−

1
2

= N−
1
2 B
(
λV−H+BTN−1B

)−1
BTN−

1
2

= N−
1
2 BY−

1
2

(
I +Y−

1
2 BTN−1BY−

1
2

)−1
Y−

1
2 BTN−

1
2

= X
(
I +XTX

)−1
XT ,

where, here,X = N−
1
2 BY−

1
2 andY = λV−H. Applying the Sherman-Morrison-Woodbury formula to

(
I +XXT

)−1
yields,

X
(
I +XXT)−1

XT = X
(

I −XT (I +XXT)−1
X
)

XT . (2.11)

Let v be an eigenvector ofXXT and letσ denote the corresponding eigenvalue. Then, with (2.11), we
obtain,

X
(
I +XXT)−1

XTv= XXTv−XXT (I +XXT)−1
XXTv

= σv−

(
σ2

1+σ

)

v=

(
σ

1+σ

)

v.

Hence, the values{λ} we are seeking in (2.10) satisfy,

λi =
σi

1+σi
, (2.12)

where eachσi is an eigenvalue of,

B(λiV−H)−1BT p= σNp. (2.13)
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We now can obtain a bound for these values by exploiting the spectral equivalence ofH andV defined by
(2.1). (Note that we have no readily available information about the spectral equivalence of the leading
blocksA andV.) �

Consider, first, the eigenvalues{μ} of,

(λV−H)−1u= μH−1u. (2.14)

Since(λV−H) is negative definite andH−1 is positive definite, the values ofμ are negative. Rearrang-
ing (2.14) and applying (2.1) yieldsθ 6 λ μ (μ+1)−1 6 1. Recalling thatθ > 0, μ < 0 andλ < 0, we
find that,

μ ∈
[

1
λ −1

,
θ

λ −θ

]

. (2.15)

REMARK 2.1 Whenθ = 1, we recover the eigenvalue bound (1).

COROLLARY 2.1 Let the assumptions of Theorem 2.1 be satisfied. LetΔ t ∼ hm+3/2 and chooseε ∼
h7m/2+25/4. Then, the solutioñφΔ t,h exists and converges with the optimal rate

‖φ̃n
Δ t,h−φ(∙, tn)‖H−1/2(Γ ) 6Cg(T)h

m+3/2∼Cg(T)Δ t2.

EXAMPLE 2.2 Next, introduce a jump in the coefficient and setA = αI in one quadrant ofΩ so that
μmin→ 0 in (2.3) asα → 0 (see Powell & Silvester (2003).) Values ofθ are listed in Table 1;Θ = 1
in all cases. The approximation toHA is A -optimal andh-optimal. The negative eigenvalues of the
preconditioned saddle point system, forα = 10−3 and 10−6 are listed in Tables 1–2. Observe that the
right-hand bound for the negative eigenvalues is tighter asα→ 0. The eigenvalues of the preconditioned
saddle point system, for fixedh and varyingα are plotted in Fig. 1. The scale on they-axis corresponds
to values ofα ∈

[
10−6,106

]
and each line of the plot depicts the eigenvalues for a different value ofα.

Clearly, for small valuesα << 1, MINRES convergence will deteriorate. Iteration counts obtained
with the ideal preconditioner are listed in columns 2–4 of Table 1. Counts for the multigrid version are
given in columns 5–7. As Theorem 2.1 predicts, the multigrid preconditioner exhibits exactly the same
asymptotic behaviour as the ideal version asα → 0.

TABLE 1 Eigenvalues of V−1H, unit coefficients

h 1
4

1
8

1
16

θ 0.5938 0.4595 0.4273
Θ 1 1 1

TABLE 2 Theoretical bounds and observed eigenvalues, unit coefficients

h boundsa observedb

1
4 [−0.9983,−0.7381]∪ [0.5938,1] [−0.9879,−0.8507]∪ [0.5943,1]
1
8 [−0.9996,−0.6504]∪ [0.4595,1] [−0.9972,−0.8438]∪ [0.4598,1]
1
16 [−0.9999,−0.6503]∪ [0.4273,1] [−0.9994,−0.8481]∪ [0.4273,1]

a Iteration counts obtained with the ideal preconditioner are listed in columns 2–3 of Table 2
b The negative eigenvalues of the preconditioned saddle point system.
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FIG. 1. Eigenvalues of preconditioned saddle point system,h= 1
16,α ∈

[
10−6,106

]

Clearly, for small valuesα << 1, MINRES convergence will deteriorate. Iteration counts obtained
with the ideal preconditioner are listed in columns 2–4 of Table 1. Counts for the multigrid version
are given in columns 5–7. As Theorem 2.1 predicts, the multigrid preconditioner exhibits exactly the
same asymptotic behaviour as the ideal version asα → 0. Note that the deterioration in convergence
has nothing to do with the chosen multigrid solver. It performs optimally, with respect toh andA . In
this simple case, the deterioration can be corrected by rescalingA so that the minimum value of any
coefficient is unity.

CASE 1. The operatorM is clearly bounded; let us prove that it also has closed range. To see this, use
the existence of a bounded extension operator fromH2(Ω) to H2(T2) to observe that the range ofM is
(M) = {(φ ,γ)T ∈ φ|Ωc = 0}. By the continuity of the restriction operator we have that this set is closed.

An operator between two Hilbert spaces which is bounded and has closed range has a bounded
Moore–Penrose pseudoinverse (see, e.g. Arnoldet al., 1997). Thus, the pseudoinverseM† of M exists
and is bounded.

3. Concluding remarks

Motivated by standard stability theory and discussion in Arnoldet al. (2000) and Powell & Silvester
(2003), we described a block-diagonal parameter free preconditioning scheme for the linear systems
(1.2) arising in the lowest-order Raviart-Thomas discretisation of generalised diffusion problems. New
bounds are established for the eigenvalue spectrum of the preconditioned saddle point matrix when the
leading block of the ideal preconditioner is replaced with a suitable approximation. In numerical ex-
periments, we demonstrated the impact of general coefficient tensors on the performance of a particular
multilevel approximation and on the theoretical eigenvalue bound.
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