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Mixed finite element formulations of generalised diffusion problems yield linear systems with ill-
conditioned, symmetric and indefinite coefficient matrices. Preconditioners with optimal work complex-
ity that do not rely on artificial parameters are essential. We implement lowest-order Raviart-Thomas el-
ements and analyse practical issues associated with so-ddlldi¥f preconditioning’. Properties of the

exact scheme are discussed in Powell & Silvester (2003), ‘Optimal preconditioning for Raviart-Thomas
mixed formulation of second-order elliptic problemSJAM J. Matrix Anal. Appl.25(3), 718—-738. We

extend the discussion, here, to practical implementation, the components of which are any available mul-
tilevel solver for a weightedH (div) operator and a pressure mass matrix. A new bound is established
for the eigenvalue spectrum of the preconditioned system matrix and extensive numerical results are pre-
sented.
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1. Introduction
Let Q be a polygon irR? (d = 2,3) and consider the boundary value-problem,

o tU-0p=0,
O.0=-f inQ, w1
p=g 0ondQp, '

i-i=0 onaQy,

whered Qp # 0 and«’ = &/ (X) is ad x d bounded, symmetric and uniformly positive definite matrix-
valued function with minimum eigenvalue bounded away from zero.

1.1 Second level section

The mixed first-order system (1.1) occurs in models of fluid flow in porous media (see Russell &
Wheeler (1983) and Ewinet al. (1983).) The macroscopic flow of groundwater satisfies —ku 10

Pr, wheret denotes fluid dischargék is ‘residual pressurek is the permeability coefficient and

is viscosity. Coupling Darcy’s law with mass conservation yields (1.1) With 0, & = —%f and
p:=Pr. Tofix ideas, we calp andii = &7 p the ‘pressure’ and ‘velocity’ solutions, respectively. Flow
domains are often comprised of different media with spatially varying permeability coefficients, leading
to heterogeneous problems with discontinuatidn stratified media, the entries af corresponding to
different co-ordinate directions vary in magnitude, yielding anisotregidVixed finite element meth-

ods are favoured wheiiis the variable of interest as post-processing primal solutions leads to loss of
accuracy. Low order mixed methods also conserve mass locally.
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The Krylov subspace methagiNRES (see Paige & Saunder (1975)) is an optimal solver for (1.2).
The kth iterate minimises the Euclidean norm of tkta residual error over the corresponding Krylov
space and, sindg is sparse, the cost per iteration depends linearly on the problem size. Popular alter-
native soltution schemes include Uzawa’s method and the augmented Lagrangian method (see Fortin
& Glowinski (1983, Ch. 1)). However, these methods require nested iteration and the user’s choice
of relaxation parameter determines the convergence of the outer iteration. Deficiencies associated with
this are highlighted in Rusten & Winther (1992). Fast convergence is obtained for the outer iteration if
the relaxation parameter is tuned in the right way but for the augmented Lagrangian method, that crip-
ples the inner-iteration. Preconditioners for the inner-solve have been suggested, see Hiptmair (1997),
but optimal parameter values have not been discussed. Vassilevski & Lazarov (1986Na&s but
introduce artificial parameters. ApplyingNRES directly to (1.2) is simpler and more user-friendly.

LEmMMA 1.1 The(n+ m) eigenvalues of the generalised eigenvalue problem,

(é' Ei)T)(;):G(AIgD 8)(2) (1.2)

arising in the Raviart-Thomas approximation of (2.7) are bounded by constants indeperident die
in the intervals[—l, —[3*2] U[1], wheref, is the discrete inf-sup constant in (2.7).

Proof. It remains to prove the last assertion. The idea is to fakgual to grad in the first line of
(2.10). This yields

/ |grad6|?dx = 0.
Q

So, sinceQ is connectedf is a constant and its nullity follows from the boundary conditions that it
satisfies orf. O
Wheng? = .7 choosing?; andP, to represent the norms for which stability holds, leads tb-aptimal
eigenvalue bound. For problems with general coefficient tensors, hovieraist also supply scaling
with respect to7. We choosé® = A+ D, representing the weighted noff ||giv,.s, induced by the
inner-product (2.1).

2. Practical H(div) preconditioning

Now, letV be any symmetric and positive definite approximationHo= A+ D. An ideal choice is a
V-cycle of multigrid, the cost of which is known to depend linearly on the problem size (see Trottenberg
et al. (2001, p. 74).) Howevegnyavailable approximation can be substituted, provided that there exist
positive constant® and®, satisfying,

.
H
47 o<1 vue R\{0. 2.1)

0<0< <
< u™Vu

The condition® < 1 is not restrictive, since the chos®¥ncan always be rescaled. It is purely to
simplify presentation in the sequel. In section 5 we perform numerical computations with a particular
V and compute corresponding valuesfodnd®.
Now consider the preconditioner,
vV 0
P= < 0 N ) . (2.2)
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We require bounds for the eigenvaluesof'C. To simplify notation further, lét

CUmin
a=——, 2.3
<| T ‘min +I1min> (2:3)

so that the ideal bound (2.2) reafisl,—a] U [1]. In the proof, given in Powell & Silvester (2003,
Lemma 2.3), we establish that the negative eigenvalues of (2.3) are the yalpesitisfying, BH*
BT p = —ANp. In other words,

p'BH B p

<= < m . i
O<ag PTNp <1 vpe RM\{0} (2.4)

THEOREM2.1 The(n-+m) eigenvaluegA; }]" of the generalised eigenvalue problem,

3 D6

in the Raviart-Thomas approximation of (2.5), lie in the union of the intervals,

{_1,; (6(1—a)—\/92(a—1)2+4a9ﬂ 16,1, 2.6)

where# is the constant satisfying (2.1) aads the constant defined in (2.3).

Proof. First note that since the eigenvalugs} ™" satisfy,

Au+BTp=AVu,  Bu=ANp,

eliminating p yieldsAu" Au+u"Du = A2u"Vu. Applying (2.1) yields,
A2u"Hu < AuTAu+u'Du< A%6 TuHu. (2.7)
From the left inequality we obtain,
(A2=A)u"Au+ (A?—1)u'Du <0, (2.8)

and sinceA is positive definite andD is semi-positive definite, we immediately establjath < 1. The
right inequality in (2.7) yields,

(1-A)u'Du< (A%207 1~ A)u"Hu.

Since 0< 1— A it follows that 0< A (A6~1—1). Hence ifA > 0, we haveA > 6, and the bound for
the positive eigenvalues is proved.

e 0= UTe.///T;

o forany(T,T) e #3T#T =TNT =0;

1in the context ofz#-matrices, this twofold hierarchy is called’2-format.
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o forany(T,T') € .#2, TNT =0orTNT is acommon edge (or a face in three-space dimensions)
or a common vertex of andT’.

DEFINITION 2.1 Let

K K
aiu™I K= At S B f (UMK (2.9)
2" 2P
be a linear multistep method for an ordinary differential equatigh) = f(u(t)), whereu" ~ u(ty).
Define . -
S ail =1
Q)= S
Yi—oBi¢*!

as the quotient of its generating polynomials.

ALGORITHM 2.1 Sinceu is also the solution to (2.1), from (2.2) we have théat, p) = 0 for all v € X.
Thanks to the inf—sup condition (2.1), the result follows immediately.

Now assume that < 0. Eliminatingu yields,
B(AV—A) 'BTp=ANp. (2.10)
The values ofA satisfying (2.10) are the eigenvalues of the matrix,
N"ZB(AV —A) 'BTN"2 =N"2B(AV —H + D) 'B'N"2
~N"2B(AV—H+B'N"1B) BTN 3
— N2BY? (l +Y‘%BTN‘1BY‘%)71Y‘%BTN‘%
— X (1+XTX) " XT,

where, hereX = N-3BY-3 andY = AV — H. Applying the Sherman-Morrison-Woodbury formula to
(I JrXXT)_1 yields,

X (1 XXT) X =X (1=XT (14 XXT) X)X, (2.11)

Let v be an eigenvector ot XT and leto denote the corresponding eigenvalue. Then, with (2.11), we
obtain,

X (1+XXT) " XTy = XXTv—XXT (I +XXT) " XXTv

A= (2.12)

B(AV —H) 'B"p=oNp. (2.13)
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We now can obtain a bound for these values by exploiting the spectral equivaldtemndy/ defined by

(2.1). (Note that we have no readily available information about the spectral equivalence of the leading

blocksA andV.) O
Consider, first, the eigenvalu¢g } of,

AV-H)tu=pH"u (2.14)

Since(AV — H) is negative definite and ! is positive definite, the values pfare negative. Rearrang-
ing (2.14) and applying (2.1) yield3 < Ap (1 + 1)’l < 1. Recalling thab > 0, u < 0 andA < 0, we
find that,

1 6
REMARK 2.1 WhenB = 1, we recover the eigenvalue bound (1).

COROLLARY 2.1 Let the assumptions of Theorem 2.1 be satisfied.Atet h™ %2 and choose ~
h™/2+25/4 Then, the solutiomy, » exists and converges with the optimal rate

G — ()l -1/2(r) < Co(T)N™ 2~ Cy(T) AL

ExamPLE 2.2 Next, introduce a jump in the coefficient and sét= o.# in one quadrant of2 so that
HUmin — 0in (2.3) asa — 0 (see Powell & Silvester (2003).) Values @fare listed in Table 10 =1
in all cases. The approximation ¥, is .<7-optimal andh-optimal. The negative eigenvalues of the
preconditioned saddle point system, for= 103 and 10°° are listed in Tables 1-2. Observe that the
right-hand bound for the negative eigenvalues is tighter as0. The eigenvalues of the preconditioned
saddle point system, for fixédand varyinga are plotted in Fig. 1. The scale on ti#@xis corresponds
to values ofo € [107°,10°] and each line of the plot depicts the eigenvalues for a different valoe of
Clearly, for small valuesr << 1, MINRES convergence will deteriorate. lteration counts obtained

with the ideal preconditioner are listed in columns 2—4 of Table 1. Counts for the multigrid version are
given in columns 5-7. As Theorem 2.1 predicts, the multigrid preconditioner exhibits exactly the same

asymptotic behaviour as the ideal versioruas; 0.

TABLE 1 Eigenvalues of V!H, unit coeficients

h

(OS>}

TABLE 2 Theoretical bounds and observed eigenvalues, unificaafts

h bound? observel

1 [-09983-0.7387U[0.59381]  [—0.9879 —0.8507U[0.5943 1]
1 [-0.9996 —0.6504U[0.45951]  [—0.9972 —0.843§ U[0.4598 1]
L [-09999 —0.6503U[0.42731]  [~0.9994 —0.8481U[0.4273 1]

a Jteration counts obtained with the ideal preconditioner are listed in columns 2—3 of Table 2
b The negative eigenvalues of the preconditioned saddle point system.
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1le6 ammn @O C—
1le5 D @O0 Cm—
led amm ©OOD C—
le3 L ©OD Cm—
le2 D 0D CH—
lel L g OO C—
a 1e0 L COMOD EI—
le-1 o= O WD CI——
le-2 o © O 0 COIDO CH—
le-3 amp @ O00O®m O O 0 COCDO CHE—
le-4 — D 0 COTPO
le-5 L o 0 COUD CHH—
le-6 - o 0 VD CEE
-1 0 1
eigenvalues

FiG. 1. Eigenvalues of preconditioned saddle point systesa, a € [1076,10°]

Clearly, for small valuesr << 1, MINRES convergence will deteriorate. Iteration counts obtained
with the ideal preconditioner are listed in columns 2—4 of Table 1. Counts for the multigrid version
are given in columns 5-7. As Theorem 2.1 predicts, the multigrid preconditioner exhibits exactly the
same asymptotic behaviour as the ideal version as 0. Note that the deterioration in convergence
has nothing to do with the chosen multigrid solver. It performs optimally, with respdcata 7. In
this simple case, the deterioration can be corrected by rescalisg that the minimum value of any
coefficient is unity.

Case 1. The operatoM is clearly bounded; let us prove that it also has closed range. To see this, use
the existence of a bounded extension operator #f2) to H(T?) to observe that the range bfis
M) ={(p,y)" € @oc = 0}. By the continuity of the restriction operator we have that this set is closed.

An operator between two Hilbert spaces which is bounded and has closed range has a bounded
Moore—Penrose pseudoinverse (see, e.g. Arabld, 1997). Thus, the pseudoinversE of M exists
and is bounded.

3. Concluding remarks

Motivated by standard stability theory and discussion in Arretlél. (2000) and Powell & Silvester
(2003), we described a block-diagonal parameter free preconditioning scheme for the linear systems
(1.2) arising in the lowest-order Raviart-Thomas discretisation of generalised diffusion problems. New
bounds are established for the eigenvalue spectrum of the preconditioned saddle point matrix when the
leading block of the ideal preconditioner is replaced with a suitable approximation. In numerical ex-
periments, we demonstrated the impact of general coefficient tensors on the performance of a particular
multilevel approximation and on the theoretical eigenvalue bound.
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