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Small heat-shock proteins (sHSPs) are ubiquitous ATP-in-
dependent molecular chaperones that play crucial roles in
protein quality control in cells. They are able to prevent the
aggregation and/or inactivation of various non-native sub-
strate proteins and assist the refolding of these substrates
independently or under the help of other ATP-dependent
chaperones. Substrate recognition and binding by sHSPs
are essential for their chaperone functions. This review
focuses on what natural substrate proteins an sHSP pro-
tects and how it binds the substrates in cells under fluctuat-
ing conditions. It appears that sHSPs of prokaryotes,
although being able to bind a wide range of cellular pro-
teins, preferentially protect certain classes of functional
proteins, such as translation-related proteins and metabolic
enzymes, which may well explain why they could increase
the resistance of host cells against various stresses.
Mechanistically, the sHSPs of prokaryotes appear to
possess numerous multi-type substrate-binding residues
and are able to hierarchically activate these residues in a
temperature-dependent manner, and thus act as tempera-
ture-regulated chaperones. The mechanism of hierarchical
activation of substrate-binding residues is also discussed
regarding its implication for eukaryotic sHSPs.
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Introduction

Protein quality control systems are composed of molecular
chaperones, folding catalysts, and proteases, which are es-
sential for cells to produce functional proteins as well as to
remove harmful misfolded/aggregated proteins. Molecular
chaperones, coined in 1978 [1] and later widely investigated
(as extensively reviewed by Ellis [2]), are defined as proteins
that assist other proteins to acquire functionally active struc-
tures but are not components of these final structures [3,4].
According to their molecular size, they are usually classified
into the following families: Hsp100s, Hsp90s, Hsp70s,

Hsp60s, Hsp40s, and small heat-shock proteins (sHSPs).
Each member from these families acts upon a specific spec-
trum (broad or narrow) of substrate proteins in assisting their
folding, refolding, oligomeric assembly, translocation, and/
or degradation [4].

The sHSPs, ubiquitously existing in all forms of life [5],
were found to suppress protein aggregation in an
ATP-independent manner [6,7] and stabilize stress-damaged
cell membranes [8–10]. Under in vitro conditions, sHSPs can
effectively interact with unfolded model substrate proteins
and keep them in a folding-competent state for subsequent
refolding that is facilitated by such ATP-dependent chaper-
ones as Hsp70s and Hsp100s [11–15]. On the other hand,
heterologous overexpression of sHSPs was reported to in-
crease the tolerance of host cells against various stresses [16–
23]. Physiologically, the sHSPs of animals, as exampled by
fly Hsp22, mammalian aA-crystallin and aB-crystallin,
mouse Hsp25, human Hsp27 and Hsp22, have been linked to
cell differentiation [24], apoptosis [25], and longevity [26],
and their dysfunction has been related to many diseases such
as cancer development [27], cardiovascular diseases [28,29],
cataracts [30], myopathy [31], and neuron diseases [32,33].

The primary structures of sHSPs are characterized by a
conserved a-crystallin domain of �100 amino acids [5],
which is flanked by a highly variable and often structurally
disordered N-terminal arm [34–37] and a short flexible
C-terminal extension [35,38,39]. The 3D structure determi-
nations revealed that sHSPs are rich in b-strands (as
reviewed in [40]) and existing as immunoglobin-like
b-sandwiches [35]. Under in vitro conditions, sHSPs are
often found to assemble into large oligomers of 12–40 subu-
nits, using dimers as the building block [34,35,41–43], al-
though a few of them were reported to exist as monomers,
dimers, or tetramers [44–46].

In the past decade, we systematically investigated the chap-
erone activity and mechanism of representative sHSPs mostly
under in vitro conditions [36,47–53]. Recently, we have uti-
lized the site-specific in vivo photo-crosslinking to probe the
chaperone function and mechanism of sHSPs in Escherichia
coli [54,55]. These studies suggested that prokaryotic sHSPs
utilize numerous multi-type substrate-binding residues and
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hierarchically activate them in a temperature-dependent
manner to capture a wide range of proteins. As such, sHSPs
could act as robust chaperones under fluctuating conditions
and enhance their chaperone activities at elevating tempera-
tures. Importantly, accumulative evidence indicate that sHSPs
also preferentially protect certain classes of functional pro-
teins, such as translation-related proteins and metabolic
enzymes [54,56–58]. In this review, I will focus on how an
sHSP activates its numerous multi-type substrate-binding resi-
dues and what functional proteins it protects in cells. For
readers who are interested in sHSPs with respect to their 3D
structures and oligomeric assembly and relevance to human
health and physiology, nice review articles are also available
[40,59–64].

Functional Diversity of the Substrate Proteins
of sHSPs

The sHSPs are known to non-selectively interact with nearly
all types of aggregation-prone unfolded model substrate pro-
teins under in vitro conditions [6,7,11,39,65–80]. Bovine eye
a-crystallin is the first sHSP that was reported to exhibit chap-
erone activity by suppressing the in vitro thermal aggrega-
tions of up to 12 types of proteins [6], including its naturally
associated proteins (bH-, bL-, gS-, and g-crystallins) and un-
related model enzymes (a-glucosidase, phosphoglucose
isomerase, glutathione S-transferase, enolase, aldolase, lactate
dehydrogenase, citrate synthase, carbonic anhydrase). Later,
many model substrate proteins (e.g. malate dehydrogenase,
alcohol dehydrogenase, b-galactosidase, elastase, luciferase,
lysozyme, rhodanese, xylose reductase, Ataxin-3, Sup35,

a-synuclein, a-lactalbumin, Abrin, b-actin, b-tubulin,
b-crystallin, g-crystallin, titin) and even peptides (insulin B
chain and melitin) from different organisms were found to
be the substrate proteins of sHSP family [7,11,65–73].

Furthermore, the substrate functional diversity of sHSPs
was nicely demonstrated by systematic identification of the
substrate proteins of specific sHSP in cells. For instances, 42
and 37 proteins were associated with the bacterium
Synechocystis Hsp16.6 [81] and E. coli IbpA [82] in cells, re-
spectively. In addition, a total of 94 proteins in the cell extract
of bacterium Deinococcus radiodurans were found to
co-aggregate with Hsp20.2 during thermal treatment [56].
Importantly, we have recently identified a total of 113 cellular
proteins interacting with IbpB in living E. coli cells by using
in vivo photo-crosslinking [54]. Retrospectively, these natural
substrate proteins of specific sHSPs appear to have a variety
of cellular functions, such as metabolism (e.g. energy produc-
tion, amino acid and carbohydrate metabolism), DNA replica-
tion, recombination and repair, mRNA transcription and
processing, and protein translation (Table 1). In particular,
many secretory proteins were identified as substrates of IbpB
and Hsp20.2 (Table 1), implicating that sHSPs are involved
in the quality control of secretory proteins during their bio-
genesis in the cytoplasm. Together, it appears that bacterial
sHSPs are capable of protecting all the cellular proteins.

Nevertheless, the substrate functional diversity of eukaryot-
ic sHSPs is largely unknown due to the lack of systematic
studies. To clarify this, database searching was performed for
three representative human sHSPs regarding their interacting
partners. The results presented in Table 1 indicated that
aB-crystallin binds a number of cellular proteins, including

Table 1. Functional diversity of the substrate proteins of sHSPs

Protein functiona Hsp16.6b IbpAb IbpBb Hsp20.2b aAb aBb Hsp27b

Metabolism 6 15 66 38 2 1 6

DNA replication/modification and chromosome structure 0 2 4 2 0 0 2

mRNA transcription and processing 2 3 4 4 1 0 15

Translation 3 8 19 30 0 0 1

Protein quality controlc 1 5 3 5 3 5 4

Secretory protein 0 1 9 5 2 5 10

Other functions 1 7 5 10 7d 11d 27d

Uncharacterized 0 1 3 0 0 0 3

Total 13 42 113 94 15 22 68

aProtein class was assigned according to the functional annotation of each protein in the UnitProt database.
b42 Hsp16.6-bound proteins after heat shock were co-purified, with 13 being identified [81]; IbpA-bound proteins were co-purified, with 42 being

identified [82]; IbpB-bound proteins were covalently photo-crosslinked with IbpB in living cells and then co-purified, with 113 being identified [54];
Hsp20.2-bound proteins were co-purified from the thermally treated mixture of Hsp20.2 and cell extract, with 94 being identified [56]. The information
for mammalian sHSPs-bound proteins was extracted from the protein–protein interaction databases (a uniform entry is provided at http://
www.ebi.ac.uk/Tools/webservices/psicquic/view/main.xhtml).

cProtein quality controls are considered as functional partners, instead of substrates of sHSPs.
dMost of the substrates for mammalian sHSPs in this classification are involved in signaling transductions that are crucial for cell differentiation,

proliferation, apoptosis, and development.
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those participating in signaling transductions related to apop-
tosis, cell–cell adhesion, cytoskeleton, and so on (classified
as ‘other functions’), in contrast to aA-crystallin that mainly
binds the crystallin proteins specifically expressed in the eyes.
Notably, Hsp27 not only binds signal transduction proteins
similarly with aB-crystallin, but also interacts with a number
of transcriptional factors and mRNA-processing proteins.
Apparently, the cellular functions for the substrate proteins of
mammalian sHSPs, or eukaryotic sHSPs in general, reflect
the multi-cellular complexity of eukaryotes. In line with this,
the genomes of eukaryotes usually encode a larger number of
sHSPs than those of prokaryotes [63], and the sHSPs of a eu-
karyotic organism usually have different sub-cellular compart-
ments [83,84] and cell/tissue specificity [85].

Functional Preference of the Substrate
Proteins of sHSPs

Despite their functional diversity, the substrates of both IbpB
and Hsp20.2 are apparently enriched in translation-related pro-
teins (Table 1), which include a number of ribosomal proteins,
amino-acyl tRNA synthetases, and translation factors. In retro-
spect, Hsp16.3, an sHSP of Mycobacterium tuberculosis, was
found to be associated with ribosomes, either in cells grown
under oxygen-deficient conditions as reported by Tabira et al.
[57] or in the in vitro transcription/translation system as
reported by our laboratory [86]. It appears that bacterial sHSPs
preferentially protect the protein synthesis machine under
stress conditions. Similarly, the sHSPs in plants (soybean and
tomato) were reported decades ago to be associated with ribo-
somes under heat-shock condition [58]. On the other hand, it is
documented that the ribosome is easily disrupted by heat
shock [87], which may inactivate the components in the
protein synthesis machine [88]. Importantly, we found that
translation-related proteins are prone to aggregate in
IbpB-deficient E. coli [54]. In light of all these observations, it

is conceivable that the translation-related proteins are vulner-
able to heat-induced aggregation and sHSPs are able to protect
them against the aggregation. The preferential protection of
sHSPs on the protein synthesis machines would substantially
contribute to the commonly observed increase of thermotoler-
ance in the host cells as a result of the overexpression of sHSPs
(e.g. IbpB) [21,22,89,90].

Besides the translation-related proteins, IbpB appears to
have a significant substrate preference for metabolic
enzymes, including those involved in carbohydrate metabol-
ism, amino acid metabolism, lipid metabolism, and respira-
tory chains/energy production, as reported in our recent
study [54]. Since metabolic enzymes were found to be more
vulnerable to stress-induced inactivation in cells lacking
IbpB by Fu et al. [54] and by others [91,92], the preferential
protection of IbpB on each metabolic enzyme may apparent-
ly have specific biological effects, such as helping cells to
resist the oxidative stress [54]. In addition, the protection of
IbpB on the metabolic enzymes as a whole may be linked to
protein synthesis, a cellular process whose functional integ-
rity definitely requires both abundant amino acids and ATP.
Nevertheless, it should be pointed out that mammalian
sHSPs appear not to exhibit any preferences to translation-
related proteins and metabolic enzymes (Table 1).

Structural Diversity of the Substrate Proteins
of sHSPs

It is far from clear whether certain common structural fea-
tures are adopted by the substrates of sHSPs, although they
were long known to be aggregation-prone [39,70,74–80]
and contain a considerable portion of native-like structures
[70,73,78,79,93,94]. In line with their functional diversity,
the substrate proteins of prokaryotic sHSPs are also structur-
ally diversified, as reflected by the broad range of their mo-
lecular weight (Fig. 1A) and isoelectric point (Fig. 1B). For

Figure 1. Broad range of molecular weights and isoelectric points of the substrates of sHSPs The model substrates of sHSPs and the in vivo substrates of

representative sHSPs (Hsp16.6, IbpA, IbpB, and Hsp20.2) were subjected to molecular weight (A) and isoelectric point (B) analysis by online software

Compute pI/Mw (http://web.expasy.org/compute_pi/), with the value of each substrate protein being shown here.
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example, the molecular weights of 27 representative model
substrate proteins range from 3 to 116 kDa (Fig. 1A).
Furthermore, the molecular weights of IbpA and IbpB sub-
strate proteins fall in the range of 10–155 kDa (Fig. 1A),
which is comparable with those of the E. coli proteome [95].
These observations indicated that sHSPs are able to bind
proteins of any molecular size that are naturally presented in
cells. Notably, the apparent upper limit of molecular weight
(i.e. 155 kDa) for IbpA and IbpB substrate proteins was
much higher than that of E. coli GroEL substrate protein
[96], presumable due to their different chaperone mechan-
isms. Specifically, the substrate proteins only need to be
incorporated into the dynamic and plastic oligomers of
sHSPs [97,98] but have to be enclosed in the cavity of
GroEL through its apical end [99].

In addition, the isoelectric points of the 13 substrate pro-
teins of Hsp16.6 have been revealed by using 2D electro-
phoresis with a pH ranging from 4.5 to .7.5 [81]. The
theoretical isoelectric points of the 27 model substrate pro-
teins, and IbpA, IbpB, and Hsp20.2 substrate proteins
evenly fall in a broader range (i.e. from 4 to 11; Fig. 1B).
These results indicated that sHSPs are able to capture or in-
corporate either negatively or positively charged substrate
proteins, despite of the overall negative charge for sHSPs
themselves under neutral conditions.

Multi-type Residues of sHSPs Participate
in Binding Substrates in Cells

The functional and structural diversity of the substrates of
sHSPs immediately raises the question as to how an sHSP
binds such diversified substrates. Earlier truncation studies
showed that a number of amino acids located in the three
characteristic domains of sHSPs are crucial for the functional
integrity of chaperone [36,50,72,100–104]. However, the
truncations also significantly affect the structural integrity of
sHSPs and therefore, the exact roles of the corresponding
regions for substrate-binding could not be unambiguously
assigned. A more reliable strategy based on chemical cross-
linking coupled with mass spectrometry was successfully
applied to the characterization of the substrate-binding
regions of M. tuberculosis Hsp16.3, plant Hsp21, and mam-
malian aA-crystallin, aB-crystallin, and Hsp22 [105–109],
revealing that the N-terminal part of the a-crystallin domain
and the N-terminal arm are the major regions for substrate
binding. Notably, these substrate-binding regions appear to
contain both polar and non-polar amino acids. However, the
exact role of each amino acid in substrate binding has not
been defined.

Site-directed mutagenesis was widely adopted to character-
ize the substrate-binding sites of both prokaryotic and eukary-
otic sHSPs, revealing that many charged residues are critical
for the chaperone functions of sHSPs [104,110–114].

Notably, some point mutations of mammalian sHSPs were
reported not only to significantly affect their functional
integrity under in vitro assays [115–117], but also to cause
diseases, as exampled by the mutations of R116C of
aA-crystallin in autosomal-dominant cataract [30], R120G of
aB-crystallin in desmin-related myopathy and cataract [31],
and K141N or K141E of Hsp22 in distal hereditary motor
neuropathies [32] as well as of Hsp27 in distal HMN and
CMT neuropathy [33]. Again, whether these identified critical
sites are directly involved in substrate binding cannot be deter-
mined, as most point mutations also affect the structural integ-
rity similar to the truncations.

Recently, an elegant approach using unnatural amino acid-
mediated photo-crosslinking, by which the side effect on the
structural integrity of sHSPs is minimized and site-specific
roles can be determined, has been used to characterize the
substrate-binding residues of sHSPs by others [118] and by
us [55]. In the first case, Bpa (an unnatural amino acid [119])
was site-specifically incorporated into pea Hsp18.1 at all the
three domains, and the interactions of purified Hsp18.1 Bpa
variant proteins with model substrate proteins (luciferase and
malate dehydrogenase) were examined under in vitro condi-
tions [118]. The authors found that both hydrophobic and
charged residues of Hsp18.1 are directly involved in
binding, consistent with conventional point mutation studies
on aA-crystallin and aB-crystallin [120,121]. Nevertheless,
the use of two model substrate proteins therein might not
reflect the diversity of natural substrate proteins in cells.

In the second case, we revealed that among 48 substrate-
binding residues of IbpB as identified by Bpa-mediated
in vivo photo-crosslinking, there are nearly equivalent hydro-
phobic and polar amino acids (including 13 charged residues)
(Table 2). Together, these results thus demonstrate that weak
interactions, including hydrophobic interactions, electrostatic
forces, and hydrogen bonds, are all involved in the interaction

Table 2. Multi-types of amino acids in IbpB are involved in substrate
bindinga

Amino acid

property

Non-polar Polar

Aliphatic

(%)

Aromatic

(%)

Uncharged

(%)

Charged

(%)

71 selected

residues for

validation

40.8 12.7 17.0 29.6

20 substrate-

binding residues

at 308C

30 15 30 25

48 substrate-

binding residues

at 508C

37.5 16.7 18.5 27.1

aData were obtained from our recent report [55].
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between sHSP and substrate proteins. Accordingly, such
multi-types of interactions enable sHSPs to recognize structur-
ally diversified substrate proteins that not only expose non-
native hydrophobic surfaces, but also present certain native
and/or non-native polar amino acids. Furthermore, such multi-
type non-covalent interactions may also keep the substrate–
sHSP complexes dynamic [97,122] and help to facilitate the
substrate release and refolding under the assistance of other
molecular chaperones [11–15,122].

The Mechanism of Temperature-dependent
Hierarchical Activation of Multi-type
Substrate-binding Residues Underlies the
Temperature-regulated Chaperone Activity
of sHSPs

One intriguing property for sHSPs is that their chaperone ac-
tivities were enhanced at elevated temperatures, as exempli-
fied by both prokaryotic sHSPs (e.g. E. coli IbpB [50], M.
tuberculosis Hsp16.3 [49,123], A. fulgidus Hsp20.2 [124],
M. jannaschii Hsp16.5 [125]), and eukaryotic sHSPs (e.g.
yeast Hsp26 [68,126,127], wheat Hsp16.9 [34], pea Hsp18.1
[98,118], plant cytosolic Class I and II sHSPs [128], and
mammalian a-crystallin [129]). Most probably, such heat
shock-mediated enhancement in the chaperone activities of
sHSPs is due to the heat shock-induced oligomeric

dissociation [34,49,50,98,118,123–125,128], which, in turn,
enables more substrate-binding residues to be accessible for
binding substrates. Alternatively, certain heat shock-
mediated structural readjustment without the oligomeric dis-
sociation could also activate sHSPs (e.g. yeast Hsp26
[126,127] and plant cytosolic Class II sHSPs [128]). While
there is no single model to sufficiently describe the activa-
tion mechanism of sHSPs [40,128], one key event is how
sHSPs activate their substrate-binding residues upon tem-
perature elevation.

Our recent report suggested that in living cells IbpB
functions as a robust molecular chaperone, with its substrate-
binding residues being hierarchically activated upon tem-
perature elevation [55]. Specifically, there are three types of
substrate-binding residues presented in IbpB, which are re-
spectively activated at characteristic temperatures: Type I
residues being activated at 258C and enhanced upon tem-
perature elevation; Type II residues being activated at 378C
and enhanced upon temperature elevation; Type III being
involved in oligomerization at ,378C, but switched for sub-
strate binding at heat-shock temperatures. Apparently, the
oligomeric dissociation and/or reorganization occur in order
for the Type III residues to be activated but it is not neces-
sary for the activation of Type I and II residues. Together,
Type I, II, and III residues in IbpB start to bind substrate pro-
teins at a particular temperature (Fig. 2). As a result, IbpB

Figure 2. A mechanism of hierarchically activating multi-type substrate-binding residues of sHSPs underlies their heat shock-enhanced chaperone
activities The modeled IbpB dodecameric structure was adopted from our earlier study [55] and shown here for schematically illustrating the mechanism for

the substrate binding of sHSPs. At elevated temperatures, multi-type substrate-binding residues (e.g. Type I, II, and III for IbpB) of a sHSP are hierarchically

activated due to temperature-regulated structural changes (e.g. oligomeric dissociation) and meanwhile, the abundance of non-native proteins in cells is also

increased accordingly. As such, the substrate-binding capacity of the sHSP would be well regulated in a temperature-dependent manner to cope with the

abundance of the substrates in a cell, i.e. it acts as a robust chaperone to meet the requirement for its physiological functions.
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remains inactive at a temperature lower than 208C and
becomes moderately active at relatively low temperatures
(between 25 and 308C), highly active at normal/
mild-heat-shock temperatures (between 37 and 428C), and
maximally active under severe heat-shock conditions (at
between 45 and 508C), as supported by our in vitro [50] and
in vivo [55] studies.

Since prokaryotes, lower eukaryotes (e.g. yeast), and
plants are very susceptible to fluctuating growth tempera-
tures, the chaperone functions of sHSPs therein would be
very likely regulated by temperature. It follows that the heat
shock-enhanced chaperone activities, as observed for
M. tuberculosis Hsp16.3 [49,123], A. fulgidus Hsp20.2 [124],
M. jannaschii Hsp16.5 [125], yeast Hsp26 [68,126,127],
wheat Hsp16.9 [34], pea Hsp18.1 [98,118], plant cytosolic
Class I and II sHSPs [128], may be well explained by the
temperature-dependent hierarchical activation of the multi-
type substrate-binding residues, similar to the E. coli IbpB.
Accordingly, any structural changes, including but not being
limited to the oligomeric dissociation, may make the
substrate-binding residues accessible to the substrates. Since
the abundance of the substrates in cells is tightly dependent
on the temperature and is usually increased upon temperature
elevation, the hierarchical activation of the multi-type sub-
strate residues of an sHSP at characteristic temperatures
would allow it to act as a robust chaperone to smartly cope
with the abundance of non-native substrate proteins occur-
ring at fluctuating temperatures. Nonetheless, the chaperone
functions of mammalian sHSPs are more likely regulated by
phosphorylation in cells [28,130–134], although they may
also be regulated by temperature [129]. How the phosphoryl-
ation enhances their chaperone functions is still not yet
defined. Conceivably, it is of interest to investigate whether
the hierarchical activation of multi-type substrate-binding
residues takes place during the phosphorylation-mediated
functional change for mammalian sHSPs.

Perspectives

In this review, I focus on the diversity of sHSP substrates
and suggest that the temperature-dependent hierarchical acti-
vation of the multi-type substrate-binding residues may rep-
resent a mechanism underlying the heat shock-enhanced
chaperone activities of prokaryotic sHSPs. Other outstanding
questions include the following. First, what functional sub-
strates are preferentially bound by eukaryotic sHSPs, par-
ticularly for mammalian sHSPs? Secondly, what common
structural features are adopted by the substrates of sHSPs,
despite their structural diversity? Thirdly, how sHSPs are
involved in the degradation of misfolded and/or aggregated
proteins in cells? Last but not least, are the substrates of se-
cretory proteins, as captured by prokaryotic sHSPs in the
cytoplasm [54,56], processed for the downstream biogenesis

(e.g. the Sec-system assisted translocation across the inner
membrane), or destined to degradation by cytoplasmic pro-
teases (e.g. ClpP)?
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