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Abstract

The important role of miR-133a in the progress and development of postmenopausal osteoporosis
has been reported, however, the underlying mechanism is not clear yet. In this study, qRT-PCR
analysis was performed to assess miR-133 expression in serum isolated from postmenopausal
osteoporosis patients (PMOP) and healthy controls. Bone mineral density (BMD) was measured at
the lumbar spine by dual-energy X-ray absorptiometry (DXA). The results showed that miR-133a
was significantly upregulated and negatively correlated with lumbar spine BMD in serum of post-
menopausal osteoporotic women. The miR-133a mimic, miR-133a inhibitor, and the correspond-
ing controls were transfected into RAW264.7 and THP-1 cells, respectively. TRAP-positive cells
were counted and the protein expression of NFATc1, c-Fos and TRAP were detected by western
blot analysis. We found that MiR-133a was upregulated during osteoclastogenesis, and overex-
pression of miR-133a promoted RANKL-induced differentiation of RAW264.7 and THP-1 cells into
osteoclasts, whereas miR-133a knockdown showed the reversed results. In in vivo experiment,
rats were bilaterally ovariectomized (OVX) and injected with antagomiR-133a or antagoNC, and
were sacrificed for collecting serum and lumbar spine for ELISA, micro-computed Tomography
(CT) and bone histomorphology analysis, respectively. It was found that, in OVX rats, miR-133a
knockdown altered the levels of osteoclastogenesis-related factors in serum and increased lumbar
spine BMD and changed bone histomorphology. Collectively, miRNA-133a is involved in the regu-
lation of postmenopausal osteoporosis through promoting osteoclast differentiation.
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Introduction . . . )
patients with osteoporosis is of great importance, however, a pro-
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Postmenopausal osteoporosis is a common bone disease character-
ized by low bone mineral density (BMD) and low trauma fractures
caused by unbalanced bone formation by osteoblasts and bone
resorption by osteoclasts [1]. It is a multifactorial disease resulting
from complex interactions between genetic susceptibility and envir-
onmental factors, such as estrogen deficiency, continuous calcium
loss, aging, physical activity, diet, use of certain drugs, and smoking
[2,3]. Osteoporosis is a major public health concern in China that
has a large aging populations [4]. Developing better treatments for

active approach that identifies patients at high risk for developing
osteoporosis is necessary to prevent bone loss [3,6].

MicroRNAs (miRNAs) are a superfamily of small single-
stranded (about 22 nucleotides), non-coding RNAs that regulate
gene expression usually by destabilizing mRNAs or by suppressing
translation [6]. Numerous studies have suggested that miRNAs are
important regulators associated with bone resorption by regulating
proliferation and differentiation of osteoclasts, such as miR-21,
miR-155, miR-223, miR-34¢, and miR-378 [7-11].
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In humans, there are two isoforms of miR-133, i.e. miR-133a and
miR-133b, with one base difference (g-a) at the last nucleotide of the
3’ end (miRBase: http:/www.mirbase.org/). Particularly, miR-133a
was reported to be dysregulated and negatively correlated with BMD
in postmenopausal osteoporosis [12,13], indicating the important role
of miR-133a in the progress and development of postmenopausal
osteoporosis. Wang et al. [12] also reported that miR-133a is a poten-
tial miRNA biomarker and/or regulatory element in circulating mono-
cytes, which play important roles in osteoclastogenesis by acting as
osteoclast precursors and secreting osteoclastogenic factors, such as
interleukin (IL)—1, IL-6, and tumor necrosis factor (TNF)-a, indicating
an important role of miR-133a in osteoclastogenesis.

In this study, qRT-PCR analysis was performed to assess miR-133
expression in serum isolated from postmenopausal osteoporosis
patients. We found that miR-133a was significantly upregulated and
negatively correlated with lumbar spine BMD in serum of postmeno-
pausal osteoporotic women. In vitro experiment showed that miR-
133a was upregulated during osteoclastogenesis and overexpression of
miR-133a promoted RANKL-induced differentiation of RAW264.7
and THP-1 cells into osteoclasts. In addition, i vivo experiment
showed that, in OVX rats, miR-133a knockdown altered the levels of
osteoclastogenesis-related factors in serum and increased lumbar spine
BMD and changed bone histomorphology. Collectively, our study indi-
cated that miRNA-133a is involved in the regulation of postmenopau-
sal osteoporosis through promoting osteoclast differentiation.

Methods and Materials

Clinical samples

This study was approved by the Ethics Committee of Anhui Provincial
Hospital, and all human participants signed informed-consent docu-
ments. All procedures were performed in accordance with the ethical
standards of the institutional and/or national research committee and
with the 1964 Helsinki declaration. Ten postmenopausal Chinese
women (body mass index, 23.8 + 5.7) with osteoporosis constituted the
postmenopausal osteoporosis patients (PMOP) group. All patients were
past menopause at the age of 59-80 years. The recruited patients carried
hip fractures (in femoral neck, trochanter, and intertrochanteric regions)
that required surgical intervention. The exclusion criterias including:
patients with malignancy or cancers, diabetes, cardiovascular, inflamma-
tion, and metabolic disorders as previously described [14]. Ten female
participants (body mass index, 25.2 + 3.8; age range 62-75) were used
as the control group, who were randomly selected population-based
sample living in the same region with the same age distribution as the
patient group. Blood was collected and stored for further analysis.

Isolation of RNA from serum
Five milliliters of blood was allowed to clot, followed by centrifu-
ging at 1500 g, and the supernatant containing serum was used for

Table 1. Primers used for qRT-PCR

miRNA isolation using Qiagen miRNeasy Serum/Plasma Kit
(Qiagen, Hilden, Germany) as previously described [14]. The final
RNA mixture was eluted in 20 pl of RNase free water and stored at
-80°C.

Quantitative real-time polymerase chain reaction (qRT-
PCR)

For qRT-PCR of miR-133a, the RNA eluates were reverse tran-
scribed to cDNA using TagMan MicroRNA Reverse Transcription
Kit (ThermoScientific, Waltham, USA) according to the manufac-
turer’s instructions. In brief, 10 ng of total RNA was added in 1.5 pl of
10 x RT buffer, 0.15pl of 100 mM dNTPs, 0.2 pl of 20 units/ul
RNase-inhibitor, 1 pl of each of microRNA primers (100 mM), 1 pl
of MultiScribe Reverse Transcriptase (50 units/pl), and 10.15 pl of
DEPC treated water. The RT protocol was as follows: 18°C for
30 min, 42°C for 30 min, and 90°C for 5§ min. Quantitative real-time
PCR was performed on a 7900HT Fast Real-Time system (Applied
Biosystems, Foster City, USA). The reaction conditions were: 95°C
for 10 min, 35 cycles of 95°C for 20s, and 58°C for 1min. U6
RNA was used as endogenous control for all the reactions. The rela-
tive quantity of each miRNA was determined by 22T method.
The primers used are listed in Table 1.

Bone densitometry

BMD was measured at the lumbar spine by dual-energy X-ray
absorptiometry (DXA) using a Hologic 4500 bone densitometer
analyzed according to WHO criteria [15].

Cell culture

The human monocytic cell line THP-1 and murine macrophage cell
line RAW264.7 were purchased from the American Type Culture
Collection (ATCC, Rockville, USA) and maintained in DMEM
(Invitrogen, Carlsbad, USA) with 10% FBS (Invitrogen), supplemented
with penicillin (100 U/ml), streptomycin (100 pg/ml) and fungizone
(0.25 pg/ml). Cells were incubated at 37°C in 5% CO, in humidified
air. For osteoclasts differentiation, RAW264.7 macrophages were cul-
tured with 50 ng/ml macrophage colony-stimulating factor (M-CSF;
Peprotech, Rocky Hill, USA) and 60 ng/ml receptor activator of
nuclear factor-kappa k ligand (RANKL; Peprotech) for 7 days.

Cell transfection

The miR-133a mimic and the negative control (miR-NC), miR-133a
inhibitor (miR-133a inhibitor), and miR-133a inhibitor negative
control (inhibitor-NC) were purchased from Ribobio (Guangzhou,
China). The cells were transfected with 50 nM miR-133a mimic,
miR-NC, miR-133a inhibitor, or inhibitor-NC by using the siPORT
NeoFX transfection reagent (Ambion, Austin, USA) according to the
manufacturer’s instructions. After 24 h, gQRT-PCR was performed to

Primers Sequence

hsa-miR-133a-F
hsa-miR-133a-R
mmu-miR-133a-F
mmu-miR-133a-R

5'-CCGGGTTTGGTCCCCTTCAAC-3’
5'-GTGCAGGGTCCGAGGTCAGAGCCACCTGGGCAATTTTTTTTTTTCAGCTG-3’
5’-UUUGGUCCCCUUCAACCAGCUG-3’
5'-GTGCAGGGTCCGAGGTCAGAGCCACCTGGGCAATTTTTITTTTTITCAGCTG-3’

U6-F 5'-GTGCTCGCTTCGGCAGCACA-3’
U6-R 5'-GTGCAGGGTCCGAGGTCAGAGCCACCTGGGCAACGAATTTGCGTGTCA-3’
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detect the transfection efficiency and then cultured with 50 ng/ml
M-CSF and 60 ng/ml RANKL for 72 h.

Tartrate resistant acid phosphatase (TRAP)-positive cell
staining

RAW?264.7 or THP-1 cells (1.5 x 10* cells/well) were seeded into
sterile 24-well culture plates, cells were fixed and stained using the
TRAP-staining kit (Sigma-Aldrich, St Louis, USA), according to the
manufacturer’s instructions. TRAP-positive multinucleated cells con-
taining more than three nuclei were counted as osteoclasts.
Photomicrographs were taken with a Zeiss Axiocam MRcS camera
attached to a Zeiss Axiovert 200 microscope (Zeiss, Oberkochen,
Germany).

Animal experiments

Female Wistar rats weighing 205 + 8 g were purchased from the ani-
mal laboratory of the Chinese Academy of Medical Science (Beijing,
China). The rats were kept together for 2 weeks to acclimatize, fed
with commercially available feed, and had access to feed and water
ad libitum. All of the rats were kept under controlled lighting (light:
dark, 12:12h) and temperature (22 + 1°C) conditions. The study
was approved by the Ethics Committee of Anhui Provincial
Hospital. At 6 months of age, 30 rats were starved for 12 h at first
stage and then were bilaterally ovariectomized (OVX) under 25 mg/
kg thiopental sodium anesthesia as described previously [16]. These
rats were then divided in to three groups: OVX, OVX rats injected
with antago-NC (antago-NC group), and OVX rats injected with
antagomiR-133a (antagomiR-133a group). The OVX rats received
distilled water was used as the control (Sham group, 7 = 10). These
rats received either antagomiR-133a (10 nmol/per mouse) or
antago-NC (RiboBio Co, Guangzhou, China) through tail vein injec-
tion on Days 1 to 3 for 3 consecutive weeks. Three weeks after the
last injection, rats were euthanized and blood was taken by dorsal
aortic puncture. Rats were euthanized for collecting serum and lum-
bar spine for ELISA and micro-computed Tomography (CT) ana-
lysis, respectively. The levels of M-CSF, RANKL, tumor necrosis
factor (TNF)-a, interleukin (IL)-1a, C-terminal telopeptide of type-I
collagen (CTX-I), and bone Gla-protein (BGP) in serum were mea-
sured using enzyme-linked immunosorbent assay kits (R&D
Systems, Minneapolis, USA). The micro-CT analysis was performed
as described previously [17].

g
¥

1.5

Bone histomorphometry

At sacrifice of rats, the lumbar spine was fixed with 10% formalin
and was cut at the midshaft using a rotary electronic saw (Black &
Decker, Towson, USA). The distal tibias were then halved longitu-
dinally and dehydrated in ethanol, and then embedded in methyl
methacrylate polymer according to the manufacturer’s instructions
(Osteo-Bed Bone Embedding Kit; Polysciences Inc., Warrington,
USA). Then, the tibias were sectioned using a Manual Rotary
Microtome (Model 2235; Leica, Solms, Germany) and 7 pm thick
serial bone section was obtained. Measurements were made at 4x
objective magnification using a light microscope (Leica) connected
to an image analyzer (Image Pro-Express; Bethesda, USA). Static
parameters of bone tissue morphology including bone volume/total
volume (BV/TV, %), trabecular thickness (Tb.Th, mm) and trabecu-
lar number (Tb.N, mm™') were calculated as previously described

[18,19].

Western blot analysis

Protein was collected from lumbar spine and lysed in radioimmuno-
precipitation buffer (RIPA) containing protease inhibitors at 4°C for
30 min. Cell lysates were prepared with RIPA lysis buffer kit (Santa
Cruz Biotech, Santa Cruz, USA), and the protein concentrations
were quantified using a Bio-Rad protein assay (Bio-Rad, Hercules,
USA). Proteins (30 pg) were separated by 8% SDS-PAGE and trans-
ferred to polyvinylidene difluoride membranes (Amersham, Chicago,
USA). The membranes were blocked with 5% non-fat milk (Merck,
San Diego, USA) overnight at 4°C. Then membranes were incubated
with the following primary antibodies: anti-NFATcl antibody
(1:20; Invitrogen), anti-c-Fos antibody (1:2000; Abcam, Chicago,
USA), anti-TRAP antibody (1:2000; Abcam), and anti--actin anti-
body (1:2000; Abcam) overnight at 4°C. After extensive wash,
membranes were incubated with a horseradish peroxidase-
conjugated secondary antibody (1:1000; Beijing Zhongshan Golden
Bridge Biotechnology Co, Beijing, China) at room temperature for
1 h. Finally, signals were detected using an enhanced chemilumines-
cence kit (Wuhan Booute Biotechnology Co, Wuhan, China) and
exposed to Kodak X-OMAT film (Kodak, Rochester, USA).

Statistical analysis
Data were expressed as the mean + standard deviation (SD). Each
experiment was performed at least three times. The comparisons
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Figure 1. MiR-133a is significantly upregulated and negatively correlated with lumbar BMD in serum of postmenopausal osteoporotic women (A) the expres-
sion of miR-133a in serum and BMD in the postmenopausal osteoporotic group and healthy control group. (B) Spearman correlation analysis between miR-
133a expression and lumbar BMD in postmenopausal osteoporotic group. n = 10 in each group. Blood was collected for analysis of miR-133a expression. BMD
was measured at the lumbar by DXA. PMOP group, postmenopausal osteoporotic women. Healthy group, the control healthy women. **P < 0.01 compared

with the healthy group.
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between two groups were performed using the independent
Student’s #-test. For comparisons among three or more groups, one-
way ANOVA with Tukey post hoc test was used. Spearman correla-
tions analysis was performed to examine the relationship between
miR-133a expression level and lumbar BMD. The statistical signifi-
cance was set at P < 0.05. The SPSS 15.0 statistical software (SPSS
Inc., Chicago, USA) was used for all statistical analyses.

Results

MiR-133a is significantly upregulated and negatively
correlated with lumbar spine BMD in serum of
postmenopausal osteoporotic women

As shown in Fig. 1A, the expression of miR-133a was significantly
upregulated in serum of postmenopausal osteoporotic women (PMOP
group, 7 = 10, P < 0.01) as compared with the control healthy group
(Healthy group, 7 = 10). However, the BMD was significantly lower
in PMOP group as compared with the healthy group. The Spearman
correlations analysis (Fig. 1B) showed that negative correlation existed

between miR-133a expression and lumbar BMD in postmenopausal
osteoporotic women (PMOP group, #z = 10; P < 0.01, > = 0.8464).

Overexpression of miR-133a promotes RANKL-induced
differentiation of RAW264.7 and THP-1 cells into
osteoclasts

To determine whether the expression of miR-133a is altered during
osteoclastogenesis in RAW264.7 and THP-1 cells, qRT-PCR was
performed. RAW264.7 and THP-1 cells were treated with RANKL
(60 ng/ml) and M-CSF (50 ng/ml) for 7 days. As shown in Fig. 2A,
miR-133a was upregulated in RANKL/M-CSF-induced RAW264.7
and THP-1 cells in a time-dependent manner, indicating that miR-
133a was upregulated during osteoclastogenesis.

To explore the role of miR-133a in osteoclastogenesis, RAW264.7
and THP-1 cells were transfected with miR-133a mimic and the nega-
tive control (miR-NC), respectively. RAW264.7 and THP-1 cells were
then treated with RANKL (60 ng/ml) and M-CSF (50 ng/ml) for 72 h.
The qRT-PCR results showed that miR-133a mimic was successfully
transfected into RAW264.7 and THP-1 cells (Fig. 2B).
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Figure 2. Overexpression of miR-133a promotes RANKL-induced differentiation of RAW264.7 and THP-1 cells into osteoclasts (A) The expression of miR-133a in
RANKL/M-CSF-induced RAW264.7 and THP-1 cells. RAW264.7 and THP-1 cells were treated with RANKL (60 ng/ml) and M-CSF (50 ng/ml) for 7 days, followed by
RT-PCR analysis. (B) miR-133a mimic was successfully transfected into RAW264.7 and THP-1 cells. (C) The protein expression levels of NFATc1, c-Fos and TRAP
in miR-133a mimic and miR-NC groups. (D) The number of TRAP-positive cells in miR-133a mimic and miR-NC groups. RAW264.7 and THP-1 cells were trans-
fected with miR-133a mimic and the negative control (miR-NC), respectively. RAW264.7 and THP-1 cells were then treated with RANKL (60 ng/ml) and M-CSF
(50 ng/ml) for 72 h. gRT-PCR analysis was used to detect the expression of miR-133a, and western blot analysis was used to detect the protein levels of NFATc1,
c-Fos and TRAP. TRAP-positive multinucleated cells containing more than three nuclei were counted as osteoclasts. **P < 0.01 compared with the miR-NC group.
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It was found that the protein expression levels of NFATc1, c-
Fos, and TRAP were significantly increased in the miR-133a mimic
group as compared with the miR-NC group (Fig. 2C; P < 0.01). In
addition, it was also found that TRAP-positive cells in miR-133a
mimic group were significantly increased as compared with the miR-
NC group (Fig. 2D; P < 0.01). These results indicated that miR-
133a was upregulated during osteoclastogenesis and overexpression
of miR-133a promoted RANKL-induced differentiation of RAW264.7
and THP-1 cells into osteoclasts.

MiR-133a knockdown inhibits RANKL-induced
differentiation of RAW264.7 and THP-1 cells into
osteoclasts

RAW264.7 and THP-1 cells were also transfected with miR-133a
inhibitor (miR-133a inhibitor), and miR-133a inhibitor negative
control (inhibitor-NC), respectively. RAW264.7 and THP-1 cells
were then treated with RANKL (60 ng/ml) and M-CSF (50 ng/ml)
tor 72 h. The qRT-PCR results showed that miR-133a inhibitor was

S

successfully transfected into RAW264.7 and THP-1 cells (Fig. 3A).
Indeed, we found that the protein expression levels of NFATc1,
c-Fos and TRAP were significantly decreased in miR-133a inhibitor
group as compared with the inhibitor-NC group (Fig. 3B; P < 0.01).
It was also found that TRAP-positive cells in miR-133a inhibitor
group were significantly decreased as compared with the inhibitor-
NC group (Fig. 3C; P < 0.01). These results indicated that miR-
133a knockdown inhibited RANKL-induced differentiation of
RAW264.7 and THP-1 cells into osteoclasts.

MiR-133a knockdown alters the levels of
osteoclastogenesis-related factors in serum of OVX
rats

miR-133a was successfully knocked down in OVX rats after infecting
with antagomiR-133a (Fig. 4A; P < 0.01). It was found that miR-133a
knockdown (antagomiR-133a) significantly decreased the serum levels
of M-CSF (Fig. 4B; P < 0.01), RANKL (Fig. 4B; P < 0.01), TNF-x
(Fig. 4C; P < 0.05), IL-1 (Fig. 4C; P < 0.01), and CTX-I (Fig. 4D;
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Figure 3. MiR-133a knockdown inhibits RANKL-induced differentiation of RAW264.7 and THP-1 cells into osteoclasts (A) miR-133a inhibitor was successfully
transfected into RAW264.7 and THP-1 cells. (B) The protein expression levels of NFATc1, c-Fos, and TRAP in miR-133a inhibitor and inhibitor-NC groups. (C) The
number of TRAP-positive cells in miR-133a inhibitor and inhibitor-NC groups. RAW264.7 and THP-1 cells were transfected with miR-133a inhibitor and inhibitor-

NC. RAW264.7 and THP-1 cells were then treated with RANKL (60 ng/ml) and M-CSF (50 ng/ml) for 72 h. qRT-PCR analysis was used to detect the expression of

miR-133a, and western blot analysis was used to detect the protein levels of NFATc1, c-Fos and TRAP. TRAP-positive multinucleated cells containing more than
three nuclei were counted as osteoclasts. **P < 0.01 compared with the inhibitor NC group.
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P < 0.05), but markedly increased the serum level of BGP (Fig. 4D;
P < 0.05) in OVX rats as compared with control (Fig. 4).

MiR-133a knockdown increases lumbar spine BMD and
changes bone histomorphology in OVX rats

As shown in Fig. 5A, miR-133a knockdown (antagomiR-133a) sig-
nificantly increased lumbar spine BMD in OVX rats as compared
with the control (P < 0.01). The 2D micro-CT image also showed
that OVX-induced bone destruction was notably reduced by
antagomiR-133a (Fig. 5B). Histomorphometry is an important tech-
nique for examining bone quality and architecture, and is used diag-
nostically in metabolic bone diseases such as osteoporosis As shown
in Fig. 5C, osteoporosis rat induced by OVX had a reduced BV/TV,
Tb.Th, and Tb.N compared with the Sham group. Treatment with
antagomiR-133a significantly prevented these reductions. To sum up,
the significantly low BV/TV, Tb.Th, and Tb.N in OVX rats were
clear evidence of bone loss, mainly due to trabecular perforation, tra-
becular thinning and loss of trabecular connectivity, and they were
all attenuated by treatment with antagomiR-133a.

Discussion

In our study, miR-133a was found to be significantly upregulated and
negatively correlated with lumbar spine BMD in serum of postmeno-
pausal osteoporotic women. Consistently, miR-133a was reported to
be dysregulated and negatively correlated with BMD in postmenopau-
sal osteoporosis [12,13]. MiR-133a was also found to regulate osteo-
blastogenesis by targeting and regulating Runx2 expression [20]. In
osteoblast cell line MC3T3, overexpressed miR133a directly targets
the Runx2 gene 3'-UTR, which suppresses alkaline phosphatase pro-
duction and osteoblast differentiation [20]. Zhou et al. [21] demon-
strated that miR-133a was upregulated in osteoblast-like periodontal
ligament stem cells treated with ibandronate, a nitrogen-containing
bisphosphonate that is widely used to treat osteoporosis and inhibits

[o9)
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bone resorption. Lv et al. [22] showed that estrogen deficiency is asso-
ciated with miR-133 overexpression and miR-133 can induce postme-
nopausal osteoporosis by weakening osteogenic differentiation of
human mesenchymal stem cells, at least partly through repressing
SLC39A1 expression.

In vitro experiment showed that miR-133a was upregulated in
RANKL/M-CSF-induced RAW264.7 and THP-1 cells in a time-
dependent manner, indicating that miR-133a was upregulated during
osteoclastogenesis. In addition, overexpression of miR-133a signifi-
cantly increased the protein expression of NFATc1, c-Fos, and TRAP
and significantly increased the number of TRAP-positive cells in
RANKL-treated RAW264.7 and THP-1 cells. On the contrary, miR-
133a knockdown showed the contrary results. Osteoclasts cells are
primarily responsible for bone resorption, and osteoclasts differenti-
ation is modulated by various processes through differential gene
expression [23]. It is well-known that RANKL stimulation triggers
the recruitment of tumor necrosis factor receptor-associated factor 6
(TRAF6), resulting in the activation of downstream transcription fac-
tors including c-Fos and NFATcl, and thereby leading to the
increased expression of TRAP [24]. Then, many osteoclastogenesis-
related marker genes, such as TRAP, MMP-9, and cathepsin K are
activated [25]. NFATc1-deficient embryonic stem cells fail to differ-
entiate into osteoclasts, and ectopic expression of NFATc1 causes
precursor cells to undergo efficient differentiation without RANKL
stimulation [26]. Mice lacking c-Fos develop osteoporosis as a result
of a complete ablation of osteoclast formation [27]. Thus, it proves
that miR-133a plays an important role in RANKL-induced differenti-
ation of RAW264.7 and THP-1 cells into osteoclasts.

Biochemical markers of bone resorption and formation are
sensitive markers that reflect the different processes involved in
bone metabolism. M-CSF, RANKL, TNF-a, IL-1a, CTX-I, and
BGP are well-accepted as osteoclastogenesis-related factors. M-CSF
or RANKL are two key cytokines involved in osteoclast development
[28]. Inflammatory cytokines TNF-a and IL-1a have been shown to
contribute to osteoclastogenesis [28,29]. CTX-I is known as a specific

I
E
o
&
-
X
H
E =
g
& &
0 o
bad Q
5 o

Figure 4. MiR-133a knockdown alters the levels of osteoclastogenesis-related factors in serum of OVX rats (A) MiR-133a was successfully knocked down in
OVX rats. The serum levels of M-CSF (B), RANKL (B), TNF-« (C), IL-1a (C) and CTX-I (D) and BGP (D) in Sham, OVX, antago-NC and antagomiR-133a groups. n =
10 in each group. *P < 0.05 and **P < 0.01 compared with the Sham group. #P < 0.05 and *P < 0.01 compared with the antago-NC group. The levels of M-CSF,

RANKL, TNF-«, IL-1a, CTX-l, and BGP in serum were measured by ELISA.
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Figure 5. MiR-133a knockdown increases lumbar spine BMD and changes bone histomorphology in OVX rats (A) The lumbar spine BMD in Sham, OVX,
antago-NC, and antagomiR-133a groups. BMD was measured at the lumbar by DXA. (B) The 2D micro-CT images in Sham, OVX, antago-NC, and antagomiR-
133a groups. (C) The histomorphometry analysis in Sham, OVX, antago-NC, and antagomiR-133a groups. n = 10 in each group. *P < 0.05 and **P < 0.01 com-
pared with the Sham group. #*P < 0.05 and **P < 0.01 compared with the antago-NC group.

marker for osteoclast activity and bone resorption [30], and BGP,
also called osteocalcin, forms about 10% of noncollagenous proteins
of the bone matrix and generally serves as a specific marker for
osteoblast activity and bone formation [31]. In vivo experiment
showed that, in OVX rats, miR-133a knockdown altered the levels
of osteoclastogenesis-related factors M-CSF, RANKL, TNF-q, IL-1a,
CTX-I, and BGP in serum, increased lumbar spine BMD, and chan-
ged bone histomorphology. Osteotropic agents, such as IL-1 and
TNF-a, could result in bone loss by increasing osteoclast formation
[32,33]. The results of bone histomorphology analysis showed that
the loss of bone in OVX rats was mainly due to trabecular perfor-
ation and loss of trabecular connectivity and trabecular thinning
[34]. Trabecular perforation may therefore lead to an increased bone
fragility [35] associated with an increase in systemic bone turnover
markers at the tissue level [36]. Importantly, miR-133a knockdown
in OVX rats completely prevented the bone loss. These results
showed that miR-133a plays an important role in bone loss by alter-
ing the serum levels of osteoclastogenesis-related factors, decreasing
lumbar spine BMD, and changing bone histomorphology.

To sum up, our results showed that miR-133a was significantly
upregulated and negatively correlated with lumbar spine BMD in ser-
um of postmenopausal osteoporotic women. MiR-133a was upregu-
lated during osteoclastogenesis and promoted RANKL-induced
differentiation of RAW264.7 and THP-1 cells into osteoclasts in vitro.
MiR-133a also plays an important role in bone loss by altering the
serum levels of osteoclastogenesis-related factors, decreasing lumbar
spine BMD and changing bone histomorphology in vivo. Taken
together, miRNA-133a is involved in the regulation of postmenopau-
sal osteoporosis through promoting osteoclast differentiation.
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