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Abstract

Type 2 diabetes mellitus (T2DM) leads to cognitive impairment (CI), but there have been no effect-

ive pharmacotherapies or drugs for cognitive dysfunction in T2DM. Dihydromyricetin (DHM) is a

natural flavonoid compound extracted from the leaves of Ampelopsis grossedentata and has vari-

ous pharmacological effects including anti-oxidant and anti-diabetes. Thus, we investigated the

effects of DHM on CI in T2DM mouse model and its possible mechanism. To induce T2DM, mice

were fed with high-sugar and high-fat diet for 8 weeks, followed by a low dose streptozotocin

(STZ) administration. After the successful induction of T2DM mouse model, mice were treated

respectively with equal volume of saline (T2DM group), 125mg/kg/d DHM (L-DHM group), or

250mg/kg/d DHM (H-DHM group). After 16 weeks of DHM administration, the body weight (BW),

fasting blood glucose, blood lipids, intraperitoneal glucose tolerance (IPGT), and cognitive func-

tion were determined. Then, alterations in the expressions of oxidative stress markers and brain-

derived neurotrophic factor (BDNF) in the hippocampus were investigated. Our findings demonstrated

that DHM could significantly ameliorate CI and reverse aberrant glucose and lipid metabolism in

T2DM mice, likely through the suppression of oxidative stress and enhancement of BDNF-mediated

neuroprotection. In conclusion, our results suggest that DHM is a promising candidate for the treat-

ment of T2DM-induced cognitive dysfunction.
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Introduction

Accumulating evidence demonstrates that type 2 diabetes mellitus
(T2DM) leads to cognitive impairment (CI) [1,2]. Patients with dia-
betes mellitus (DM) are more likely to suffer from Alzheimer’s dis-
ease characterized by cognitive dysfunction [3]. However, there has
been no effective pharmacotherapy for T2DM-induced cognitive
dysfunction. Although the exact mechanism of T2DM-induced cog-
nitive dysfunction remains unknown, hyperglycemia, abnormal
insulin signaling, and oxidative stress have been considered as the
main factors in its pathogenesis [4].

Diabetes-induced oxidative stress results in oxidative damage in differ-
ent regions of the brain, leading to CI [5]. Anti-oxidant therapy has been
shown to protect neurons against diabetes-induced oxidative insults [6].

Brain-derived neurotrophic factor (BDNF), a neuroprotective
protein in the brain, is crucial in the development of central nervous
system, particularly in neuronal survival and synapse formation [7].
It was reported that plasma BDNF levels were obviously decreased
in patients with T2DM [8]. Recent studies showed that decreased
levels of BDNF in the hippocampus were associated with impaired
cognition in streptozotocin (STZ)-induced diabetic rats [9,10], sug-
gesting that BDNF is closely related to the cognitive dysfunction in
diabetes. Moreover, BDNF has been demonstrated to regulate glu-
cose metabolism in the pancreas of diabetic mice [11], and the insu-
lin signaling can be rapidly enhanced after the administration of
BDNF [12]. These studies suggest that BDNF may play a pivotal
role in modulating cognitive dysfunction in T2DM.

Dihydromyricetin (DHM) is a natural flavonoid compound
extracted from the leaves of Ampelopsis grossedentata (Fig. 1A)
[13]. Many studies have shown that DHM has several pharmaco-
logical functions, such as anti-inflammation, anti-oxidation, and
positive effect in diabetic treatment [13–15]. Recently, DHM was
shown to improve behavioral deficits and reverse neuropathology in
transgenic mouse models of Alzheimer’s disease [16]. All these find-
ings suggest that DHM can potentially be used to treat T2DM-
induced cognitive dysfunction.

Thus, in the present study, we aimed to investigate the ameliora-
tive effects of DHM on CI in T2DM mouse model and its possible
mechanism. The behavioral alterations of T2DM mice after DHM
treatment were first measured, including locomotor activities and
Morris water maze (MWM) tests. We also determined the changes
in body weight, blood glucose content, the levels of lipids metabol-
ism and oxidative stress markers as well as the expression levels of
BDNF in the hippocampus. Our results showed that DHM signifi-
cantly ameliorated metabolic and cognitive dysfunction in T2DM
mice. These therapeutic effects may result from the suppression of
oxidative stress and BDNF-mediated neuroprotection.

Materials and Methods

Materials

DHM (purity ≥98%) was purchased from Zhicheng Biotechnology
Company (Zhangjiajie, China). STZ was purchased from Sigma-Aldrich
(St Louis, USA). Oxidative stress assay kits were purchased from Nanjing
Jiancheng Bioengineering Institute (Nanjing, China). Rabbit polyclonal
anti-BDNF antibody was purchased from Cell Signaling Technology
(Beverly, USA) and mouse monoclonal anti-β-actin was purchased from
Santa Cruz Biotechnology (Santa Cruz, USA). TRIzol reagent and SYBR
Green I dye were purchased from Invitrogen (Carlsbad, USA).

Experimental animals

Totally, 40 male C57BL/6J mice (4 weeks old, 18 ± 2 g body
weight) were purchased from the Hunan SLAC Laboratory Animal
Co., Ltd (Changsha, China). The mice were maintained under a
regular 12-h light period at a controlled temperature (22 ± 2°C) and
received chow and water ad libitum. Animal care and treatments
were conducted according to established guidelines and protocols
approved by the Animal Care and Use Committee of the University
of South China (Hengyang, China). All efforts were made to minim-
ize the number of animals used and their sufferings.

Induction of type 2 diabetic mouse model

After 1 week of acclimatization, mice were randomly divided into nor-
mal control group (n = 8) and T2DM group (n = 32). Mice in the nor-
mal control group were fed with normal diet. Type 2 diabetes model
was induced as previously described [17–20] with slight modifications.
In brief, mice were fed with a high-sugar and high-fat diet (HSF; for-
mula: 15% sucrose, 10% lard, 5% egg yolk powder, 1% cholesterol,
1% sodium chloride, and 68% standard rat feed) for 8 weeks. After
being fasted for 12 h, mice received an intraperitoneal (i.p.) injection of
STZ at a dose of 100mg/kg [17,18] for 3 days. At the end of STZ injec-
tion, five mice died and were excluded from the experiment.
Meanwhile, mice in the control group received injection of citrate buffer
solution at the same dosage (i.p.). After 3 days of STZ injection, IPGT
and FBG were determined with a blood glucose monitoring sensor
(Accu-Chek; Roche, Shanghai, China) to check the successful establish-
ment of T2DM mouse model. Only mice with glucose level ≥11.1mM
were regarded as successful T2DM model mice and used in the subse-
quent experiments (three mice were removed from the T2DM group).

Experimental scheme

The experimental scheme of the present study was illustrated in
Fig. 1B. T2DM model mice (n = 24) were randomly divided into
three groups: T2DM, L-DHM, and H-DHM group. Mice were fed
with HSF and, respectively, treated with an equal volume of salineFigure 1. Chemical structure of DHM (A) and experimental scheme (B)
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or DHM (at the dosage of 125 or 250mg/kg/d) by gavage for 16
weeks. Mice in the normal control group (n = 8) were fed with nor-
mal diet and daily treated with equal volume of saline for 16 weeks.
Then, the body weight (BW) and fasting blood glucose (FBG) were
determined. Subsequently, mice were subject to the Y-maze and
MWM tests to assess spatial learning and working memory. After
behavioral tests, mice were immediately sacrificed and brain tissues
were collected for further examination.

Y-maze test

The Y-maze test is a simple two-trial recognition test for measuring
spatial working memory. The apparatus was made of mahogany-
painted wood with three arms placed symmetrically at a 120° from
one another. The walls were 15 cm high and the arms were 8 cm
wide and 30 cm long. Each arm had special cues on the walls so that
the mice could discriminate the distinction of arms from each other.
To avoid the disturbance of odors, the maze arms were thoroughly
cleaned during the interval of two tests. Each mouse was placed at
the end of one arm and allowed to freely explore in the three arms
for 8min. The number of arm entries was manually recorded.
Complete entry including the base of the animal’s tail was regarded
as one successful arm entry. Alternation was defined as a consecu-
tive entry in three different arms through the overlapping triplet sets
[21,22]. The alternation percentage was calculated with the follow-
ing formula: SA% = n/(N − 2) × 100%, in which n is the number of
alternations, and N is the total number of arm visits.

Morris water maze test

The MWM test was conducted as described previously with slight
modifications [23,24]. Briefly, mice were individually trained in a
circular water pool (120 cm in diameter and 50 cm high) filled with
water (22°C ± 2°C). The pool was artificially divided into four
quadrants (W, E, S, and N zones), labeled with different visual cues.
A platform (6 cm in diameter) was randomly placed in the center of
one quadrant and its location was fixed during the training sessions.
Each trial was started in the pseudo-randomized points in different
quadrant with the animals facing toward the wall. All mice were
individually trained in both of the visible-platform (Day 1) and
hidden-platform (Days 2–5) phases. The visible platform training
was performed to determine the baseline difference of vision, motiv-
ation, and motor function in different treatment groups. The plat-
form was placed 1 cm below the water surface and was indicated by
a small red flag (5 cm in height). The hidden-platform training phase
was conducted to evaluate spatial learning ability. During this
phase, the platform was placed 1 cm below the water surface with-
out indicator and its location was fixed. Each animal was subject to
four trials a day with 1 h interval. Each trial examined the ability of
the mouse to reach the platform within 90 s. If the animal failed to
find the platform within 90 s, it will be gently guided to the platform
for 30 s. On Day 6, the platform was removed and mice were sub-
ject to one probe trial, in which animals were required to search for
the platform within 90 s. The time that the animal stayed in the tar-
get quadrant and the number that it crossed over the location, where
the former platform was in, was recorded. The probe trail can be
used to assess the retention of spatial memory. Data such as the
latency to reach the platform (escape latency), swimming distance,
and the percentage of time and the number of entries in the target
quadrant were collected by the video tracking equipment and ana-
lyzed by the analysis-management system (Viewer 2 Tracking
Software; Chengdu Techman Software Company, Chengdu, China).

Intraperitoneal glucose tolerance test

Intraperitoneal glucose tolerance test (IPGTT) was conducted after
an overnight fasting. Mice were injected with glucose dissolved in
distilled water (100mg/ml) at the dose of 1 g/kg (i.p.). Then, blood
glucose in tail blood samples collected at 0 (prior to glucose admin-
istration), 15, 30, 60, 90, and 120min post-glucose administration
was quantified.

Determination of FBG and blood lipids

Mice were fasted for 12 h and then anesthetized with sodium pento-
barbital (40mg/kg, i.p.). Blood samples were collected from the
inner canthus vein of the eye into plastic centrifuge tubes without
anti-coagulant. Then, the tubes were centrifuged at 999 g for 10min
at 4°C. The plasma was separated and loaded into an HI-TACH717
automatic biochemical analyzer (Thermo, Waltham, USA) to deter-
mine the levels of FBG, TG, TC, HDL, and LDL cholesterol.

Measurement of oxidative stress markers in the

hippocampus

Hippocampus tissues were homogenized in lysis buffer and the super-
natant was used for the measurement of malondialdehyde (MDA),
superoxide dismutase (SOD), catalase (CAT), and glutathione peroxid-
ase (GSH-PX) using commercial assay kits, respectively (S0131, S0109,
S0051, and S0056; Beyotime Institute of Biotechnology, Shanghai,
China). The concentration of MDA, which is an indicator of lipid per-
oxidation, was measured using the thiobarbituric acid (TBA) method
with MDA Assay kit. Briefly, 0.1ml of the hippocampus tissue super-
natant was mixed with 200 μl MDA working solution, heated in a
heat block (100°C) for 15min, and then cooled down to room tem-
perature. After centrifugation at 1000 g for 10min, the supernatant
was measured at a wavelength of 532 nm, and MDA level unit was
expressed as nmol/mg of protein. The assay for SOD activity was based
on the ability of SOD to inhibit nitroblue tetrazolium (NBT) reduction
by superoxide. Briefly, 20 μl of the tissue supernatant was mixed with
160 μl NBT working solution and 20 μl reacting solution and then
incubated in 37°C for 30min. Finally, the optical density was mea-
sured at a wavelength of 560 nm. The amount of protein that inhibited
NBT reduction to 50% of the maximum was defined as 1 nitrite unit
(NU) of SOD activity. The CAT activity was detected using Catalase
Analysis Kit according to the manufacturer’s instructions. Briefly, the
tissue supernatant was treated with excess hydrogen peroxide (H2O2)
for decomposition for an indicated time. The remaining H2O2 coupled
with a substrate was treated with peroxidase to produce N-4-antipyryl-
3-chloro-5-sulfonate-p-benzoquinonemonoimine, which absorbs max-
imally at a wavelength of 520 nm. One unit (U) of CAT activity is
defined as the amount of enzyme catalyzing 1 μmol of H2O2 per mg
per min at 25°C. GSH-PX activity measurement was performed in tri-
ple using GSH-PX assay kit. Briefly, 10 μl of the hippocampus tissue
supernatant was mixed with 176 μl of GSH-PX buffer solution, 10 μl
of GSH-PX working solution and 4 μl of 15 mM H2O2, then the mix-
ture was measured at a wavelength of 340 nm. One unit of GSH-PX
activity was defined as 1 μmol NADPH oxidized per min at pH 8.0
and 25°C.

Quantitative real-time PCR analysis

To analyze BDNF mRNA expression, quantitative real-time PCR
(qRT-PCR) was performed [25]. Total RNA was extracted from
hippocampus samples using Trizol reagent (Beyotime) according to
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the manufacturer’s instructions. The mRNA was quantified using
SYBR green PCR master mix and a Light Cycler Real Time PCR sys-
tem (Bio-Rad, Hercules, USA). The primers were synthesized by
Sangon Biotech Engineering Co., Ltd (Shanghai, China) with the fol-
lowing sequences: (i) BDNF forward 5′-ATGGGTTACACGAA
GGAAGG-3′ and reverse 5′-CCGAACATACGATTGGGTAGT-3′
(84 bp); and (ii) β-actin forward 5′-AGGCCCCTCTGAACCCTAA
G-3′ and reverse 5′-CCAGAGGCATACAGGGACAAC-3′ (118 bp).
The PCR conditions were 94°C for 4min, 32 cycles of 94°C for 60 s,
62°C for 30 s and 72°C for 60 s, followed by a 72°C extension for
10min. The relative expression of BDNF was calculated using the
2−ΔΔCt method [26].

Western blot analysis

The hippocampus was homogenized in ice-cold lysis buffer (0.125M
Tris-HCl, pH 6.8, 0.2M DTT, 4% SDS, and 20% glycerol). The
lysates were sonicated for 10min and centrifuged at 11,100 g (4°C)
for 5min to remove insoluble debris, and the protein concentration
was determined using a BCA™ protein assay kit (Thermo Scientific,
Rockford, USA). Total proteins (30 μg) were separated by SDS-
PAGE (12%) and transferred onto a PVDF membrane (Millipore,
Billerica, USA). After being blocked with 5% defatted milk for 1 h at
room temperature, the membranes were incubated at 4°C overnight
with anti-BDNF and anti-β-actin (loading control, 1:1000) primary
antibodies. Membranes were then washed three times with TBST and
then incubated with a horseradish peroxidase-conjugated secondary
antibody (1:5000) for 2 h at room temperature. Membranes were
washed again and protein bands were detected using an enhanced
chemiluminescence (ECL) kit (Beyotime).

Statistical analysis

The data were expressed as the mean ± SEM. The statistical signifi-
cance was determined using one-way or two-way ANOVA followed
by Fisher’s LSD multiple comparisons test. P < 0.05 was considered
of significant difference. To provide a detailed explanation for the
effects of DHM on cognition, covariance analysis was performed to
exclude the influence of BW, FBG, TC, TG, HDL, and LDL. The
data were analyzed using SPSS 17.0 software.

Results

Establishment of type 2 diabetic mouse model

As shown in Fig. 2A, the BW of mice in the control group was
increased from 18.4 ± 1.3 to 23.5 ± 2.1 g with normal diet feeding,
whereas mice in the T2DM group gained much more weight during 8
weeks of HSF feeding compared with the control group. The assessment
of the FBG indicated that the blood glucose concentration was signifi-
cantly elevated after HSF feeding and STZ administration (Fig. 2B).
The IPGTT results suggest the plasma glucose peaked 30min after
intraperitoneal glucose administration in both the control and T2DM
groups (Fig. 2C). However, the blood glucose concentration was signifi-
cantly higher and the metabolism of glucose was obviously retarded,
which could be defined as glucose intolerance in the T2DM group com-
pared with the control group (Fig. 2C). These results indicated that the
establishment of T2DM mouse model was successful.

DHM can improve spatial learning and working

memory in T2DM mice

To determine whether DHM has therapeutic effects on CI induced by
T2DM, behavioral tests were conducted to evaluate spatial learning

Figure 2. Altered levels of body weight (A), fasting blood glucose (B), and blood glucose (C) following IPGTT in mice Values are expressed as the mean ±
SEM (n = 5 ~ 8). **Significant difference from respective controls at P < 0.01. Con: control group; T2DM: type 2 diabetes model group.
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and memory. The Y-maze test was used to assess hippocampal-
dependent spatial working memory. As shown in Fig. 3A, mice in the
T2DM group demonstrated a significantly impaired spatial working
memory compared with the control group, whereas mice treated with
both dosages of DHM displayed an improved spontaneous alternation
behavior. However, no statistical differences were found in the number
of arm entries among all the experimental groups, suggesting that the
locomotor activity was not influenced by T2DM (Fig. 3B).

Moreover, spatial learning and memory were examined by the
MWM test. The escape latencies and swimming distances were con-
secutively recorded for 5 days. On the first day of visible-platform
test, no significant difference was observed in the escape latency and
swimming distance among the four groups, which excludes the pos-
sibility of motivational and sensory motor deficits induced by
T2DM (Fig. 4A,B). Thereafter, a 4-day hidden-platform test was
conducted. It was found that the escape latency of the T2DM group

Figure 3. Effect of DHM on spontaneous alternation behavior Spontaneous alternation behavior (A), and number of arm entries/5min (B). Values are

expressed as the mean ± SEM (n = 8). *P < 0.05 vs the Con group; #P < 0.05 vs T2DM group. Con: control group; T2DM: type 2 diabetes model group; L-DHM:

125mg/kg/d DHM-treated T2DM group; H-DHM: 250mg/kg/d DHM-treated T2DM group.

Figure 4. Effect of DHM on spatial learning and working memory in T2DM mice revealed by Morris water maze test Escape latency (A), swimming distance

(B), the percentage of time in the target quadrant (C), and the number of crossing the platform (D). Values are expressed as the mean ± SEM (n = 8). *P < 0.05,

**P < 0.01 vs the Con group; #P < 0.05 vs T2DM group. Con: control group; T2DM: type 2 diabetes model group; L-DHM: 125mg/kg/d DHM-treated T2DM group;

H-DHM: 250mg/kg/d DHM-treated T2DM group.
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was significantly longer than that of the control group during the
test (Fig. 4A). Additionally, as shown in the Fig. 4B, mice in the
T2DM group displayed a significantly longer swimming distance to
find the platform. Our results did not show any significant reduction
of the escape latency or swimming distance to find the platform during
the training phases between two dosages (125 and 250mg/kg/d, i.p.) of
the DHM (Fig. 4A,B). One day after the training phase, mice received
a probe test, in which the platform was removed. As shown in Fig. 4C,
mice in the T2DM group displayed a significantly decreased duration
in the target quadrant and a reduced target crossing number over
the former location of the platform (Fig. 4D) compared with those
of the control group. In contrast, treatment with either dosage (125
or 250mg/kg/d, i.p.) of DHM reversed the decline in spatial memory
of mice.

These data revealed that DHM treatment at the dosage of 125
or 250mg/kg/d could significantly alleviate T2DM-induced deficits
in spatial learning and working memory.

Effect of DHM on BW, FBG, blood lipid, and IPGTT in

T2DM mice

The BW of normal mice is gradually increased over time, but the
BW gain in mice with T2DM is stagnant. In our study, the final BW
of the T2DM group was ~87% of that in the control group
(Table 1). Furthermore, diabetic mice exhibited marked elevation in
FBG level when compared with the control group. The BW of mice
treated with DHM (125 and 250mg/kg/d) for 16 weeks was signifi-
cantly increased with a decreased FBG level (Table 1). Meanwhile,
the blood concentrations of cholesterol (TC), triglyceride (TG), and
low-density lipoprotein (LDL) were found to be significantly ele-
vated and the level of high-density lipoprotein cholesterol (HDL)
was significantly decreased in the T2DM group compared with the
control group. DHM treatment at the dosage of either 125 or
250mg/kg/d significantly reversed the alterations in the lipid profile.
Moreover, the blood glucose level at 0 min was statistically higher in
the T2DM group. The blood glucose peaked at 30min after glucose
loading in all the four groups. The blood glucose in the T2DM
group maintained a high level during the IPGTT, whereas the blood
glucose metabolism of DHM-treated groups (125 and 250mg/kg/d)
was faster than that of the T2DM group (Fig. 5), indicating that
DHM treatment can alleviate the impaired glucose tolerance in
T2DM mice.

DHM suppresses oxidative stress in the hippocampus

of T2DM mice

To examine the effects of DHM on oxidative stress in the hippocam-
pus, we measured the expression levels of malondialdehyde (MDA)
and anti-oxidant enzymes, such as superoxide dismutase (SOD),
catalase activity (CAT) and glutathione peroxidase (GSH-PX). As

shown in Fig. 6A, the expression level of MDA was significantly
increased in the T2DM group. Treatment with either dosage of
DHM (125 and 250mg/kg/d) significantly decreased the expression
level of MDA in mice. Moreover, the activities of all the antioxi-
dants including SOD, CAT, and GSH-PX were significantly
decreased in the T2DM group compared with the control group.
However, the activities of SOD, CAT, and GSH-PX were increased
after DHM (125 and 250mg/kg/d) treatment (Fig. 6B–D). These
data indicated that DHM suppresses oxidative stress in the hippo-
campus of T2DM mice.

DHM increases the mRNA and protein expressions of

BDNF in the hippocampus of T2DM mice

We further determined the underlying mechanisms by which DHM
exerts its ameliorative effects on CI in T2DM mice. The mRNA and
protein expressions of hippocampal BDNF were measured. As illu-
strated in Fig. 7A,B, the mRNA and protein expression levels of
BDNF were significantly decreased in the T2DM group compared
with the control group. However, DHM treatment resulted in a
dose-dependent increase in BDNF mRNA and protein expression,
which indicated that DHM increased the expression of BDNF in the
hippocampus of T2DM mice.

Discussion

T2DM is a metabolic disorder with an increasing incidence, which
affects a large number of people worldwide [27]. T2DM can cause

Table 1. Effects of DHM on body weight, fasting blood glucose and blood lipid in T2DM mice

Variables Control T2DM L-DHM H-DHM

Final BW (g) 29.8 ± 1.1 25.9 ± 1.2* 27.6 ± 0.8# 28.5 ± 0.9#

Final FBG (mM) 5.32 ± 0.45 21.14 ± 1.92** 8.35 ± 1.81## 7.58 ± 2.63##

TC (mM) 2.02 ± 0.13 4.37 ± 0.21** 3.51 ± 0.18## 2.83 ± 0.16##

TG (mM) 0.92 ± 0.12 1.53 ± 0.14** 1.27 ± 0.09## 1.16 ± 0.11##

HDL (mM) 1.34 ± 0.09 0.93 ± 0.06** 1.09 ± 0.13## 1.21 ± 0.08##

LDL (mM) 0.43 ± 0.02 1.62 ± 0.13** 1.08 ± 0.09## 0.67 ± 0.05##

*P < 0.05, **P < 0.01 vs the Con group; #P < 0.05, ##P < 0.01 vs T2DM group.

Figure 5. Effect of DHM on IPGT in T2DM mice Intraperitoneal glucose toler-

ance test (IPGTT) was performed. Values are expressed as the mean ± SEM (n
= 3). **P < 0.01 vs the Con group; #P < 0.05, ##P < 0.01 vs T2DM group. Con:

control group; T2DM: type 2 diabetes model group; L-DHM: 125mg/kg/d

DHM-treated T2DM group; H-DHM: 250mg/kg/d DHM-treated T2DM group.
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the damage to multiple systems, leading to complications. Accumulating
studies have demonstrated that T2DM can result in cognitive dys-
function [28]. DHM is extracted from the grape plant rattan tea
whose main active ingredient is dihydrogen flavonoid, and has
been shown to have hypoglycemic, lipid-lowering, and many other
pharmacological effects [29]. Particularly, DHM has the potential
to treat cognitive dysfunction and neuropathological damage
[30,31]. Thus, in the present study, we examined the therapeutic
effects of DHM on T2DM-induced CI, and further determined its
possible mechanism.

DM-induced CI is characterized by the decline in episodic, lan-
guage, and spatial memory [32]. Consistently, mice in the T2DM

group showed significantly impaired behavioral performance in
both the Y-maze test and MWM test. DHM treatment can reverse
T2DM-induced spatial learning and working memory impairment.
These findings suggest that the restoration of behavioral function
may be highly related to the neuroprotective effects after DHM
treatment.

It has been well established that weight loss, hypercholesteremia,
hyperlipidemia, and hyperglycemia are typical diabetic signs [33].
Currently, several factors, such as glucose metabolism disorder and
its ensuing hyperglycemia [34,35], which increase oxidative stress
reaction [36] and impair nerve growth factor and BDNF signaling
[37,38], have been implicated in the pathogenesis of DM-induced

Figure 6. Effects of DHM on oxidative stress in the hippocampus of T2DM mice (A–D) Oxidative production of MDA, SOD, CAT, and GSH-PX activities, respect-

ively in the hippocampus. Values are expressed as the mean ± SEM (n = 5). **P < 0.01 vs the Con group; ##P < 0.01 vs T2DM group. Con: control group; T2DM:

type 2 diabetes model group; L-DHM: 125mg/kg/d DHM-treated T2DM group; H-DHM: 250mg/kg/d DHM-treated T2DM group.

Figure 7. Effects of the DHM on the mRNA and protein expression levels of BDNF in the hippocampus (A) BDNF mRNA expression was measured by qRT-

PCR, and relative mRNA level was calculated as the change relative to the control group level. (B) BDNF protein level was measured by western blot analysis.

Representative immunoblots (top) and densitometric analysis (bottom) of the BDNF protein level normalized to internal β-actin level were presented. Data are

the mean ± SEM (n = 5). **P < 0.01 vs the Con group; ##P < 0.01 vs T2DM group. Con: control group; T2DM: type 2 diabetes model group; L-DHM: 125mg/kg/d

DHM-treated T2DM group; H-DHM: 250mg/kg/d DHM-treated T2DM group.
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cognitive dysfunction. Persistent hyperglycemia is the major cause of
most complications induced by diabetes. It has also been suggested
that chronic hyperglycemia may directly result in the CI in diabetes,
suggesting that glycemic control may contribute to the treatment of
diabetic cognitive impairment (DACI). In our study, we observed
that the BW of mice in the T2DM group was significantly higher
than the control group after 8 weeks of HSF feeding. Meanwhile,
the FBG level was obviously elevated in the T2DM group compared
with the control group. In addition, the blood glucose level was sig-
nificantly higher in the T2DM group than that in the control group
during the IPGTT. These results suggested that the T2DM mouse
model was successfully established. Subsequently, T2DM mice con-
tinued to receive HSF for 16 weeks. We noticed an impaired glucose
tolerance, and the levels of FBG, TC, TG, and LDL were signifi-
cantly increased, while the BW and HDL levels were significantly
decreased in the T2DM group compared with the control group.
However, treatment with DHM for 16 weeks markedly reversed
T2DM-induced weight loss and dysfunctions in glucose and lipid
metabolism in mice, suggesting a positive role of DHM in hypergly-
cemic therapy. Therefore, we speculate that the anti-
hypercholesteremia and anti-hyperlipidemia effects of DHM might
contribute to the alleviation of T2DM-induced CI.

Moreover, oxidative stress is closely related to the pathogenesis
of T2DM. It can result in morphological and functional alterations
in brain regions, leading to learning and memory deficits [36]. MDA
is a specific product of lipid peroxidation in cell membranes in the
process of free radical production [39,40]. Oxidative injury also
damages the anti-oxidant defense system, such as SOD, GSH-PX,
and CAT. Our Data showed that MDA level was elevated, while
and SOD, GSH-PX, and CAT levels were declined in the T2DM
group. Consistent with previous findings in a cognitive deficit rat
model induced by 3-nitropropionic acid [14], DHM was found to
significantly decrease the production of MDA and increase the anti-
oxidative activity. Our findings suggest that the ameliorative effects
of DHM on DACI may be attributed to the suppression of oxidative
stress in T2DM mice.

Furthermore, it has been reported that the expression levels of
BDNF were significantly decreased in patients and animals with
T2DM [41,42]. The decreased expression of BDNF could exacer-
bate CI induced by T2DM [10]. BDNF is the most abundant neu-
rotrophin in the brain, which is involved in neuroprotection and
neurogenesis crucial for cognition [43–45]. BDNF can specifically
bind with Trk-B receptor and subsequently trigger the down-
stream pro-survival signal pathway [46]. In addition to its neuro-
protection effects, BDNF can also regulate glucose metabolism in
patients with T2DM [41,47]. In the present research, we observed
that the mRNA and protein expression levels of BDNF were
decreased in the hippocampus of T2DM mice, whereas DHM
treatment significantly up-regulated the expression of BDNF.
Additionally, oxidative stress has been reported to negatively cor-
relate with BDNF level [48]. Therefore, we speculate that DHM
may exert its ameliorating effects on DACI via enhancing BDNF-
mediated neuroprotective signaling, which protects neurons
against oxidative damage.

In conclusion, our findings demonstrated that DHM could sig-
nificantly ameliorate CI and reverse aberrant glucose and lipids
metabolism in T2DM mice. Its therapeutic effects could be attribu-
ted to the suppression of oxidative stress and enhancement of
BDNF-mediated neuroprotection. Our results suggest that DHM is
a promising candidate for treating T2DM-induced cognitive
dysfunction.
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