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Abstract

The measurement of effort and performance validity is essential for computerized testing where less direct supervision is needed. The clinical
validation of an Automated Neuropsychological Metrics-Performance Validity Index (ANAM-PVI) was examined by converting ANAM test
scores into a common metric based on their relative infrequency in an outpatient clinic sample with presumed good effort. Optimal ANAM-PVI
cut-points were determined using receiver operator characteristic (ROC) curve analyses and an a priori specificity of 90%. Sensitivity/specificity
was examined in available validation samples (controls, simulators, and neurorehabilitation patients). ANAM-PVI scores differed between
groups with simulators scoring the highest. ROC curve analysis indicated excellent discriminability of ANAM-PVI scores >5 to detect simu-
lators versus controls (area under the curve = 0.858; odds ratio for detecting suboptimal performance = 15.6), but resulted in a 27% false-
positive rate in the clinical sample. When specificity in the clinical sample was set at 90%, sensitivity decreased (68%), but was consistent
with other embedded effort measures. Results support the ANAM-PVI as an embedded effort measure and demonstrate the value of sample-
specific cut-points in groups with cognitive impairment. Examination of different cut-points indicates that clinicians should choose sample-
specific cut-points based on sensitivity and specificity rates that are most appropriate for their patient population with higher cut-points for
those expected to have severe cognitive impairment (e.g., dementia or severe acquired brain injury).
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Introduction

Valid assessment of cognitive functioning relies on the examinee’s full motivation and effort to perform as well as possible.
Suboptimal performance during neuropsychological testing results in test scores that do not accurately represent a person’s
actual currentlevel of cognitive functioning. Given that the results of neuropsychological assessment can have significantimplica-
tions, such as determining qualification for disability benefits after an injury or ability to return to work or other activities, tests
of performance validity are becoming a standard part of neuropsychological evaluations, particularly for forensic neuropsycholo-
gists (Bush et al., 2005).

Determination of invalid performance is typically based on the presence of unusual patterns of performance, atypically low
scores in comparison with groups with known cognitive impairment, or a combination of these two factors (Heilbronner et al.,
2009; Larrabee, 2007a; Slick, Sherman, & Iverson, 1999). Standalone tests, such as the Green Word Memory Test or the Test
of Memory Malingering (TOMM), are the most common assessment methods for the detection of invalid performance.
Although these types of tests have historically shown reasonable to good sensitivity (for review, see Larrabee, 2007b), there
are a number of reasons to consider alternative methods for assessing effort. Trade-offs between sensitivity (the ability to correctly
detect invalid performance) and specificity (the ability to correctly identify valid performance) are inherent with the choice of test
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score cut-points determining whether sensitivity versus specificity is favored. One important consideration with neuropsycho-
logical performance validity tests (PVTs) is the need to avoid the potential false-positive detection of invalid performance (result-
ing in lower specificity) in clinical patients who may perform at abnormal levels on these tests due to actual cognitive impairment.

Current recommendations suggest comprehensive and continuous assessment of effort over the course of a neuropsychological
evaluation as individuals may not put forth consistently good effort throughout the evaluation (Boone, 2009). This practice
requires that multiple PVTs be administered throughout the battery, which is most effectively accomplished by the utilization
of metrics embedded within neuropsychological tests. Examples of such metrics include forced recognition trials on the
California Verbal Learning Test, and failure to maintain set on the Wisconsin Card Sorting Test, and so on (Larrabee, 2007b).
Embedded PVTs result in decreased vulnerability to coaching and greater potential to assess effort continuously throughout
the assessment period without adding time and burden on the test-taker (Suhr & Gunstad, 2007). Although the sensitivity of
individual embedded measures to detect invalid performance can be low, there is evidence that sensitivity is greatly improved
when multiple measures are considered in combination (Larrabee, 2008). Additionally, there are several embedded PVTs (e.g.,
equations from the Rey Auditory Verbal Learning test, Digit Symbol test, and Rey—Osterrieth Complex Figure Test) that meet
or exceed the sensitivity reported for standalone measures (Boone, Lu, & Wen, 2005; Kim et al., 2010; Reedy et al., 2013).

The current study will examine a newly developed embedded measure of invalid performance available within the Automated
Neuropsychological Assessment Metrics (ANAM), the ANAM Performance Validity Index (ANAM-PVI). ANAM is a
computer-based library of tests that was originally developed within the Department of Defense for a range of military applications
including an initial goal to measure the potential cognitive side effects of countermeasures to neurotoxic agents (Friedl et al.,
2007). Over time, ANAM’s applications extended to the measurement of cognitive effects of environmental toxins
(McDiarmid et al., 2002; Rahill et al., 1996), exposure to extreme environments (Lowe et al., 2007), medications (Wilken,
Sullivan, Lewandowski, & Kane, 2007), clinical disorders (Kane, Roebuck-Spencer, Short, Kabat, & Wilken, 2007; Wilken
et al., 2003), and sports-related concussion (Bleiberg et al., 2004; Sim, Terryberry-Spohr, & Wilson, 2008). Strengths of
ANAM are that it contains multiple alternate versions allowing for longitudinal assessment and that its precise measurement
of reaction time (RT) allows for the measurement of subtle changes in cognition.

In 2008, Congress directed that all U.S. military Service Members receive pre- and post-deployment neuropsychological as-
sessment (United States House of Representatives H.R. 4986, 2008). ANAM was the neurocognitive assessment tool selected by
the Assistant Secretary of Defense for Health Affairs to meet this charge and is currently being used to document baseline levels of
cognitive functioning prior to military deployment and to assist with assessment and clinical management following a concussion
or other cognitive insult. Consistent with findings from civilian sports concussion research, ANAM has been shown to be sensitive
to the early effects of concussion sustained during military deployment (e.g., within 72 h of injury; Bryan & Hernandez, 2012;
Coldren, Russell, Parish, Dretsch, & Kelly, 2012; Kelly, Coldren, Parish, Dretsch, & Russell, 2012; Luethcke, Bryan, Morrow,
& Isler, 2011). As with other neuropsychological tests, the assessment of valid responding within ANAM is essential for the
accurate assessment of cognition and for clinical decision-making. This is particularly true given ANAM’s widespread use for
military baseline assessment, which often employs group-testing formats coupled with the decreased need for direct observation
from the examiner during computer-based test administration.

ANAM is a data-rich instrument and provides many performance-based metrics for analysis and interpretation. Calculation of
the ANAM-PVI capitalizes on two specific metrics available for each ANAM test: Accuracy of responding and RT (in ms).
Accuracy on ANAM is measured as the percent of total items correct. Similar to effort tests using forced-choice methodology,
itis based on a two-alternative, forced choice where a range of values around 50% correct reflects chance responding (depending
on the number of test items). Responding significantly below 50% would indicate either reversal of the response keys (i.e., mis-
understanding of test directions) or intentional poor responding. Additionally, the difficulty level of ANAM tests is quite low
(Vincent, Roebuck-Spencer, Gilliland, & Schlegal, 2012) with performance exceeding 80% in non-impaired individuals on
most ANAM tests. Even individuals with cognitive impairments commonly perform significantly above 50% with low perform-
ance generally falling in the 80% range (Woodhouse et al., 2013). Thus, unusually low accuracy scores are atypical and may
suggest intentionally poor performance.

Researchers have also recognized the importance of examining RT to identify individuals with invalid performance. For
instance, a number of studies have demonstrated that individuals simulating cognitive deficits often exhibit slowed RT on com-
puterized tests of performance validity (Bolan, Foster, Schmand, & Bolan, 2002; Rees, Tombaugh, Gansler, & Moczynski, 1998;
Slick, Hopp, Strauss, & Thompson, 2005; Tan, Slick, Strauss, & Hultsch, 2002). Further, similar studies show significantly slowed
and more variable RTs among simulators compared with controls and clinical groups (Reicker, 2008). It has been suggested
that this exaggerated slowing among individuals intentionally feigning cognitive impairment is due to their tendency to “aim
too low” so that their RT is well below that expected from a severely injured individual (Van Gorp et al., 1999). Theories proposed
to explain this phenomenon (Bolan etal., 2002; Cercy, Schretlen, & Brandt, 1997) suggest that the RTs of individuals intentionally
performing poorly reflect additional decision processes above and beyond the automatic, perceptual-motor processes required
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to respond to a test item (e.g., conscious attempts to slow down, recalling responses from previous trials, etc.). This additional
decision process leads to increased RTs and variability in performance. Increased variability can be quantified using cognitive
psychology and mathematical theories that model the impact of decision-based and automatic processes on theoretically expected
RT distributions. Therefore, RTs may serve as a useful metric for identifying aberrant patterns of performing and have the added
benefit of being more resistant to coaching than measures of accuracy (Dunn, Shear, Howe, & Ris, 2003; Rose, Hall, &
Szalda-Petree, 1995).

The derivation of the ANAM-PVI capitalizes on this cognitive theory and combines it with the more traditional approaches.
Specifically, the ANAM-PVIincorporates a discrepancy metric derived from the decomposition of an individual’s RT distribution
into components believed to measure decision-based and automatic processes that can be used to quantify the variability of
intra-individual RTs (Luce, 1986; Schmiedek, Oberauer, Wilhelm, Suss, & Wittmann, 2007). The greater the additional decision-
based responding above and beyond the actual response time to the test stimulus, the greater the RT Discrepancy score (Johnson,
Gilliland, & Vincent, 2009).

In an initial study of an embedded measure of invalid performance for ANAM, Johnson and colleagues (2009) examined the
sensitivity/specificity of aforementioned accuracy and RT Discrepancy scores computed for a series of ANAM tests to detect simu-
lated cognitive impairment and also assessed the correspondence of these scores to findings from traditional standalone effort mea-
sures. This study randomized a college sample to take ANAM either normally or to simulate poor performance to convince the
examiner that they had sustained a brain injury. An additional group was provided with coaching instruction on how to feign im-
pairment without being detected. Measures of accuracy and RT Discrepancy were significantly different across these groups, with
simulators showing worse performance on both variables compared with controls. Whereas the coached group was able to modify
their accuracy scores to look more like controls, they were not able to modify their RT Discrepancy scores, indicating that these
scores were resistant to coaching. Sensitivity of this embedded ANAM performance validity measure to detect simulators and
coached participants was 87% and specificity to detect controls was 90%. Classification rates were highly concordant with con-
currently administered established measures of performance validity (i.e., Victoria Symptom Validity Test and the Computerized
Assessment of Response Bias; Allen, Green, Cox, & Conder, 2006; Slick et al., 2005).

The goal of the current study was to provide the clinical validation of an embedded ANAM-PVI and to establish cut-points that
minimize potential false-positive errors in individuals with known cognitive impairment. To achieve this goal, variables validated in
the original simulator study were combined into an overall ANAM-PVI score based on methods described by Silverberg,
Wertheimer, and Fichtenberg (2007) in their study of a PVI for the Repeatable Battery for the Assessment of Neuropsychological
Status. ANAM data collected from an outpatient clinical sample with known neurological diagnoses and documented adequate
performance validity were used to establish cut-points for the ANAM-PVI that maximized specificity in this group. Validation of
these cut-points in other available samples was then explored.

Method
Participants

Samples used in this study were drawn from several sources. The first sample served as the reference group for establishing
cut-points for the ANAM-PVI. This group initially consisted of 66 consecutive referrals drawn from an outpatient brain injury
clinic within the Department of Orthopedics and Rehabilitation at a large, military medical center who took ANAM as part of
a standard neuropsychological evaluation. Patients were referred for a neuropsychological evaluation to determine the extent
of cognitive impairment and to assist with rehabilitation treatment recommendations. Neuropsychological evaluations for admin-
istrative purposes, including medical evaluation boards or disability determination, were conducted in a separate department
within the medical center. Of this initial sample, four patients were excluded due to missing ANAM data; one patient was excluded
due to failure on PVT testing; and one patient was excluded due to the treating clinician’s description of the patient having
“disengaged” behaviors that invalidated portions of testing battery (despite initially passing PVT testing).

Included patients (n = 60) represented a heterogeneous sample of patients with acquired brain injury, with the following range of
diagnoses; traumatic brain injury (TBI; n = 45), stroke (n = 2), subarachnoid hemorrhage/aneurysm (n = 2), brain tumor (n = 4),
anoxic injury (n = 4), and electrical injury (n = 3). Specific to those with a diagnosis of TBI, the majority of these individuals were
described as having sustained a moderate, penetrating, or severe TBI (n = 29). The remaining individuals were described as having
sustained either a complicated mild TBI with positive findings on neuroimaging (n = 9) with only seven individuals being described
as having a mild TBI. This is consistent with an existing policy that individuals with mild TBI are not routinely referred for a com-
prehensive neuropsychological evaluation within this clinic. The small sample of patients with mild TBI (n = 7) included in the
sample underwent neuropsychological evaluation due to their occupational status (either healthcare providers, senior military lead-
ership, or special forces). Average time between onset of injury/diagnosis and neuropsychological evaluation was 34.8 weeks.
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Table 1. Outpatient sample demographics

Total (n) 60

Gender (men:women) 56:4

Ethnicity (White:Other:Unknown) 35:21:4

Age (mean [SD], range) 29.7 (8.6), 19-57

Years of Education (n = 57) 13.3(2.0), 12-20

Time Since Injury (weeks; n = 54) 34.8 (47.0), 1.6-263

PTSD Checklist-Military Version 31.9(14.2),17-64

Wechsler Adult Intelligence Scale-Third Edition; Full-Scale IQ 102.6 (16.7), 76155
Wisconsin Card Sorting Test-Perseverative Errors T-Score (n = 47) 56.1(34.2), 1-99

Trail Making Test, Part A (7-score; n = 55) 45.8 (13.2), 16-70

Trail Making Test, Part B (7-score; n = 55) 46.3 (14.0), 16-71

Wechsler Memory Scale-Third Edition; Logical Memory Subtest I/II (n = 54) 10.3(3.2)/10.2 (3.2) 3—-17/1-15
Wechsler Memory Scale-Third Edition; Visual Reproduction Subtest I/II (n = 52) 10.7 (3.5)/10.2 (3.5) 2—-17/1-17

Notes: PTSD = Post-Traumatic Stress Disorder; IQ = Intelligence Quotient.

The majority of patients were men (93%) with an average age of 29.77 years (SD = 8.6; range, 19—57). Sample characteristics and
cognitive performance are further described in Table 1. As these were clinical evaluations, not all patients received the same PVT.
Most patients received Green’s Medical Symptom Validity Test (40%) or the TOMM (46%). A minority of cases was given the
Victoria Symptom Validity Test (4%) or the embedded Forced Choice Memory test from the California Verbal Learning
Test-Second Edition (7%). Two patients were administered more than one standalone performance validity measure and were
only kept in the study sample if they passed all administered effort measures. The remaining four patients received abbreviated clin-
ical batteries with three of them passing other embedded performance validity measures (e.g., Reliable Digit Span < 7; Finger
Tapping dominant and non-dominant combined average taps < 63). All included patients passed available performance validity
measures. The fourth patient was determined to have adequate levels of effort based on average or better scores on all tests adminis-
tered and clinical judgment at the time of testing. No patient was known to be involved in litigation and none was evaluated for the
determination of disability or compensation status.

Additional samples were used to explore resulting sensitivity and specificity based on the cut-points derived from the outpatient
sample. The first of these samples was the control group from the initial simulation study (Johnson et al., 2009). This sample
included 27 healthy college students (37% men) between the ages of 17 and 26 (Mn = 20.2, SD = 2.0). Racial/ethnicity compos-
ition was 78% Caucasian, 1 1% African American, 7.4% American Indian/Alaska Native, and 3.7% Asian. This sample was used to
determine the specificity of the new ANAM-PVI scores and cut-points in a healthy non-clinical sample.

The second validation sample included the simulator group from the initial simulation study (Johnson et al., 2009). This sample
included 28 healthy college students (46% men) instructed to simulate cognitive impairment. These participants were between the
ages of 18 and 23 (Mn = 20.3, SD = 1.6). Racial/ethnicity composition was 75% Caucasian, 10.7% African American, 10.7%
American Indian/Alaska Native, and 3.6% Latino/Hispanic. Based on a simulator script used by Willison and Tombaugh
(2006), individuals in this group were instructed to pretend that they had experienced a mild brain injury with initial symptoms
that resolved back to normal. They were also told to pretend that they were involved in a legal proceeding to determine a financial
settlement for their previously acquired brain injury and that they would receive a larger settlement if they could demonstrate that
they are still suffering symptoms from this brain injury. Finally, they were told that major exaggerations are easy to detect, there-
fore, their job is to “convince us by your performance on these tasks that you are brain injured, but do so in a believable way.” This
sample was used to determine sensitivity of the new ANAM-PVI cut-points to simulated cognitive impairment.

Ancillary analyses included a group of patients (n = 17) recently discharged from inpatient rehabilitation for moderate to
severe TBI or stroke who took the ANAM battery as part of a separate research study. This sample included 12 men/5 women
between the ages of 17 and 67 (Mn = 36.5, SD = 16). Racial/ethnicity composition was 65% Caucasian, 29% African
American, and 6% Latino/Hispanic. The majority of these patients had moderate to severe TBI (n = 15). The remaining patients
had a diagnosis of stroke (n = 2). All required inpatient rehabilitation for their injuries and none were in a period of post-traumatic
amnesia/confusion at the time of testing. Average time since injury was 10 months (range 1 —49 months). All patients were known
to have severe cognitive impairment in at least one cognitive domain based on neuropsychological testing conducted concurrent
with ANAM testing. The average RBANS Total Index Score was 74.6 (range 50— 108). Although one individual performed in the
average range on the RBANS, this individual demonstrated severe executive dysfunction from a bilateral frontal lobe injury. This
sample was included to examine the ability of the new ANAM-PVI cut-points to be insensitive to the effects of severe cognitive
1mpairment.
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Measure

Automated Neuropsychological Assessment Metrics (v4). The ANAM4 Core Battery is designed to aid in the assessment of
general cognitive function following suspected brain injury or other cognitive insult. ANAM has a long history of use in medica-
tion trials, assessment of cognitive effects of extreme conditions, assessment of neurological disorders, military research, and
sports concussion (for review, see McCaffrey & Kane, 2007). ANAM has been shown to have good construct validity with trad-
itional tests of attention, processing speed, and working memory (Bleiberg, Kane, Reeves, Garmoe, & Halpern, 2000; Kabat,
Kane, Jefferson, & DiPino, 2001). Test—retest reliability for individual tests has been shown to vary between 0.41 and 0.74 in
healthy military samples (Vincent, Roebuck-Spencer, Lopez, et al., 2012) and 0.47 and 0.90 in a general community sample
(Cognitive Science Research Center [CSRC], 2012). Tests with higher cognitive processing demands show better reliability,
and tests of simple RT (SRT) show lower reliability, most likely due to restriction of range. The battery takes approximately
20-25 min to complete via personal computer. Brief descriptions of each test are provided in Table 2 in the sequence of admin-
istration. Detailed descriptions of ANAM tests can be found elsewhere (Vincent et al., 2008; Vincent, Roebuck-Spencer, Gilliland,
et al., 2012; Vincent, Roebuck-Spencer, Lopez, et al., 2012).

Variables

Accuracy and RT Discrepancy scores from four commonly used ANAM tests (Matching to Sample [M2S], SRT, Procedural RT
[PRO], and Code Substitution Learning [CDS]) were used to derive the ANAM-PVI. These tests were empirically chosen based on
the observed sensitivity and specificity of each for detecting insufficient effort in the original simulator study (Johnson et al., 2009).
Raw data (i.e., trial by trial data) were examined for each individual subject to create the RT discrepancy score. Individual trials
with response times less than 130 ms are automatically filtered out by the ANAM software. Previous research suggests that valid
response times mustbe at least 100 ms (typically 100—150) to account for time needed for physiological processes such as stimulus
perception and motor response (Luce, 1986). These short response times are typically rare and in this sample occurred only on the
SRT test. Participants, on average, demonstrated one anticipatory response out of 40 trials (M = 1.18, range = 0-5). RT discrep-
ancy scores were computed for each individual by calculating the difference (in ms) between the RTs representing the 90th and
10th percentiles as described in Johnson and colleagues (2009). This difference score serves to quantify the magnitude of the
discrepancy between the decision-based and automatic processes governing response times, where larger differences indicate
larger discrepancies between these two processes. Although the RT discrepancy score is essentially a measure of variability, it
is rooted in a component-process cognitive theory (Hohle, 1965; Luce, 1986; Madden et al., 1999; Schmiedek et al., 2007).
Response accuracy was calculated as the percentage correct.

Following procedures described by Silverberg and colleagues (2007), Accuracy and RT Discrepancy scores from each of the
four selected ANAM tests were converted to a common metric based on the relative infrequency of these scores in the outpatient

Table 2. ANAM4 core test descriptions

Test name Description

Sleepiness Scale Self-assessment of the user’s level of sleepiness; modification of the Stanford Sleepiness Scale (Hoddes, Zarcone, Smythe,
Phillips, & Dement, 1973)

Mood Scale Self-assessment of the user’s mood state in seven categories: Vigor, Happiness, Depression, Anger, Fatigue, Anxiety, and
Restlessness

*SRT Measures simple motor reaction time by having the user respond as quickly as possible to a target stimulus

*Code Substitution — Learning Measures visual scanning, processing speed, attention, and learning by asking the user to compare a single symbol-digit pairing
with a set of defined symbol-digit pairs presented at the top of the screen. The user is instructed to learn the symbol-digit pairing
for a memory test to follow later in the battery

*Procedural Reaction Time Measures attention and processing speed by having the user respond as quickly as possible to different sets of stimuli based on
simple rules (e.g., press left mouse button if you see a 2 or 3 and right mouse button if you see a 4 or 5)

Mathematical Processing Measures attention, basic computational skills, and working memory by asking the user to solve a single-digit arithmetic problem
(e.g., “5-2 + 3 =”) involving two operations

*Matching to Sample Measures visual spatial discrimination and working memory by presenting the user with a visual pattern for a specified period of
time and then, following a brief delay, asking the user to select the previously seen pattern from two choices

Code Substitution-Delayed Measures visual recognition memory by asking the user to compare a single displayed symbol-digit pair with the previously

Memory learned symbol-digit pairs presented earlier in the test battery (i.e., during the Code Substitution-Learning Test)
SRT (R) Identical to the earlier administered SRT test and designed to measure fatigue

Notes: Tests marked with an asterisk are those used to calculate the ANAM Performance Validity Index. ANAM = Automated Neuropsychological Assessment
Metrics; SRT = Simple Reaction Time.
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derivation sample. This was achieved by assigning weighted scores of 6, 5,4, 3,2, 1, and O for RT Discrepancy and Accuracy scores
falling in the percentile ranges of 0, 0.1-1.9, 2—-4.9, 5-8.9, 9-15.9, 16-24.9, and >25, respectively. This resulted in eight
weighted scores (two scores for each of four tests). Higher weighted scores indicate greater infrequency of these scores in a
sample known to have good effort. These weighted scores were then summed to create the ANAM-PVI, with resulting values
ranging between 0 and 48. Higher ANAM-PVI scores indicate greater overall infrequency and a higher likelihood of atypical per-
formance compared with individuals providing good effort.

Data Analysis Plan

ANAM-PVI scores were calculated for the derivation sample (outpatients) and validation samples (college controls and simu-
lators). A one-way analysis of variance was conducted to evaluate differences between the ANAM-PVI scores for each of these
samples. Follow-up tests were conducted to evaluate pairwise differences among the means using the Games—Howell post hoc test
due to the unequal variances among the groups. Effect sizes were calculated using Cohen’s d. Receiver operator characteristic
(ROC) curve analysis was conducted to calculate the area under the ROC curve (AUC) which represents the discriminability
of the ANAM-PVI in the derivation and simulator samples. Resulting cut-points were evaluated and chosen such that the
number of false positives were minimized in the derivation sample (i.e., specificity > 90%). This cut-point was then examined
in the additional validation samples. The resulting AUC, sensitivity, specificity, positive predictive value (PPV), negative predict-
ive value (NPV), positive likelihood ratio (+LR), and odds ratio (OR) were calculated for each of the samples. Finally, an ancillary
analysis examined specificity of ANAM-PVI cut-points in a neurorehabilitation sample known to have severe and global levels of
cognitive impairment.

Results

ANAM-PVI scores differed across groups, F(2, 112) = 40.8, p < .0001, adj. R? = 41. Follow-up tests revealed that the out-
patient ANAM-PVI scores were higher than the control group (p = .001; d = 0.50) and significantly lower than the simulator
group (both p < .0001; d = 1.75) with a much larger effect size seen with the latter group comparison. Further, ANAM-PVI
scores in the simulator group were significantly higher than the control group (p < .0001; d = 2.25; Fig. 1).

The ROC curve analysis indicated excellent discriminability of the ANAM-PVI in the outpatient and simulator samples,
AUC = 0.858 (SE = 0.046), p < .0001.The OR for the ANAM-PVI in detecting invalid performance was 15.6. The optimal cut-
point derived from the ROC curve analysis (using Youden’s Index) was an ANAM-PVI score >5 (classification accuracy =
78.4%; Fig. 2). However, an ANAM-PVI score of > 10 is required to achieve the minimum a priori required specificity of 90%
in the outpatient sample, resulting in a lowered sensitivity of 68% to detect simulators and an overall classification accuracy of
83.0%.

An ancillary analysis, examined the specificity of the ANAM-PVI to correctly identify patients with known severe and global
cognitive impairment. The data-optimized ANAM-PVI cut-point of 5 had extremely low specificity for severe cognitive impair-
ment (17%). Likewise, specificity was still only 47% with an ANAM-PVI of 10. Qualitative examination of the data revealed that
an ANAM-PVI cut-point > 14 allowed for the highest specificity in the severely impaired group (70%) while still maintaining a
sensitivity to detect simulators of greater than 50%.

ANAM Performance Validity Index from
Derivation and Validation Samples

ANAM-PVI

Outpatients Controls Simulators

Derivation Sample Validation Samples

Fig. 1. ANAM-PVI scores from derivation and validation samples. ANAM-PVI = Automated Neuropsychological Assessment Metrics Performance Validity
Index. *Validation samples differ from outpatient group at p < .05.
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Receiver Operator Characteristic (ROC) curve of
the ANAM Performance Validity Index in Simulators versus

Outpatients
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Fig. 2. ROC curve for simulators versus outpatients.

Table 3 displays the actual number of subjects within each group at or above a given ANAM-PVI score. Sensitivity refers to the
cumulative proportion of simulators at or above a given ANAM-PVI score, and specificity refers to the cumulative proportion of
effortful patients below a given ANAM-PVIscore. As expected, there is a trade-off between specificity for severe impairment and
sensitivity to detect poor effort in simulators for any cut-score selected.

Sensitivity, specificity, PPV, NPV, LR, and OR are presented in Table 4 for each of the samples using the cut-scores described
above. As expected, specificity rates in the derivation sample were lower than in the control group, but higher than the neuroreh-
abilitation group, suggesting that sample-specific cut-points should be considered based on patient population being tested.

Discussion

This study presents the first clinical data on an embedded performance validity measure within the ANAM4-Core Battery. The
ANAM-PVI combines measures of accuracy and response speed across four of the most commonly used ANAM tests: SRT, CDS,
PRO, and M2S. The ANAM-PVI was created by weighting performance according to its relative infrequency within a clinical
sample with known cognitive impairment and adequate performance validity (Silverberg et al., 2007), with higher scores indicat-
ing more atypical performance. Sensitivity and specificity of ANAM-PVI scores across samples with varying levels of valid per-
formance and cognitive impairment were examined.

ANAM-PVI scores differed across samples with the highest (i.e., worst, least valid) scores observed in a simulator group
(ANAM-PVI = 13.82) and the lowest scores in a healthy college sample with known adequate effort (ANAM-PVI = 0.96).
An outpatient brain injury clinic sample with known adequate performance validity demonstrated significantly higher
ANAM-PVI scores than the controls (ANAM-PVI = 3.83) but still remained well below that of the simulators. These findings
provide good support for a wide range of performance on the ANAM-PVI with higher values seen simulator groups.

The primary purpose of this paper was to examine clinically derived ANAM-PVI cut-points using an outpatient sample more
representative of a “typical” neuropsychology practice with the ultimate goal of avoiding false-positive identification of invalid
performance inindividuals with true cognitive impairment. This outpatient sample was comprised of individuals with a wide range
of cognitive functioning, with Full-Scale IQs (FSIQs) ranging from the mildly impaired to the very superior range (FSIQ range
76—155; Mn = 102.6). Potential false positives in groups with more severe levels of cognitive impairment are always of concern.
Thus, a sample of patients with moderate to severe acquired brain injury who were recently discharged from inpatient rehabilitation
was also examined in an ancillary analysis. The mean ANAM-PVIwithin this group was higher than that of the control and outpatient
groups (ANAM-PVI = 10.9) but was still significantly lower than that seen in the simulator group. However, suboptimal effort
cannot be ruled out in this group because independent performance validity measures were not administered.

ROC curve analysis revealed excellent ability of the ANAM-PVI to discriminate outpatients from simulators with an OR of
15.6 at an empirically derived ANAM-PVI cut point of >5. This means that the odds for meeting criteria for poor effort
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Table 3. Sensitivity and specificity for a range of ANAM-PVI scores
ANAM-PVI Simulators (n = 28) Outpatient (n = 60) Neurorehabilitation (n = 17) Controls (n = 27)
n Sensitivity n Specificity n Specificity n Specificity
0 28 1.0 60 0.000 17 0.000 27 0.000
1 27 0.964 42 0.300 17 0.000 11 0.593
2 26 0.929 35 0.417 16 0.059 6 0.778
3 25 .893 29 0.517 15 0.118 5 0.815
4 25 0.893 21 0.65 15 0.177 3 0.889
5% 25 0.893 16 0.733 14 0.177 1 0.963
6 21 0.75 12 0.80 14 0.294 0 1.0
7 20 0.714 11 0.817 12 0.294
8 20 0.714 9 0.85 11 0.353
9 20 0.714 7 0.883 11 0.471
10° 19 0.679 6 09 9 0.471 0 1.0
11 19 0.679 5 0.917 9 0.529
12 15 0.536 5 0.917 8 0.529
13 15 0.536 4 0.933 7 0.588
14°¢ 15 0.536 4 0.933 5 0.706 0 1.0
15 13 0.464 3 0.95 3 0.824
16 13 0.464 2 0.967 3 0.882
17 12 0.429 2 0.967 3 0.882
18 12 0.429 2 0.967 2 0.882
19 11 0.393 12 0.967 1 0.941
20 9 0.321 1 0.983 1 0.941
21 7 0.25 1 0.983 1 0.941
22 4 0.143 1 0.983 1 0.941
23 3 0.107 1 0.983 1 0.941
24 3 0.107 1 0.983 1 0.941
25 3 0.107 1 0.983 1 0.941
26 2 0.071 1 0.983 1 0.941
27 2 0.071 1 0.983 1 0.941
28 1 0.036 1 0.983 1 0.941
29 0 0.000 1 0.983 1 0.941
30 1 0.983 0 1.0
31 1 0.983
32 1 0.983
33 0 1.0
Note: ANAM-PVI = Automated Neuropsychological Assessment Metrics Performance Validity Index.
“Optimal cut-point as determined by ROC analysis.
°Cut-point chosen to maintain a minimum of 90% specificity in the outpatient sample.
“Maximum cut-point recommended to avoid false-positive errors in significantly impaired populations.
Table 4. Results of ROC curve analyses at ANAM-PVI cut-points of >10 and > 14 in comparison to simulators
Specificity Positive Negative Area under the Positive Odds ratio
predictive value predictive value curve (95% CI) likelihood ratio
ANAM-PVI cut-point = 10; sensitivity = 0.68
Outpatients (n = 60) 0.90 0.76 0.86 0.86 (0.77-0.92) 6.8 233
Controls (n = 27) 1.0 0.97* 0.67* 0.95 (0.86—0.99) 27° 55.2¢
Neurorehabilitation (n = 17) 0.47 0.68 0.47 0.61 (0.45-0.75) 1.28 1.9
All groups (n = 104) 0.86 0.56 0.91 0.84 (0.77-0.90) 4.85 30.3
ANAM-PVI cut-point = 14; sensitivity = 0.54
Outpatients (n = 60) 0.93 0.79 0.81 0.86 (0.77-0.92) 8.04 15.6
Controls (n = 27) 1.0 0.97* 0.67* 0.95 (0.86—0.99) 27° 55.2¢
Neurorehabilitation (n = 17) 0.71 0.75 0.48 0.61 (0.45-0.75) 1.82 2.8
All groups (n = 104) 0.91 0.63 0.88 0.84 (0.77-0.90) 6.19 11.9

Note: ANAM-PVI = Automated Neuropsychological Assessment Metrics Performance Validity Index.
“Due to false-positive count of zero in control sample, approximations of positive predictive value, negative predictive value, positive likelihood ratio, and odds

ratio were calculated by adding 0.5 to all counts.
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among subjects with poor effortis 15.6 higher than the odds for meeting criteria among subjects demonstrating good effort. At this
cut-point, sensitivity to detect simulators was very good at 89% (PPV = 0.79, NPV = 0.81) with even better specificity for a
healthy college sample at 96% (PPV = 0.97, NPV = 0.67). It should be noted that PPV and NPV presented here are specific to
these samples with a base rate of 31.8 for poor performance validity between outpatients and simulators and thus would not be
expected to correspond to other situations with differing base rates.

Although the ANAM-PVI cut-point of >5 may be appropriate in cognitively-healthy samples, it has the potential for higher
than desired false-positive errors in groups with known cognitive impairment. At this cut-point, specificity was only 73% in
the outpatient clinic sample. In order to avoid false positives and improve detection of good effort in the presence of true cognitive
impairment, data were re-examined using an a priori specificity level of at least 90% for the clinical sample. There is strong support
for setting cut-points that maximize specificity, even at the expense of sensitivity, which can be affected by a variety of factors
including transparency of the test detection method, individual strategies to feign impairment, and potential coaching (Greve
& Bianchini, 2004). As Greve and Bianchini (2004) argue, setting cut-offs to maximize sensitivity will result in unacceptably
large numbers of false-positive errors (low specificity) and will ultimately lessen the value of your indicator. To assist the
reader, Table 3 provides specificity levels across multiple cut-points with associated sensitivity levels to illustrate the trade-offs
between sensitivity and specificity across groups of interest.

Restriction to this a priori specificity rate of at least 90% within the outpatient sample resulted in a more conservative
ANAM-PVI cut-point of 10. At this cut-point, sensitivity to detect simulators decreased to 68%, which is generally consistent
with or better than the on average 50% sensitivity reported for that of a wide range of other embedded effort measures
(Larrabee, 2008). However, because this cut-point continued to result in a large number of potential false-positive errors in a
sample of patients with known severe cognitive impairment (specificity = 47%), clinicians should use a cut-point of 19 to
achieve at least 90% specificity for similar groups, with sensitivity further falling to just under 40%.

The primary limitations of this study were small criterion group sample sizes and the use of simulators to determine the sen-
sitivity of the ANAM-PVI to detect poor effort, given that performance patterns in simulators may differ in unpredictable ways
from those of individuals with real-world incentives or secondary gain to perform poorly on testing. Simulators, particularly
college samples as used in this study, may lack the external motivation to feign poor performance in a convincing way, may
differ academically and intellectually from the average head injury survivor, may be less deceived by less transparent methods
of some PVTs, and may utilize more sophisticated means of deception in their performance (Bianchini, Mathias, & Greve,
2001). A second limitation is that the samples included within this study were drawn retrospectively which precluded the
ability to control which and how many standalone concurrent performance validity measures were administered. Further, retro-
spective sampling did not allow for consistent sampling of potentially important variables such as injury severity or level of cog-
nitive impairment and their potential impact on the ANAM-PVI. Future studies should explore the sensitivity/specificity of the
ANAM-PVI and its concordance with standalone and embedded PVTs validated on samples with high incentives to feign cogni-
tive impairment or with known base rates of poor effort. Additionally, the derivation sample was drawn from a primarily male
military outpatient population which may limit generalizability to civilian samples. Further, the simulator group was composed
of primarily young adults. The potential impact of sex differences and age on the ANAM-PVI should be studied more closely in
future studies. A third limitation is that effort was not specifically tested and confirmed in the rehabilitation sample making is dif-
ficult to determine whether lower specificity in this group was attributable to the effect of greater cognitive compromise on the
ANAM-PVI or the possibility of decreased effort in this group. Future studies should prospectively recruit new samples and
co-administer the ANAM-PVI with multiple concurrent well-validated PVTs to cross-validate these findings and should
further explore potential differential performance patterns across injury severity and level of cognitive compromise. Finally,
the potential effect of cognitive fatigue when the ANAM-PVIis administered at the end of a time-intensive comprehensive neuro-
psychological battery should be examined.

In conclusion, the current study provides the first step toward the clinical validation of an embedded effort measure available
within the ANAM4-Core battery. These initial data support the potential of the ANAM-PVI to discriminate between individuals
with valid versus invalid performance on the ANAM battery. An empirically derived cut-point of >5, maximizing sensitivity/
specificity resulted in optimal sensitivity to detect simulators but resulted in a 27% chance of false positives in a clinical
sample. When specificity was constrained to be 90% within aclinical sample, sensitivity was lower, as expected, but was consistent
with that reported for other embedded effort measures (Larrabee, 2008),which highlights the importance for clinicians to choose
sample-specific cut-points most appropriate for the population they are working with (e.g., use alower, more stringent cut-point for
examinees without medically documented complicated head injury or in groups with suspected motive to exaggerate symptoms).
In contrast, clinicians working with patients expected to have severe levels of cognitive impairment may opt to use a higher cut-
point to maximize specificity and avoid false-positive errors. Cut-points should be determined with the following information in
mind: (a) the type of patient being assessed, (b) the purpose of the evaluation, and (c) the trade-off between false-negative and
false-positive errors.
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