Abstract

This study forms part of the Spanish Multicenter Normative Studies (NEURONORMA project). Normative data for people aged over 49 years are presented for selected tasks of the visual object and space perception battery (VOSP) and for the judgment of line orientation (JLO) test. Age-adjusted norms were derived from a sample of 341 participants who are cognitively normal and community-dwelling. Age- and education-adjusted norms are also provided. Years of education were modeled on age-scaled scores to derive regression equations that were applied for further demographic adjustments. The normative information provided here should prove useful for characterizing and interpreting individual test performances as well as comparing the scores from these tests with any other test using NEURONORMA norms.

Introduction

Disturbances of object and space perception are among the salient behavioral consequences of brain lesions (Benton, Hamsher, Varney, & Spreen, 1983; Benton, Sivan, Hamsher, Varney, & Spreen, 1994). The assessment of visual object and space perception forms part of any comprehensive neuropsychological assessment because vision has two main goals: the identification of stimuli and their localization (Farah, 2003). The Spanish Multicenter Normative Studies (NEURONORMA project) (Peña-Casanova et al., 2009) attempts to provide normative and psychometric information for people aged over 49 years for commonly used neuropsychological tests. In this paper we provide normative data for the visual object and space perception battery (VOSP) (Warrington & James, 1991), and the judgment of line orientation (JLO) (Benton, Hannay, & Varney, 1975, Benton, Varney, & Hamsher 1978; Benton et al., 1994).

Visual Object and Space Perception Battery

This is a battery of eight tests developed to assess object and space perception. The test is based on the theoretical proposal that object and space perception is functionally and anatomically independent, and may be dissociated in the case of brain lesions. It is based upon Warrington's model (McCarthy & Warrington, 1990), which distinguishes three subtypes of impaired object recognition: (a) disorders of visual sensory discrimination; (b) apperceptive agnosia; and (c) associative agnosia. Warrington's theory of visual processing and the VOSP were validated by Rapport, Millis, and Bonello, (1998). Further studies using the VOSP indicate that object decision is not a single task or ability and is not necessarily independent of conceptual knowledge (Hovius, Kellenbach, Graham, Hodges, & Paterson, 2003), so that a rigid separation between perceptual and semantic mechanisms may be unwarranted (Binetti et al., 1996).

The battery includes one screening test of visual shape detection to ensure that patients have adequate visual-sensory capacities. The VOSP consists of the following tests: four subtests for object perception (Tests 1–4: incomplete letters, silhouettes, object decision, and progressive silhouettes) and four for space perception (Test 5–8: dot counting, position discrimination, number location, and cube analysis).

Several normative data have been published (Strauss, Sherman, & Spreen, 2006), including preliminary data on children (Weber, Pache, Lutschg, & Kaiser, 2004). A preliminary Spanish normative study has also been recently published (Herrera-Guzmán et al., 2004). The results of this study correspond to others that provide evidence of the importance of sociodemographic variables when performing specific object and spatial visual perception tasks. The influence of age and education appeared to be very similar to the American sample of Bonello and colleagues (1997).

Performance on VOSP diminishes with age (Herrera-Guzmán, et al., 2004; Warrington & James, 1991). The failure to observe age-related declines on some tasks (dot counting, incomplete letters, and position discrimination) is probably due to ceiling effects. A differential progression of the effect of aging has been proposed in which object perception declines earlier than space perception (Bonello et al., 1997). Education effects have been reported to be weak but significantly associated with several tasks (Bonello et al., 1997; Herrera-Guzmán, et al., 2004).

Sex shows contradictory results. Bonello and colleagues (1997) reported that it did not affect performance while Spanish preliminary data (Herrera-Guzmán et al., 2004) indicated sex-related differences in five tasks (silhouettes, object decision, progressive silhouettes, position discrimination, and cube analysis).

Judgment of Line Orientation

This test measures spatial perception and orientation. It assesses the ability to estimate angular relationships between line segments by visually matching angled line pairs to 11 numbered radii forming a semicircle. The test consists of 30 items, each showing a different pair of angled lines to be matched to the display cards. The score is the number of items in which judgments for both lines are correct. A number of short forms have been presented (Mount, Hoog, & Johnstone, 2002; Qualls, Bliwise, & Stringer 2000; Vanderploeg, LaLone, Greblo, & Schinka, 1997; Winegarden, Yates, Moses, Benton, & Faustman, 1998; Woodard et al., 1996; Woodard, Benedict, Roberts, et al. 1998).

There are a number of studies that provide normative data for different populations (seeMistrushina, Boone, Razani & D'Elia 2005; Strauss et al., 2006). These include norms from the MOANS project (Ivnik, Malec, Smith, Tangalos, & Petersen, 1996) and Spanish data (Montse, Pere, Carme, Francesc, & Eduardo, 2001) pertaining to a control group in a study of Parkinson's disease patients.

Whilst the effects of age and sex have consistently been reported in the JLO literature, the impact of education on JLO performance has been equivocal. Age shows a relationship with test scores (Benton et al., 1994), implying that performance declines with age (Eslinger & Benton, 1983; Ivnik et al., 1996; Mittenberg, Seidenberg, O'Leary, & DiGuilio, 1989; Montse et al., 2001). Salthouse, Toth, Hancock, and Woodard (1997) when using the short version did not, however, find this relationship between age and JLO performance.

Sex effects have been demonstrated by a series of studies in which men performed better (two points higher) than women (for example, Basso & Lowery, 2004; Basso, Harrington, Matson, & Lowery, 2000; Benton et al., 1994; Desmond, Glenwich, Stern, & Tatemichi, 1994; Glamser & Turner, 1995; Montse et al., 2001; Riva & Benton, 1993). The observed sex differences may reflect fundamental differences in brain organization. Gur and colleagues (2000) showed that while the line orientation task activated both hemispheres in men it chiefly acted on the right hemisphere in women. This suggests a supplementary cognitive process carried out by the left hemisphere in men.

The influence of formal education on test performance is particularly clear in tests of visuospatial perception (Lezak, Howieson, & Loring, 2004; Mazaux et al., 1995). In JLO performance, some studies (Ivnik et al., 1996; Lucas et al., 2005) observed a modest impact of education in older adults, whereas Benton and colleagues (1994) found better scores in higher educated elderly people.

Materials and Methods

Research Participants

Sample characteristics, recruitment procedures, and general methods of the NEURONORMA project have been reported in a previous paper (seePeña-Casanova et al., 2009). The project was reviewed and approved by the Research Ethics Committee of the Municipal Institute of Medical Care of Barcelona, Spain. Participants were recruited from nine services of neurology and units of neuropsychology in different Spanish regions. Study participants (people aged over 49 years) were identified as normal based on criteria established for NEURONORMA project. The following tools were used in the process of selection and classification of study participants: (a) Mini mental state examination (MMSE) (Folstein, Folstein, & McHugh, 1975 [validated Spanish version (Blesa et al., 2001)]). This version provides an adjustment of the scores according to age and education; (b) Interview for deterioration of daily living in dementia (IDDD) (Teunisse, Derix, & Crever, 1991; Böhm et al., 1998 [validated Spanish version]). This scale measures functional disability in self-care (16 items) and complex activities (17 items); (c) Hamilton depression rating scale (HDRS) (Hamilton, 1960). This is a semi-structured interview to assess the severity of depression for clinical research. A 17-item Spanish version was used; (d) Modified ischemia score (Rosen, Terry, Fuld, Katzman, & Peck, 1980). Administered to assess cerebrovascular risk. A cut-off of four was considered appropriate.

Volunteers did not need to be completely medically healthy to participate. Subjects with active, chronic medical, psychiatric, or neurological conditions or with physical disabilities were included if the researcher judged that the condition was correctly controlled or resolved and did not cause cognitive impairment.

Demographic information concerning the VOSP and JLO is presented in Table 1.

Table 1.

Sample size by demographics and test

 VOSP
 
JLO
 
 Count Percent of Total Count Percent of Total 
Age group 
 50–56 74 21.70 76 22.29 
 57–59 51 14.96 50 14.66 
 60–62 34 9.97 33 9.68 
 63–65 15 4.40 15 4.40 
 66–68 26 7.62 26 7.62 
 69–71 49 14.37 49 14.37 
 72–74 33 9.68 32 9.38 
 75–77 28 8.21 29 8.50 
 78–80 20 5.86 21 6.16 
 >80 11 3.23 10 2.93 
Education (years) 
 ≤5 72 21.11 71 20.82 
 6–7 23 6.74 23 6.74 
 8–9 65 19.06 65 19.06 
 10–11 41 12.02 41 12.02 
 12–13 35 10.26 33 9.68 
 14–15 32 9.38 33 9.68 
 ≥16 73 21.41 75 21.99 
Sex     
 Male 137 40.18 139 40.76 
 Female 204 59.82 202 59.24 
Total Sample 341  341  
 VOSP
 
JLO
 
 Count Percent of Total Count Percent of Total 
Age group 
 50–56 74 21.70 76 22.29 
 57–59 51 14.96 50 14.66 
 60–62 34 9.97 33 9.68 
 63–65 15 4.40 15 4.40 
 66–68 26 7.62 26 7.62 
 69–71 49 14.37 49 14.37 
 72–74 33 9.68 32 9.38 
 75–77 28 8.21 29 8.50 
 78–80 20 5.86 21 6.16 
 >80 11 3.23 10 2.93 
Education (years) 
 ≤5 72 21.11 71 20.82 
 6–7 23 6.74 23 6.74 
 8–9 65 19.06 65 19.06 
 10–11 41 12.02 41 12.02 
 12–13 35 10.26 33 9.68 
 14–15 32 9.38 33 9.68 
 ≥16 73 21.41 75 21.99 
Sex     
 Male 137 40.18 139 40.76 
 Female 204 59.82 202 59.24 
Total Sample 341  341  

Notes: JLO = judgment of line orientation; VOSP = visual object and space perception battery.

Neuropsychological Measures

The neuropsychological measures were administered as part of a larger test battery, the NEURONORMA battery (Peña-Casanova et al., 2009). Tests were administered and scored by neuropsychologists specifically trained for this project.

Visual object and space perception battery

Considering data from a previous Spanish preliminary study (Herrera-Guzmán et al., 2004), the following tests were selected: Shape Detection (a screening test to ensure that participants have adequate visual-sensory capacities); two tests for object perception: object decision (Test 3) and progressive silhouettes (Test 4); and two tests for space perception: position discrimination (Test 6) and number location (Test 7). Each test was preceded by two practice items. The total number of correct items was scored.

Shape detection screening test. As visual object and space perception can only be meaningfully assessed in participants with adequate visual sensory capacities, a screening test was administered to ensure basic visual-sensory capacities. The test consists of 20 random pattern stimuli on half of which a degraded X is superimposed. The participant is required to judge whether the X is present. The total number of correct responses is scored, summing up the false positive and the false negative. According to the test manual, subjects with a score of 15 or lower should not be further tested.

Object decision (Test 3). This test consists of 20 arrays, each of which displays one real two-dimensional object together with three distracter items. The subject is required to identify the real object shown at an angle of rotation at which it could be identified by approximately 75% of a normal control group. The number of correct choices (maximum 20) is recorded.

Progressive silhouettes (Test 4). This test consists of two series of stimulus cards (depicting a gun and a trumpet), each comprised of 10 silhouette drawings. Each successive drawing progressively reveals more details of the object. The subject is required to identify the object as early as possible. The number of trials required to identify each object is totaled and recorded as the score. Maximum score is 20 (10 + 10).

Position discrimination (Test 6). This test consists of 20 cards. Each card contains two adjacent squares containing dots: one with a black dot printed exactly in the center and one with the black dot just off-center. The participant has to decide which square has the dot in the center. The number of correct choices is recorded as the score (maximum score is 20).

Number location (Test 7). This test consists of 10 cards. Each card shows two squares, one above the other with a small gap between them. The top square contains randomly placed numbers (1–9) and the bottom square contains a single black dot corresponding to the position of one of the numbers. The task is to identify the number that corresponds with the position of the dot. The total number of correct responses is recorded (maximum score is 10).

The selected tests of the VOSP were administered following instructions as described in the test manual (Warrington & James, 1991).

Judgment of Line Orientation

The test (form H) was administered following instructions as described in the test manual (Benton et al., 1983). In all cases, five sample practice items were administered prior to the presentation of the actual 30 test items. If, after 30 s, a participant had not given a response he/she was encouraged to make his/her best guess regardless of how uncertain he/she was about it. Spontaneous corrections by the participant were accepted (maximum score is 30).

Statistical Analysis

The procedure is described previously in a study by Peña-Casanova and colleagues (2009). In summary, the principal characteristics of this process were the following: (a) the overlapping interval strategy (Pauker, 1988) was adopted to maximize the number of participants contributing to the normative distribution at each mid-point age interval; (b) effects of age, sex, and education effects on raw subtest scores were studied using coefficients of correlation (r) and determination (r2) (Lucas et al., 2005); (c) to ensure a normal distribution, the frequency distribution of the raw scores was converted into age-adjusted scaled scores, NSSA (NEURONORMA Scaled Score-age adjusted) following the methodology described by Ivnik and colleagues (1992). Raw scores were assigned percentile ranks in function of their place within a distribution. Subsequently, percentile ranks were converted to scaled scores (from 2 to 18) based on percentile ranges. This transformation of raw scores to NSSA produced a normalized distribution, on which linear regressions could be applied; (d) years of education were modeled with the following equation: 

1
formula
The resulting equations were used to calculate age- and education-adjusted NEURONORMA scaled scores (NSSA&E) for each variable. The regression coefficients (β) from this analysis were used as the basis for education adjustments. A linear regression was employed to derive age- and education-adjusted scaled scores. The obtained NSSA score was adjusted by the difference between the predicted scores based upon the subject's actual education and the predicted score given 12 years of education (selected because it provided a relatively standard reference point) (Mungas, Marshall, Weldon, Haan, & Reed, 1996). The reason for this methodological election was that provided a better standard reference, with a mean and a very similar SD to the distribution of NSSA. The following formula outlined by Mungas and colleagues (1996) was employed 
2
formula

The formula to calculate NEURONORMA scaled score-adjustment for age, education, and sex (NSSA & E & S) was the following: 

3
formula

Results

Sample sizes resulting from mid-point age intervals are presented in each normative table. Correlations and shared variance of the VOSP scores and the JLO-derived scores, with age, education, and sex are presented in Table 2.

Table 2.

Correlations (r) and shared variances (r2) of raw scores with age, year of education, and sex

Variables Age (years)
 
Education (years)
 
Sex
 
r r2 r r2 r r2 
VOSP 
 Test 3: Object Decision −0.18653 0.03479 0.28322 0.08021 −0.07615 0.0058 
 Test 4: Progressive Silhouettes 0.30345 0.09208 −0.31588 0.09978 0.08851 0.00783 
 Test 5: Position Discrimination −0.05721 0.00327 0.2 0.04 −0.06646 0.00442 
 Test 7: Number Location −0.12549 0.01575 0.31181 0.09723 −0.05466 0.00299 
JLO 
 Form H. Raw score −0.19848 0.03939 0.42822 0.18337 −0.23902 0.05713 
Variables Age (years)
 
Education (years)
 
Sex
 
r r2 r r2 r r2 
VOSP 
 Test 3: Object Decision −0.18653 0.03479 0.28322 0.08021 −0.07615 0.0058 
 Test 4: Progressive Silhouettes 0.30345 0.09208 −0.31588 0.09978 0.08851 0.00783 
 Test 5: Position Discrimination −0.05721 0.00327 0.2 0.04 −0.06646 0.00442 
 Test 7: Number Location −0.12549 0.01575 0.31181 0.09723 −0.05466 0.00299 
JLO 
 Form H. Raw score −0.19848 0.03939 0.42822 0.18337 −0.23902 0.05713 

Notes: JLO = judgment of line orientation; VOSP = visual object and space perception battery.

Concerning VOSP, age accounted for 9% for the raw score variance for progressive silhouettes (Test 4). Age effect was minimal or nonexistent for the other tests (≤3%). Education accounted significantly and discretely for the raw score variance for all measures (4–9%). Sex differences were not observed, indicating no need to control this demographic variable.

Concerning JLO, the data given in Table 2 show that age accounts for only 3% of the shared variance while education has a more important effect (18%). Sex accounts for 5% of the raw score variance, indicating that adjustments for sex are appropriate.

Age-adjusted NEURONORMA scaled scores (NSSA) for the VOSP and JLO are presented in Tables 3–12. These tables include percentile ranks, ranges of ages contributing to each normative sub-sample, and the number of participants contributing to each test's normative estimates. To use the table, select the appropriate column corresponding to the patient's age, find the patient's raw score, and subsequently refer to the corresponding NSSA and percentile rank (left part of the tables).

Table 3.

Age-adjusted NEURONORMA scores (NSSA) for age 50–56 (age range for norms = 50–60) for VOSP and JLO

Scaled Score Percentile Range VOSP
 
JLO 
Object Decision Progressive Silhouettes Position Discrimination Number Location 
<1 10 16 11 12 
— — — — 14 
11 15 — 15 
3–5 12 — 17 — — 
6–10 — 14 18 16–17 
11–18 13–14 13 — 18–19 
19–28 15 — 19 20 
29–40 16 12 — — 21–22 
10 41–59 17 10–11 — 23–24 
11 60–71 — — — 25–26 
12 72–81 18 — — 27 
13 82–89 — — — 28 
14 90–94 19 — — — — 
15 95–97 — — — 29 
16 98 — — — — — 
17 99 — — — — 
18 >99 20 20 10 30 
Sample Size  135 135 135 135 135 
Scaled Score Percentile Range VOSP
 
JLO 
Object Decision Progressive Silhouettes Position Discrimination Number Location 
<1 10 16 11 12 
— — — — 14 
11 15 — 15 
3–5 12 — 17 — — 
6–10 — 14 18 16–17 
11–18 13–14 13 — 18–19 
19–28 15 — 19 20 
29–40 16 12 — — 21–22 
10 41–59 17 10–11 — 23–24 
11 60–71 — — — 25–26 
12 72–81 18 — — 27 
13 82–89 — — — 28 
14 90–94 19 — — — — 
15 95–97 — — — 29 
16 98 — — — — — 
17 99 — — — — 
18 >99 20 20 10 30 
Sample Size  135 135 135 135 135 

Notes: JLO = judgment of line orientation; VOSP = visual object and space perception battery.

Table 4.

Age-adjusted NEURONORMA scores (NSSA) for age 57–59 (age range for norms = 53–63) for VOSP and JLO

Scaled Score Percentile Range VOSP
 
JLO 
Object Decision Progressive Silhouettes Position Discrimination Number Location 
<1 18 13 
10 16 — — — 
— — — — 10 
3–5 11 15 — 4–5 12–14 
6–10 12 — 17–18 15–16 
11–18 13 14 — 17–18 
19–28 14 13 19 19 
29–40 15–16 12 — — 20–21 
10 41–59 — 11 — 22–23 
11 60–71 17 10 — — 24–25 
12 72–81 18 8–9 — — 26 
13 82–89 — — — 27 
14 90–94 19 — — — 28 
15 95––97 — — — 29 
16 98 — — — — — 
17 99 — — — — 
18 >99 20 20 10 30 
Sample Size  133 133 133 133 131 
Scaled Score Percentile Range VOSP
 
JLO 
Object Decision Progressive Silhouettes Position Discrimination Number Location 
<1 18 13 
10 16 — — — 
— — — — 10 
3–5 11 15 — 4–5 12–14 
6–10 12 — 17–18 15–16 
11–18 13 14 — 17–18 
19–28 14 13 19 19 
29–40 15–16 12 — — 20–21 
10 41–59 — 11 — 22–23 
11 60–71 17 10 — — 24–25 
12 72–81 18 8–9 — — 26 
13 82–89 — — — 27 
14 90–94 19 — — — 28 
15 95––97 — — — 29 
16 98 — — — — — 
17 99 — — — — 
18 >99 20 20 10 30 
Sample Size  133 133 133 133 131 

Notes: JLO = judgment of line orientation; VOSP = visual object and space perception battery.

Table 5.

Age-adjusted NEURONORMA scores (NSSA) for age 60–62 (age range for norms = 56–66) for VOSP and JLO

Scaled Score Percentile Range VOSP
 
JLO 
Object Decision Progressive Silhouettes Position Discrimination Number Location 
<1 18 13 — 
10 16 16 — 
— — — — 10 
3–5 11 15 17 12–15 
6–10 12 — 18 16–17 
11–18 13 14 — 18 
19–28 14 13 19 19–20 
29–40 15 — — — 21 
10 41–59 16 11–12 — 22–23 
11 60–71 17 10 — 24–25 
12 72–81 18 — — 26–27 
13 82–89 — — — 28 
14 90–94 19 — — — 
15 95–97 — — — 29 
16 98 — — — — — 
17 99 — — — — — 
18 >99 20 20 10 30 
Sample Size  121 121 121 121 119 
Scaled Score Percentile Range VOSP
 
JLO 
Object Decision Progressive Silhouettes Position Discrimination Number Location 
<1 18 13 — 
10 16 16 — 
— — — — 10 
3–5 11 15 17 12–15 
6–10 12 — 18 16–17 
11–18 13 14 — 18 
19–28 14 13 19 19–20 
29–40 15 — — — 21 
10 41–59 16 11–12 — 22–23 
11 60–71 17 10 — 24–25 
12 72–81 18 — — 26–27 
13 82–89 — — — 28 
14 90–94 19 — — — 
15 95–97 — — — 29 
16 98 — — — — — 
17 99 — — — — — 
18 >99 20 20 10 30 
Sample Size  121 121 121 121 119 

Notes: JLO = judgment of line orientation; VOSP = visual object and space perception battery.

Table 6.

Age-adjusted NEURONORMA scores (NSSA) for age 63–65 (age range for norms = 59–69) for VOSP and JLO

Scaled Score Percentile Range VOSP
 
JLO 
Object Decision Progressive Silhouettes Position Discrimination Number Location 
<1 — 18 13 — 
16 — — — 
10 — — 10 
3–5 — — 16 12–15 
6–10 11–12 15 17 5–6 16–17 
11–18 13 14 18 18 
19–28 14 13 19 — 19–20 
29–40 15 — — 21 
10 41–59 16–17 11–12 — 22–23 
11 60–71 — 10 — — 24–25 
12 72–81 18 — — 26–27 
13 82–89 — 7–8 — — 28 
14 90–94 19 — — — — 
15 95–97 — — — 29 
16 98 — — — — — 
17 99 — — — — — 
18 >99 20 20 10 30 
Sample Size  104 104 104 104 103 
Scaled Score Percentile Range VOSP
 
JLO 
Object Decision Progressive Silhouettes Position Discrimination Number Location 
<1 — 18 13 — 
16 — — — 
10 — — 10 
3–5 — — 16 12–15 
6–10 11–12 15 17 5–6 16–17 
11–18 13 14 18 18 
19–28 14 13 19 — 19–20 
29–40 15 — — 21 
10 41–59 16–17 11–12 — 22–23 
11 60–71 — 10 — — 24–25 
12 72–81 18 — — 26–27 
13 82–89 — 7–8 — — 28 
14 90–94 19 — — — — 
15 95–97 — — — 29 
16 98 — — — — — 
17 99 — — — — — 
18 >99 20 20 10 30 
Sample Size  104 104 104 104 103 

Notes: JLO = judgment of line orientation; VOSP = visual object and space perception battery.

Table 7.

Age-adjusted NEURONORMA scores (NSSA) for age 66–68 (age range for norms = 62–72) for VOSP and JLO

Scaled Score Percentile Range VOSP
 
JLO 
Object Decision Progressive Silhouettes Position Discrimination Number Location 
<1 — 18 13 — 
— — — 
10 17 — 10 
3–5 11 16 16 12–13 
6–10 12 15 17–18 15–16 
11–18 13 14 — 17–18 
19–28 14 13 19 — 19–20 
29–40 15 — — 21 
10 41–59 16 11–12 — 22–24 
11 60–71 17 — — — 25 
12 72–81 18 9–10 — — 26–27 
13 82–89 — — — — 28 
14 90–94 19 7–8 — — 29 
15 95–97 — — — — 
16 98 — — — — — 
17 99 — — — — 
18 >99 20 20 10 30 
Sample Size  119 119 119 119 119 
Scaled Score Percentile Range VOSP
 
JLO 
Object Decision Progressive Silhouettes Position Discrimination Number Location 
<1 — 18 13 — 
— — — 
10 17 — 10 
3–5 11 16 16 12–13 
6–10 12 15 17–18 15–16 
11–18 13 14 — 17–18 
19–28 14 13 19 — 19–20 
29–40 15 — — 21 
10 41–59 16 11–12 — 22–24 
11 60–71 17 — — — 25 
12 72–81 18 9–10 — — 26–27 
13 82–89 — — — — 28 
14 90–94 19 7–8 — — 29 
15 95–97 — — — — 
16 98 — — — — — 
17 99 — — — — 
18 >99 20 20 10 30 
Sample Size  119 119 119 119 119 

Notes: JLO = judgment of line orientation; VOSP = visual object and space perception battery.

Table 8.

Age-adjusted NEURONORMA scores (NSSA) for age 69–71 (age range for norms = 65–75) for VOSP and JLO

Scaled Score Percentile Range VOSP
 
JLO 
Object Decision Progressive Silhouettes Position Discrimination Number Location 
<1 18 — — 12 
— — — — 
— 17 — — 
3–5 10–11 16 16 4–5 13–14 
6–10 12 15 17–18 15–16 
11–18 13 14 — 17–18 
19–28 14 13 19 19–20 
29–40 15 — —  21–22 
10 41–59 16 11–12 — 23–24 
11 60–71 17 — — — 25 
12 72–81 18 9–10 — — 26 
13 82–89 19 — — 27–28 
14 90–94 — — — 29 
15 95–97 — — — — 
16 98 — — — — 
17 99 — — — — — 
18 >99 20 20 10 30 
Sample Size  126 126 126 126 125 
Scaled Score Percentile Range VOSP
 
JLO 
Object Decision Progressive Silhouettes Position Discrimination Number Location 
<1 18 — — 12 
— — — — 
— 17 — — 
3–5 10–11 16 16 4–5 13–14 
6–10 12 15 17–18 15–16 
11–18 13 14 — 17–18 
19–28 14 13 19 19–20 
29–40 15 — —  21–22 
10 41–59 16 11–12 — 23–24 
11 60–71 17 — — — 25 
12 72–81 18 9–10 — — 26 
13 82–89 19 — — 27–28 
14 90–94 — — — 29 
15 95–97 — — — — 
16 98 — — — — 
17 99 — — — — — 
18 >99 20 20 10 30 
Sample Size  126 126 126 126 125 

Notes: JLO = judgment of line orientation; VOSP = visual object and space perception battery.

Table 9.

Age-adjusted NEURONORMA scores (NSSA) for age 72–74 (age range for norms = 68–78) for VOSP and JLO

Scaled Score Percentile Range VOSP
 
JLO 
Object Decision Progressive Silhouettes Position Discrimination Number Location 
<1 18 — — 12 
— — — 
10 17 — — 
3–5 11 16 16–17 13–14 
6–10 12 15 18 15–16 
11–18 13 14 — 17 
19–28 14 — 19 18–19 
29–40 15 13 — — 20 
10 41–59 16 12 — 21–23 
11 60–71 17 11 — — 24–25 
12 72–81 – 10 — — 26 
13 82–89 18 — — 27 
14 90–94 19 — — 28–29 
15 95–97 — 6–7 — — — 
16 98 — — — — — 
17 99 — — — — 
18 >99 20 — 20 10 30 
Sample Size  124 124 124 124 125 
Scaled Score Percentile Range VOSP
 
JLO 
Object Decision Progressive Silhouettes Position Discrimination Number Location 
<1 18 — — 12 
— — — 
10 17 — — 
3–5 11 16 16–17 13–14 
6–10 12 15 18 15–16 
11–18 13 14 — 17 
19–28 14 — 19 18–19 
29–40 15 13 — — 20 
10 41–59 16 12 — 21–23 
11 60–71 17 11 — — 24–25 
12 72–81 – 10 — — 26 
13 82–89 18 — — 27 
14 90–94 19 — — 28–29 
15 95–97 — 6–7 — — — 
16 98 — — — — — 
17 99 — — — — 
18 >99 20 — 20 10 30 
Sample Size  124 124 124 124 125 

Notes: JLO = judgment of line orientation; VOSP = visual object and space perception battery.

Table 10.

Age-adjusted NEURONORMA scores (NSSA) for age 75–77 (age range for norms = 78–81) for VOSP and JLO

Scaled Score Percentile Range VOSP
 
JLO 
Object Decision Progressive Silhouettes Position Discrimination Number Location 
<1 — 18 — — — 
— 16 — — 
— 17 — 12 
3–5 10–11 16 — 4–5 — 
6–10 12 — 17–18 13–14 
11–18 13 15 — 15–16 
19–28 14 14 19 17–18 
29–40 15 13 — — 19–20 
10 41–59 16 12 — — 21–22 
11 60–71 17 11 — 23–24 
12 72–81 – 10 — — 25–26 
13 82–89 18 — — 27 
14 90–94 19 — — 28 
15 95–97 — 6–7 — — 29 
16 98 — — — — 
17 99 — — — — — 
18 >99 20 — 20 10 30 
Sample Size  99 99 99 99 100 
Scaled Score Percentile Range VOSP
 
JLO 
Object Decision Progressive Silhouettes Position Discrimination Number Location 
<1 — 18 — — — 
— 16 — — 
— 17 — 12 
3–5 10–11 16 — 4–5 — 
6–10 12 — 17–18 13–14 
11–18 13 15 — 15–16 
19–28 14 14 19 17–18 
29–40 15 13 — — 19–20 
10 41–59 16 12 — — 21–22 
11 60–71 17 11 — 23–24 
12 72–81 – 10 — — 25–26 
13 82–89 18 — — 27 
14 90–94 19 — — 28 
15 95–97 — 6–7 — — 29 
16 98 — — — — 
17 99 — — — — — 
18 >99 20 — 20 10 30 
Sample Size  99 99 99 99 100 

Notes: JLO = judgment of line orientation; VOSP = visual object and space perception battery.

Table 11.

Age-adjusted NEURONORMA scores (NSSA) for age 78–80 (age range for norms = 74–84) for VOSP and JLO

Scaled Score Percentile Range VOSP
 
JLO 
Object Decision Progressive Silhouettes Position Discrimination Number Location 
<1 — 18 — — — 
— — — 12 
— 17 — — — 
3–5 10 16 — 3–4 — 
6–10 11 15 17–18 13 
11–18 12–13 — — — 15–16 
19–28 — 14 — 17 
29–40 14 — 19 18–19 
10 41–59 15–16 13 — — 20–21 
11 60–71 17 12 — 22–23 
12 72–81 — 11 — — 24 
13 82–89 18 10 — — 25 
14 90–94 — — — 27 
15 95–97 19 — — 28 
16 98 — — — — — 
17 99 — — — — 
18 >99 20 — 20 10 30 
Sample Size  62 62 62 62 131 
Scaled Score Percentile Range VOSP
 
JLO 
Object Decision Progressive Silhouettes Position Discrimination Number Location 
<1 — 18 — — — 
— — — 12 
— 17 — — — 
3–5 10 16 — 3–4 — 
6–10 11 15 17–18 13 
11–18 12–13 — — — 15–16 
19–28 — 14 — 17 
29–40 14 — 19 18–19 
10 41–59 15–16 13 — — 20–21 
11 60–71 17 12 — 22–23 
12 72–81 — 11 — — 24 
13 82–89 18 10 — — 25 
14 90–94 — — — 27 
15 95–97 19 — — 28 
16 98 — — — — — 
17 99 — — — — 
18 >99 20 — 20 10 30 
Sample Size  62 62 62 62 131 

Notes: JLO = judgment of line orientation; VOSP = visual object and space perception battery.

Table 12.

Age-adjusted NEURONORMA scores (NSSA) for age 81–90 (age range for norms = 77–90) for VOSP and JLO

Scaled Score Percentile Range VOSP
 
JLO 
Object Decision Progressive Silhouettes Position Discrimination Number Location 
<1 — 17 — — — 
— — — — — 
10 — 13 12 
3–5 11 16 — 13 
6–10 – 15 17 — 15 
11–18 12 — 18 — 16 
19–28 13 14 19 17 
29–40 14 — — 18–19 
10 41–59 15–16 13 — — 20 
11 60–71 17 12 — 21–22 
12 72–81 — 11 — — 23–24 
13 82–89 18 10 — — 25 
14 90–94 — — — — 27 
15 95–97 19 — — 28 
16 98 — — — — 
17 99 — — — — — 
18 >99 20 — — — 30 
Sample Size  39 39 39 39 40 
Scaled Score Percentile Range VOSP
 
JLO 
Object Decision Progressive Silhouettes Position Discrimination Number Location 
<1 — 17 — — — 
— — — — — 
10 — 13 12 
3–5 11 16 — 13 
6–10 – 15 17 — 15 
11–18 12 — 18 — 16 
19–28 13 14 19 17 
29–40 14 — — 18–19 
10 41–59 15–16 13 — — 20 
11 60–71 17 12 — 21–22 
12 72–81 — 11 — — 23–24 
13 82–89 18 10 — — 25 
14 90–94 — — — — 27 
15 95–97 19 — — 28 
16 98 — — — — 
17 99 — — — — — 
18 >99 20 — — — 30 
Sample Size  39 39 39 39 40 

Notes: JLO = judgment of line orientation; VOSP = visual object and space perception battery.

As expected, the normative adjustments (NSSA) eliminated the shared variance of age (Table 13). Education, however, continued to account for up to 5–9% (rounded) of shared variance with age-adjusted test scores for the VOSP, and up to 14% for the JLO. To maintain the same analysis, education adjustments were applied to all variables. For the JLO, sex continued to account for an 8% (r = −2.27863; r2 = 0.077635) of shared variance after age adjustment.

Table 13.

Correlations (r) and shared variances (r2) of age-adjusted NEURONORMA scores (NSSA) with age, and education (years)

Variables Age (years)
 
Education (years)
 
r r2 r r2 
VOSP 
 Test 3: Object Decision −0.03385 0.00115 0.22831 0.05213 
 Test 4: Progressive Silhouettes 0.05663 0.00321 −0.24652 0.06077 
 Test 5: Position Discrimination −0.04521 0.00204 0.21443 0.04598 
 Test 7: Number Location −0.10526 0.01108 0.29663 0.08799 
JLO 
 Form H. Raw score −0.01146 0.00013 0.38576 0.14881 
Variables Age (years)
 
Education (years)
 
r r2 r r2 
VOSP 
 Test 3: Object Decision −0.03385 0.00115 0.22831 0.05213 
 Test 4: Progressive Silhouettes 0.05663 0.00321 −0.24652 0.06077 
 Test 5: Position Discrimination −0.04521 0.00204 0.21443 0.04598 
 Test 7: Number Location −0.10526 0.01108 0.29663 0.08799 
JLO 
 Form H. Raw score −0.01146 0.00013 0.38576 0.14881 

Notes: JLO: Judgment of Line Orientation; VOSP Visual Object and Space Perception Battery.

The transformation of RS to NSSA produced a normalized distribution on which linear regressions could be applied. Regression coefficients from this analysis were used as the basis for education adjustments. The resulting computational formulae were used to calculate NSSA&E. From these data, we have constructed correction tables to help the clinician make the necessary adjustment (Tables 14–17 for VOSP). Values of β are included in these tables. For the JLO we have constructed correction tables for both sexes (Tables 18 and 19). The formula (3) to calculate NEURONORMA scaled score-adjustment for age, education, and sex (NSSA&E&S) was applied using the following data: β = 0.119405, γ = −1.37869, and sex 0 (=man) or 1 (=woman).

Table 14.

VOSP. Object decision test

NSSA Education (years)
 
10 11 12 13 14 15 16 17 18 19 20 
10 10 10 10 10 
10 11 11 11 11 11 10 10 10 10 10 10 10 10 
11 12 12 12 12 12 11 11 11 11 11 11 11 11 10 10 10 10 10 10 10 
12 13 13 13 13 13 12 12 12 12 12 12 12 12 11 11 11 11 11 11 11 10 
13 14 14 14 14 14 13 13 13 13 13 13 13 13 12 12 12 12 12 12 12 11 
14 15 15 15 15 15 14 14 14 14 14 14 14 14 13 13 13 13 13 13 13 12 
15 16 16 16 16 16 15 15 15 15 15 15 15 15 14 14 14 14 14 14 14 13 
16 17 17 17 17 17 16 16 16 16 16 16 16 16 15 15 15 15 15 15 15 14 
17 18 18 18 18 18 17 17 17 17 17 17 17 17 16 16 16 16 16 16 16 15 
18 19 19 19 19 19 18 18 18 18 18 18 18 18 17 17 17 17 17 17 17 16 
NSSA Education (years)
 
10 11 12 13 14 15 16 17 18 19 20 
10 10 10 10 10 
10 11 11 11 11 11 10 10 10 10 10 10 10 10 
11 12 12 12 12 12 11 11 11 11 11 11 11 11 10 10 10 10 10 10 10 
12 13 13 13 13 13 12 12 12 12 12 12 12 12 11 11 11 11 11 11 11 10 
13 14 14 14 14 14 13 13 13 13 13 13 13 13 12 12 12 12 12 12 12 11 
14 15 15 15 15 15 14 14 14 14 14 14 14 14 13 13 13 13 13 13 13 12 
15 16 16 16 16 16 15 15 15 15 15 15 15 15 14 14 14 14 14 14 14 13 
16 17 17 17 17 17 16 16 16 16 16 16 16 16 15 15 15 15 15 15 15 14 
17 18 18 18 18 18 17 17 17 17 17 17 17 17 16 16 16 16 16 16 16 15 
18 19 19 19 19 19 18 18 18 18 18 18 18 18 17 17 17 17 17 17 17 16 

Notes: Education adjustment applying the following formula: NSSA&E = NSSA − (β * [Education(years)− 12]), where β = 0.13548. VOSP = visual object and space perception battery.

Table 15.

VOSP. Progressive silhouettes test

NSSA Education (years)
 
10 11 12 13 14 15 16 17 18 19 20 
10 
10 11 10 10 10 10 10 10 10 10 
11 12 11 11 11 11 11 11 11 11 10 10 10 10 10 10 10 
12 13 12 12 12 12 12 12 12 12 11 11 11 11 11 11 11 10 10 10 10 10 
13 14 13 13 13 13 13 13 13 13 12 12 12 12 12 12 12 11 11 11 11 11 
14 15 14 14 14 14 14 14 14 14 13 13 13 13 13 13 13 12 12 12 12 12 
15 16 15 15 15 15 15 15 15 15 14 14 14 14 14 14 14 13 13 13 13 13 
16 17 16 16 16 16 16 16 16 16 15 15 15 15 15 15 15 14 14 14 14 14 
17 18 17 17 17 17 17 17 17 17 16 16 16 16 16 16 16 15 15 15 15 15 
18 19 18 18 18 18 18 18 18 18 17 17 17 17 17 17 17 16 16 16 16 16 
NSSA Education (years)
 
10 11 12 13 14 15 16 17 18 19 20 
10 
10 11 10 10 10 10 10 10 10 10 
11 12 11 11 11 11 11 11 11 11 10 10 10 10 10 10 10 
12 13 12 12 12 12 12 12 12 12 11 11 11 11 11 11 11 10 10 10 10 10 
13 14 13 13 13 13 13 13 13 13 12 12 12 12 12 12 12 11 11 11 11 11 
14 15 14 14 14 14 14 14 14 14 13 13 13 13 13 13 13 12 12 12 12 12 
15 16 15 15 15 15 15 15 15 15 14 14 14 14 14 14 14 13 13 13 13 13 
16 17 16 16 16 16 16 16 16 16 15 15 15 15 15 15 15 14 14 14 14 14 
17 18 17 17 17 17 17 17 17 17 16 16 16 16 16 16 16 15 15 15 15 15 
18 19 18 18 18 18 18 18 18 18 17 17 17 17 17 17 17 16 16 16 16 16 

Notes: Education adjustment applying the following formula: SSSAE = SSSA − (β * [Education(years)− 12]), where β = 0.13188. VOSP = visual object and space perception battery.

Table 16.

VOSP. Position discrimination test

NSSA Education (years)
 
10 11 12 13 14 15 16 17 18 19 20 
10 
11 10 10 10 10 10 10 
10 12 11 11 11 11 11 11 10 10 10 10 10 10 
11 13 12 12 12 12 12 12 11 11 11 11 11 11 10 10 10 10 10 
12 14 13 13 13 13 13 13 12 12 12 12 12 12 11 11 11 11 11 10 10 10 
13 15 14 14 14 14 14 14 13 13 13 13 13 13 12 12 12 12 12 11 11 11 
14 16 15 15 15 15 15 15 14 14 14 14 14 14 13 13 13 13 13 12 12 12 
15 17 16 16 16 16 16 16 15 15 15 15 15 15 14 14 14 14 14 13 13 13 
16 18 17 17 17 17 17 17 16 16 16 16 16 16 15 15 15 15 15 14 14 14 
17 19 18 18 18 18 18 18 17 17 17 17 17 17 16 16 16 16 16 15 15 15 
18 20 19 19 19 19 19 19 18 18 18 18 18 18 17 17 17 17 17 16 16 16 
NSSA Education (years)
 
10 11 12 13 14 15 16 17 18 19 20 
10 
11 10 10 10 10 10 10 
10 12 11 11 11 11 11 11 10 10 10 10 10 10 
11 13 12 12 12 12 12 12 11 11 11 11 11 11 10 10 10 10 10 
12 14 13 13 13 13 13 13 12 12 12 12 12 12 11 11 11 11 11 10 10 10 
13 15 14 14 14 14 14 14 13 13 13 13 13 13 12 12 12 12 12 11 11 11 
14 16 15 15 15 15 15 15 14 14 14 14 14 14 13 13 13 13 13 12 12 12 
15 17 16 16 16 16 16 16 15 15 15 15 15 15 14 14 14 14 14 13 13 13 
16 18 17 17 17 17 17 17 16 16 16 16 16 16 15 15 15 15 15 14 14 14 
17 19 18 18 18 18 18 18 17 17 17 17 17 17 16 16 16 16 16 15 15 15 
18 20 19 19 19 19 19 19 18 18 18 18 18 18 17 17 17 17 17 16 16 16 

Notes: Education adjustment applying the following formula: NSSA&E = NSSA − (β * [Education(years)– 12]), where β = 0.17944. VOSP = visual object and space perception battery.

Table 17.

VOSP. Number location test

NSSA Education (years)
 
10 11 12 13 14 15 16 17 18 19 20 
−1 
10 
11 10 10 10 10 
12 11 11 11 11 10 10 10 10 
10 13 12 12 12 12 11 11 11 11 10 10 10 10 
11 14 13 13 13 13 12 12 12 12 11 11 11 11 10 10 10 
12 15 14 14 14 14 13 13 13 13 12 12 12 12 11 11 11 10 10 10 10 
13 16 15 15 15 15 14 14 14 14 13 13 13 13 12 12 12 11 11 11 11 10 
14 17 16 16 16 16 15 15 15 15 14 14 14 14 13 13 13 12 12 12 12 11 
15 18 17 17 17 17 16 16 16 16 15 15 15 15 14 14 14 13 13 13 13 12 
16 19 18 18 18 18 17 17 17 17 16 16 16 16 15 15 15 14 14 14 14 13 
17 20 19 19 19 19 18 18 18 18 17 17 17 17 16 16 16 15 15 15 15 14 
18 21 20 20 20 20 19 19 19 19 18 18 18 18 17 17 17 16 16 16 16 15 
NSSA Education (years)
 
10 11 12 13 14 15 16 17 18 19 20 
−1 
10 
11 10 10 10 10 
12 11 11 11 11 10 10 10 10 
10 13 12 12 12 12 11 11 11 11 10 10 10 10 
11 14 13 13 13 13 12 12 12 12 11 11 11 11 10 10 10 
12 15 14 14 14 14 13 13 13 13 12 12 12 12 11 11 11 10 10 10 10 
13 16 15 15 15 15 14 14 14 14 13 13 13 13 12 12 12 11 11 11 11 10 
14 17 16 16 16 16 15 15 15 15 14 14 14 14 13 13 13 12 12 12 12 11 
15 18 17 17 17 17 16 16 16 16 15 15 15 15 14 14 14 13 13 13 13 12 
16 19 18 18 18 18 17 17 17 17 16 16 16 16 15 15 15 14 14 14 14 13 
17 20 19 19 19 19 18 18 18 18 17 17 17 17 16 16 16 15 15 15 15 14 
18 21 20 20 20 20 19 19 19 19 18 18 18 18 17 17 17 16 16 16 16 15 

Notes: Education adjustment applying the following formula: NSSA&E = NSSA – (β * [Education(years) – 12]), where β = 0.26260. VOSP = visual object and space perception battery.

Table 18.

JLO. Male

NSSA Education (years)
 
10 11 12 13 14 15 16 17 18 19 20 
10 10 
11 11 10 10 10 10 10 
10 12 12 11 11 11 11 11 10 10 10 10 10 10 
11 13 13 12 12 12 12 12 11 11 11 11 11 11 10 10 10 10 10 
12 14 14 13 13 13 13 13 12 12 12 12 12 12 11 11 11 11 11 10 10 10 
13 15 15 14 14 14 14 14 13 13 13 13 13 13 12 12 12 12 12 11 11 11 
14 16 16 15 15 15 15 15 14 14 14 14 14 14 13 13 13 13 13 12 12 12 
15 17 17 16 16 16 16 16 15 15 15 15 15 15 14 14 14 14 14 13 13 13 
16 18 18 17 17 17 17 17 16 16 16 16 16 16 15 15 15 15 15 14 14 14 
17 19 19 18 18 18 18 18 17 17 17 17 17 17 16 16 16 16 16 15 15 15 
18 20 20 19 19 19 19 19 18 18 18 18 18 18 17 17 17 17 17 16 16 16 
NSSA Education (years)
 
10 11 12 13 14 15 16 17 18 19 20 
10 10 
11 11 10 10 10 10 10 
10 12 12 11 11 11 11 11 10 10 10 10 10 10 
11 13 13 12 12 12 12 12 11 11 11 11 11 11 10 10 10 10 10 
12 14 14 13 13 13 13 13 12 12 12 12 12 12 11 11 11 11 11 10 10 10 
13 15 15 14 14 14 14 14 13 13 13 13 13 13 12 12 12 12 12 11 11 11 
14 16 16 15 15 15 15 15 14 14 14 14 14 14 13 13 13 13 13 12 12 12 
15 17 17 16 16 16 16 16 15 15 15 15 15 15 14 14 14 14 14 13 13 13 
16 18 18 17 17 17 17 17 16 16 16 16 16 16 15 15 15 15 15 14 14 14 
17 19 19 18 18 18 18 18 17 17 17 17 17 17 16 16 16 16 16 15 15 15 
18 20 20 19 19 19 19 19 18 18 18 18 18 18 17 17 17 17 17 16 16 16 

Notes: Education adjustment applying the following formula: NSSA&E = NSSA – (β * [Education(years) – 12]), where β = 0.19405. JLO = judgment of line orientation.

Table 19.

JLO Female

 Education (years)
 
NSSA 10 11 12 13 14 15 16 17 18 19 20 
10 10 10 10 
11 11 11 11 10 10 10 10 10 
12 12 12 12 11 11 11 11 11 10 10 10 10 10 
10 13 13 13 13 12 12 12 12 12 11 11 11 11 11 10 10 10 10 10 10 
11 14 14 14 14 13 13 13 13 13 12 12 12 12 12 11 11 11 11 11 11 10 
12 15 15 15 15 14 14 14 14 14 13 13 13 13 13 12 12 12 12 12 12 11 
13 16 16 16 16 15 15 15 15 15 14 14 14 14 14 13 13 13 13 13 13 12 
14 17 17 17 17 16 16 16 16 16 15 15 15 15 15 14 14 14 14 14 14 13 
15 18 18 18 18 17 17 17 17 17 16 16 16 16 16 15 15 15 15 15 15 14 
16 19 19 19 19 18 18 18 18 18 17 17 17 17 17 16 16 16 16 16 16 15 
17 20 20 20 20 19 19 19 19 19 18 18 18 18 18 17 17 17 17 17 17 16 
18 21 21 21 21 20 20 20 20 20 19 19 19 19 19 18 18 18 18 18 18 17 
 Education (years)
 
NSSA 10 11 12 13 14 15 16 17 18 19 20 
10 10 10 10 
11 11 11 11 10 10 10 10 10 
12 12 12 12 11 11 11 11 11 10 10 10 10 10 
10 13 13 13 13 12 12 12 12 12 11 11 11 11 11 10 10 10 10 10 10 
11 14 14 14 14 13 13 13 13 13 12 12 12 12 12 11 11 11 11 11 11 10 
12 15 15 15 15 14 14 14 14 14 13 13 13 13 13 12 12 12 12 12 12 11 
13 16 16 16 16 15 15 15 15 15 14 14 14 14 14 13 13 13 13 13 13 12 
14 17 17 17 17 16 16 16 16 16 15 15 15 15 15 14 14 14 14 14 14 13 
15 18 18 18 18 17 17 17 17 17 16 16 16 16 16 15 15 15 15 15 15 14 
16 19 19 19 19 18 18 18 18 18 17 17 17 17 17 16 16 16 16 16 16 15 
17 20 20 20 20 19 19 19 19 19 18 18 18 18 18 17 17 17 17 17 17 16 
18 21 21 21 21 20 20 20 20 20 19 19 19 19 19 18 18 18 18 18 18 17 

Notes: Education adjustment applying the following formula: NSSA&E&S = NSSA – (β * [Education(years) – 12]) – γ * Sex)), where β = 0.19405; γ = −1.37869; and sex (woman) = 1. JLO = judgment of line orientation.

To use Tables 14–19 select the appropriate column corresponding to the patient's years of education, find the patient's NSSA, and subsequently refer to the corresponding NSSA&E, or NSSA&E&S. When these formulas were applied to the NEURONORMA normative sample, the shared variances between demographically adjusted NEURONORMA scaled scores, years of education, and sex fell to <1%.

Discussion

The purpose of this report was to provide normative and comprehensive data for older Spaniards for the selected tests of the VOSP and JLO. Age-adjusted normative data and regression-based adjustments for education and sex are presented. This study offers for the first time systematic, normative information for Spanish subjects aged over 49 years on the selected test of the VOSP.

Visual Object and Space Perception Battery

This study includes considerably more subjects than in the previous Spanish study by Herrera and colleagues (2004) and in other normative studies (Bonello et al., 1997; Warrington & James, 1991). As a consequence, the data presented for the analysis of demographic effects on the scores of the selected test studied in the NEURONORMA project are more consistent. Unfortunately, not all VOSP tests are included in the NEURONORMA project.

We confirm that the object decision and progressive silhouettes tests scores show a normal distribution, but the position discrimination and number location tests do not (seeHerrera-Guzmán et al., 2004). This fact is reflected in mid-point (boldface numbers) in Tables 3–12, and affects the correct use of the overall NEURONORMA analysis method based on normal distributions. This problem is also observed in other neuropsychological tasks such as digit repetition (seePeña-Casanova et al., 2009) or in some subtests of the WMS-R norms in the MOANS project (e.g., Ivnik et al., 1992; Lucas et al., 2005). To minimize this problem, some authors suggest to deal with the data in raw scores form than to convert them into scaled scores (Lezak et al., 2004). We certainly agree with that proposition and recognize the statistical problems of forcing these kinds of scores into a normal distribution. However, given the characteristics and purposes of this normative project, we chose to homogenize the statistical analysis procedure. Further to this we developed normative data following the single procedure described by the Mayo Clinic researchers (seeIvnik et al., 1992).

Education showed a more consistent effect than age on the raw scores of the VOSP (see Table 2). The progressive silhouettes test was the most sensitive to these variables (9% of the shared variance for both age and education).

We do not confirm previous Spanish data (Herrera-Guzmán et al., 2004) on the effect of sex on the selected tests studied in this project. It is noteworthy that in the Spanish preliminary study sex-related differences were found in five of the eight tasks: silhouettes, object decision, progressive silhouettes, position discrimination, and cube analysis.

Judgment of Line Orientation

Our results concerning demographic variables show the same tendencies as in the MOANS projects (Lucas et al., 2005; Steinberg, Bieliauskas, Smith, Langellotti, & Ivnik, 2005). This study shows a very low effect of age for the raw score variance (3%) of the JLO. A fact that is reflected in the central tendency (NSSA 10) of the mid-point tables: there is a progressive decrement of the raw scores in age 72–74 and beyond (from 23–24 points to 20). Our results confirm that formal education on JLO test performance is relatively modest (18% for the raw score variance) although psychometric adjustments are needed (seeBenton et al., 1994; Ivnik et al., 1996; Lucas et al., 2005). We also confirm previous works (e.g., Basso & Lowery, 2004; Basso et al., 2000; Benton et al., 1994; Desmond et al., 1994; Glamser & Turner, 1995) that point out that male performance is slightly better in the JLO. Due to the fact that the effect of sex reached 5%, we decided to create specific adjustment tables for men and women.

Final Comments

This study offers, for the first time, Spanish normative data on the selected subtest of the VOSP, and JLO. These data were obtained from the same study sample as all other NEURONORMA norms. Cognitive normalcy was validated not only by applying inclusion and exclusion criteria, but also via informants (ADL scale) and a cognitive screening test (MMSE).

The validity of these norms is heavily dependent upon the similarity between the characteristics of the patient being assessed and the demographic, cultural, and linguistic features of the NEURONORMA sample (Ivnik et al., 1992). Education adjustments will help the clinician to obtain the rounded expected score by considering the number of years of formal education. In extreme cases the resulting adjustment may be placed beyond the defined scaled score range (e.g. 19 or 1). Under these circumstances, the final score should be 18 or 2, respectively. It is important to stress that it would not be accurate to apply the computational formulae defined in this work to younger individuals due to the different impact of the demographic variables on the cognitive performance across the life span (seeLucas et al., 2005).

The general limitations of NEURONORMA norms have been discussed in a previous paper (Peña-Casanova et al., 2009), including the lack of epidemiological techniques of recruitment, stratification starting at age 50, and the limited representation of the extremely elderly. Despite its limitations, this study reflects the largest normative study to date for the neuropsychological performance of Spanish older subjects on selected test of the VOSP and JLO. The normative information provided here should prove useful for characterizing and interpreting individual test performances as well as comparing the scores from these tests with any other test with NEURONORMA norms. Correlation studies are needed to study the effect of other cognitive capacities on visual and spatial perception.

Funding

This study was mainly supported by a grant from the Pfizer Foundation, and by the Medical Department of Pfizer, SA. Spain. It was also supported by the Behavioral Neurology group of the Program of Neuropsychopharmacology of the Institut Municipal d'Investigació Mèdica, Barcelona, Spain. Dr. Jordi Peña-Casanova has received an intensification research grant from the CIBERNED (Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas), Instituto Carlos III (Ministry of Health & Consumer Affairs of Spain).

Conflict of Interest

None declared.

Appendix

Members of the NEURONORMA.ES Study Team

Steering committee: J.P.-C., Hospital del Mar, Barcelona, Spain; R.B., Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; M.A., Hospital Mútua de Terrassa, Terrassa, Spain.

Principal investigators: J.P.-C., Hospital de Mar, Barcelona, Spain; R.B., Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; M.A., Hospital Mútua de Terrassa, Terrassa, Spain; J.L.M., Hospital Clínic, Barcelona, Spain; A.R., Hospital Clínico Universitario, Santiago de Compostela, Spain; M.S.B., Hospital Clínico San Carlos, Madrid, Spain; C.A., Hospital Virgen Arrixaca, Murcia, Spain; C.M.-P., Hospital Virgen Macarena, Sevilla, Spain; A.F.-G., Hospital Universitario La Paz, Madrid, Spain; M.F., Hospital de Cruces, Bilbao, Spain.

Genetics sub-study: Rafael Oliva, Service of Genetics, Hospital Clínic, Barcelona, Spain.

Neuroimaging sub-study: Beatriz Gómez-Ansón, Radiology Department and IDIBAPS, Hospital Clínic, Barcelona, Spain. Research Fellows: Gemma Monte, Elena Alayrach, Aitor Sainz, and Claudia Caprile, Fundació Clinic, Hospital Clinic, Barcelona, Spain; Gonzalo Sánchez, Behavioral Neurology Group. Institut Municipal d'Investigació Mèdica. Barcelona, Spain.

Clinicians, Psychologists and Neuropsychologists: Nina Gramunt (Coordinator), Peter Böhm, Sonia González, Yolanda Buriel, María Quintana, Sonia Quiñones, Gonzalo Sánchez, Rosa M. Manero, Gracia Cucurella, Institut Municipal d'Investigació Mèdica. Barcelona, Spain; Eva Ruiz, Mónica Serradell, Laura Torner, Hospital Clínic. Barcelona, Spain; Dolors Badenes, Laura Casas, Noemí Cerulla, Silvia Ramos, Loli Cabello, Hospital Mútua de Terrassa, Terrassa, Spain; Dolores Rodríguez, Clinical Psychology and Psychobiology Dept. University of Santiago de Compostela, Spain; María Payno, Clara Villanueva, Hospital Clínico San Carlos. Madrid, Spain; Rafael Carles, Judit Jiménez, Martirio Antequera, Hospital Virgen Arixaca. Murcia, Spain; Jose Manuel Gata, Pablo Duque, Laura Jiménez, Hospital Virgen Macarena. Sevilla, Spain; Azucena Sanz, María Dolores Aguilar, Hospital Universitario La Paz. Madrid, Spain; Ana Molano, Maitena Lasa, Hospital de Cruces. Bilbao, Spain.

Data management and biometrics: Josep Maria Sol, Francisco Hernández, Irune Quevedo, Anna Salvà, Verónica Alfonso, European Biometrics Institute. Barcelona, Spain.

Administrative management: Carme Pla (†), Romina Ribas, Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, and Behavioral Neurology Group. Institut Municipal d'Investigació Mèdica. Barcelona, Spain.

English edition: Stephanie Lonsdale, Program of Neuropsychopharmacology, Institut Municipal d'Investigació Mèdica, Barcelona, Spain.

References

Basso
M. R.
Harrington
K.
Matson
M.
Lowery
N.
Sex differences on the WMS-III
The Clinical Neuropsychologist
 , 
2000
, vol. 
14
 (pg. 
231
-
245
)
Basso
M. R.
Lowery
N.
Global-local visual biases correspond with visual-spatial orientation
Journal of Clinical and Experimental Neuropsychology
 , 
2004
, vol. 
26
 (pg. 
24
-
30
)
Benton
A.
Hamsher
K.
Varney
N. R.
Spreen
O.
Contributions to neuropsychological assessment: A clinical manual
 , 
1983
New York
Oxford University Press
Benton
A.
Hannay
H. J.
Varney
N. R.
Visual perception of line direction in patients with unilateral brain disease
Neurology
 , 
1975
, vol. 
25
 (pg. 
907
-
910
)
Benton
A.
Sivan
A. B.
Hamsher
K.
Varney
N. R.
Spreen
O.
Contributions to neuropsychological assessment: A clinical manual
 , 
1994
2nd ed.
New York
Oxford University Press
Benton
A. L.
Varney
N. R.
Hamsher
K.
Visuospatial judgment. A clinical test
Archives of Neurology
 , 
1978
, vol. 
35
 (pg. 
364
-
367
)
Binetti
G.
Cappa
S. F.
Magni
E.
Padovani
A.
Bianchetti
A.
Trabucchi
M.
Disorders of visual and spatial perception in the early stage of Alzheimer's disease
Annals of the New York Academy of Sciences
 , 
1996
, vol. 
777
 (pg. 
221
-
225
)
Blesa
R.
Pujol
M.
Aguilar
M.
Santacruz
P.
Bertran-Serra
I.
Hernández
G.
, et al.  . 
Clinical validity of the “mini-mental state” for Spanish Speaking communities
Neuropsychologia
 , 
2001
, vol. 
39
 (pg. 
1150
-
1157
)
Böhm
P.
Peña-Casanova
J.
Aguilar
M.
Hernández
G.
Sol
J. M.
Blesa
R.
Clinical validity and utility of the interview for deterioration of daily living in dementia for Spanish-speaking communities
International Psychogeriatrics
 , 
1998
, vol. 
10
 (pg. 
261
-
270
)
Bonello
P. J.
Rapport
L. J.
Millis
S. R.
Psychometric properties of the visual object and space perception battery in normal older adults
The Clinical Neuropsychologist
 , 
1997
, vol. 
11
 (pg. 
436
-
442
)
Desmond
D. W.
Glenwich
D. S.
Stern
Y.
Tatemichi
T. K.
Sex differences in the representation of visuospatial functions in the human brain
Rehabilitation Psychology
 , 
1994
, vol. 
39
 (pg. 
3
-
14
)
Eslinger
P. J.
Benton
A. L.
Visuoperceptual performances in aging and dementia: Clinical and theoretical implications
Journal of Clinical Neuropsychology
 , 
1983
, vol. 
5
 (pg. 
213
-
220
)
Farah
M.
Feinberg
T.
Farah
M.
Visual perception and visual imagery
Behavioral neurology and neuropsychology
 , 
2003
Psychology Press New York
McGraw Hill
(pg. 
227
-
232
)
Folstein
M. F.
Folstein
S. E.
McHugh
P. R.
“Mini mental state”: A practical method for grading the cognitive state of patients for the clinician
Journal of Psychiatric Research
 , 
1975
, vol. 
12
 (pg. 
189
-
198
)
Glamser
F. D.
Turner
R. W.
Youth sport participation and associated sex differences on a measure of spatial ability
Perceptual and Motor Skills
 , 
1995
, vol. 
81
 (pg. 
1099
-
1105
)
Gur
R. C.
Alsop
D.
Glahn
D.
Petty
R.
Swanson
C. L.
Maldjian
J. A.
, et al.  . 
An fMRI study of sex differences in regional activation to a verbal and a spatial task
Brain and Language
 , 
2000
, vol. 
74
 (pg. 
157
-
170
)
Hamilton
M.
A rating scale for depression
Journal of Neurology Neurosurgery and Psychiatry
 , 
1960
, vol. 
23
 (pg. 
56
-
62
)
Herrera-Guzmán
I.
Peña-Casanova
J.
Lara
J. P.
Gudayol-Ferre
E.
Bohm
P.
Influence of age, sex, and education on the visual object and space perception battery (VOSP) in healthy normal elderly population
The Clinical Neuropsychologist
 , 
2004
, vol. 
18
 (pg. 
385
-
394
)
Hovius
M.
Kellenbach
M. L.
Graham
K. S.
Hodges
J. R.
Paterson
K.
What does the object decision task measure? Reflections on the basis of evidence from semantic dementia
Neuropsychology
 , 
2003
, vol. 
17
 (pg. 
100
-
107
)
Ivnik
R. J.
Malec
J. F.
Smith
G. E.
Tangalos
E. G.
Petersen
R. C.
Neuropsychological tests norms above age 55: COWAT, BNT, MAE Token, WRAT-R, Reading, AMNART, Stroop, TMT, and JLO
The Clinical Neuropsychologists
 , 
1996
, vol. 
10
 (pg. 
262
-
278
)
Ivnik
R. J.
Malec
J. F.
Smith
G. E.
Tangalos
E. G.
Petersen
R. C.
Kokmen
E.
, et al.  . 
Mayo's older Americans normative studies: WAIS-R norms for ages 56 to 97
The Clinical Neuropsychologist
 , 
1992
, vol. 
6
 
Suppl.
(pg. 
1
-
30
)
Lezak
M. D.
Howieson
D. B.
Loring
D. W.
Neuropsychological assessment
 , 
2004
4th ed.
New York
Oxford University Press
Lucas
J. A.
Ivnik
R. J.
Smith
G. E.
Ferman
T. J.
Willis
F. B.
Petersen
R. C.
, et al.  . 
Mayo's older African Americans normative studies: Norms for the Boston naming test, controlled oral word association, category fluency, animal naming, token test, WRAT-3 reading, trail making test, stroop test, and judgment of line orientation
The Clinical Neuropsychologist
 , 
2005
, vol. 
19
 (pg. 
243
-
269
)
Mazaux
J. M.
Dartigues
J. F.
Letenneur
L.
Darriet
D.
Wiart
L.
Gagnon
M.
, et al.  . 
Visuo-spatial attention and psychomotor performance in elderly community residents: Effects of age, gender, and education
Journal of Clinical and Experimental Neuropsychology
 , 
1995
, vol. 
17
 (pg. 
71
-
81
)
McCarthy
R. A.
Warrington
E. K.
Cognitive neuropsychology
 , 
1990
San Diego, CA
Academic Press
Mistrushina
M.
Boone
K. B.
Razani
J.
D'Elia
L. F.
Handbook of normative data for neuropsychological assessment
 , 
2005
2nd ed.
New York
Oxford University Press
Mittenberg
W.
Seidenberg
M.
O'Leary
D. S.
DiGuilio
D. V.
Changes in cerebral functioning associated with normal aging
Journal of Clinical Experimental Neuropsychology
 , 
1989
, vol. 
11
 (pg. 
918
-
932
)
Montse
A.
Pere
V.
Carme
J.
Francesc
V.
Eduardo
T.
Visuospatial deficits in Parkinson's disease assessed by Judgment of Line Orientation Test: Error analysis and practice effects
Journal of Clinical and Experimental Neuropsychology
 , 
2001
, vol. 
23
 (pg. 
592
-
598
)
Mount
D. L.
Hoog
L.
Johnstone
B.
Applicability of the 15-item versions of the judgment of line orientation test for individuals with traumatic brain injury
Brain Injury
 , 
2002
, vol. 
16
 (pg. 
1051
-
1055
)
Mungas
D.
Marshall
S. C.
Weldon
M.
Haan
M.
Reed
B. R.
Age and education correction of mini-mental state examination for English and Spanish-speaking elderly
Neurology
 , 
1996
, vol. 
46
 (pg. 
700
-
706
)
Pauker
J.
Constructing overlapping cell tables to maximize the clinical usefulness of normative test data: Rationale and an example from neuropsychology
Journal of Clinical Psychology
 , 
1988
, vol. 
44
 (pg. 
930
-
933
)
Peña-Casanova
J.
Blesa
R.
Aguilar
M.
Gramunt-Fombuena
N.
Gómez-Ansón
B.
Oliva
R.
, et al.  . 
for The Neuronorma Study Team
Spanish Multicenter Normative Studies (NEURONORMA Project): Methods and sample characteristics
Archives of Clinical Neuropsychology
 , 
2009
, vol. 
24
 (pg. 
307
-
319
)
Qualls
C. E.
Bliwise
N. G.
Stringer
A. Y.
Short forms of the Benton judgment of line orientation test: Development and psychometric properties
Archives of Clinical Neuropsychology
 , 
2000
, vol. 
15
 (pg. 
159
-
163
)
Rapport
L. J.
Millis
S. R.
Bonello
P. J.
Validation of the Warrington theory of visual processing and the Visual Object and Space Perception Battery
Journal of Clinical and Experimental Neuropsychology
 , 
1998
, vol. 
20
 (pg. 
211
-
220
)
Riva
D.
Benton
A. L.
Visuospatial judgment: A cross-national comparison
Cortex
 , 
1993
, vol. 
29
 (pg. 
141
-
143
)
Rosen
W. G.
Terry
R. D.
Fuld
P.
Katzman
R.
Peck
A.
Pathological verification of ischemia score in differentiation of dementias
Annals of Neurology
 , 
1980
, vol. 
7
 (pg. 
486
-
488
)
Salthouse
T. A.
Toth
J. P.
Hancock
H. E.
Woodard
J. L.
Controlled and automatic forms of memory and attention: Process purity and the uniqueness of age-related influences
Journal of Gerontology. Series B, Psychological Sciences and Social Sciences
 , 
1997
, vol. 
52
 (pg. 
216
-
228
)
Steinberg
B. A.
Bieliauskas
L. A.
Smith
G. E.
Langellotti
C.
Ivnik
R. J.
Mayo's older Americans normative studies: Age- and IQ-adjusted norms for the Boston naming test, the MAE token test, and the judgment of line orientation test
The Clinical Neuropsychologist
 , 
2005
, vol. 
19
 (pg. 
280
-
328
)
Strauss
E.
Sherman
E. M. S.
Spreen
O.
A compendium of neuropsychological tests. Administration, norms, and commentary
 , 
2006
New York
Oxford University Press
Teunisse
S.
Derix
M.
Crever
H.
Assessing the severity of dementia. Patient and caregiver
Archives of Neurology
 , 
1991
, vol. 
48
 (pg. 
274
-
277
)
Vanderploeg
R. D.
LaLone
L. V.
Greblo
P.
Schinka
J. A.
Odd-even short forms of the Judgment of Line Orientation Test
Applied Neuropsychology
 , 
1997
, vol. 
4
 (pg. 
244
-
246
)
Warrington
E. K.
James
M.
The visual object and space perception battery
 , 
1991
Bury St. Edmunds, Suffolk, England
Thames Valley Test Company
Weber
P.
Pache
M.
Lutschg
J.
Kaiser
H. J.
Visual object and space perception battery: Normal values for children from 8 to 12
Klinische Monatsblätter für Augenheilkunde
 , 
2004
, vol. 
221
 (pg. 
583
-
587
)
Winegarden
B. J.
Yates
B. L.
Moses
J. A.
Benton
A. L.
Faustman
W. O.
Development of an optimally reliable short form for judgment of line orientation
The Clinical Neuropsychologist
 , 
1998
, vol. 
12
 (pg. 
311
-
314
)
Woodard
J. L.
Benedict
R. H.
Roberts
V. J.
Goldstein
F. C.
Kinner
K. M.
Capruso
D. X.
, et al.  . 
Short-form alternatives to the judgment of line orientation test
Journal of Clinical and Experimental Neuropsychology
 , 
1996
, vol. 
18
 (pg. 
898
-
904
)
Woodard
J. L.
Benedict
R. H. B.
Salthouse
T. A.
Toth
J. P.
Zgaljardic
D. J.
Hancock
H. E.
Normative data for equivalent, parallel forms of the judgment of line orientation test
Journal of Clinical and Experimental Neuropsychology
 , 
1998
, vol. 
20
 (pg. 
457
-
462
)

Author notes

Deceased.
For the NEURONORMA.ES Study Team members, see Appendix.