Abstract

The extant literature has consistently outlined a limited relationship between peoples’ subjective reports of defective memory and their corresponding performances on objective measures of memory functioning. Several variables have been proposed to explain this finding, but few studies have investigated test-taker effort as a variable of interest. The primary aim of the current study was to examine reported memory problems as a function of symptom validity test (SVT) performances in two independent samples comprising individuals involved in disability claims. The findings demonstrated that as various SVT performances worsened there was a corresponding increase in subjective reports of memory complaints as assessed by the Memory Complaints Inventory. Data also supported the previous literature demonstrating non-significant correlations between subjective reports of memory problems and objective memory functioning in those who passed SVTs. The potential implications for these findings are discussed.

Introduction

Self-reported memory deficits among patients seen in various medical and psychological settings may constitute the most frequent cognitive complaints in neuropsychological practice (Lezak, Howieson, & Loring, 2004). The extant literature, however, suggests that there is often little correlation between subjective complaints of poor memory and objective findings on standardized measures of memory functioning. For instance, Mol, van Boxtel, Willems, and Jolles (2006) examined 557 subjects aged 55–85 in a longitudinal study, designed in part to examine subjective memory complaints as a predictor of low performance on cognitive tasks. At follow-up conducted 6 years after baseline assessment, self-reported forgetfulness was not associated with significant change on cognitive measures, including instruments measuring memory.

Chamelian and Feinstein (2006) assessed 63 predominantly non-elderly adults 6 months after mild-to-moderate traumatic brain injury using a self-report measure of subjective cognitive impairment, objective measures of various cognitive domains including memory, and a structured interview for depression. While the authors found differences on objective cognitive measures between subjects with and without subjective cognitive complaints, these differences largely evaporated when depression was included as a covariate in the analysis. The authors concluded that, in most patients, objective cognitive difficulties were linked to a comorbid depressive condition. Within a sample of 26 early phase patients diagnosed with Multiple Sclerosis (MS), Landrø, Sletvold, and Celius (2000) found no correlation between subjective complaints of memory impairment and memory task performance. Similar results were found by Matotek, Saling, Gates, and Sedal (2001) in a sample diagnosed with MS. After controlling for fatigue, pain, and depression, Suhr (2003) found no association between subjective cognitive complaints and cognitive test performance in her sample of fibromyalgia patients. Similar results demonstrating no direct association between subjective reports of memory complaints and objective memory test performances have been found in other samples to include chronic pain (McCracken & Iverson, 2001), menopause (Ford, Slade, & Butler, 2004), and both elderly and young adults (Pearman, 2009; Pearman & Storandt, 2004).

Common explanations of the poor correlation between subjective memory complaints and objective test findings include psychological, somatic, and personality factors, such as depression (Chamelian & Feinstein, 2006), emotional distress (Munoz & Esteve, 2005), pain (McCracken & Iverson, 2001), and neuroticism (Pearman & Storandt, 2004). However, depending on the context of the evaluation, response bias may also be a contributing factor to consider. Gervais, Ben-Porath, Wygant, and Green (2008) demonstrated that the MMPI-2 Response Bias Scale (Gervais et al., 2007), a measure designed to detect cognitive response bias, was related to increased Memory Complaints Inventory (MCI; Green, 2004a) scores in their sample of non-head-injured disability referrals. MCI scores were also significantly higher in those fibromyalgia patients who failed effort tests than in those who passed effort tests, indicating that symptom exaggeration can affect self-rated memory problems (Gervais et al., 2001). Several studies have demonstrated that, within the confines of neuropsychological testing, effort accounts for more variance in test scores than does neurological insult (Constantinou, Bauer, Ashendorf, Fisher, & McCaffrey, 2001; Fox, 2011; Green, 2007; Green, Rohling, Lees-Haley, & Allen, 2001; Meyers, Volbrecht, Axelrod, & Reinsch-Boothby, 2011; Moss, Jones, Forkis, & Quinn, 2003; Stevens, Friedel, Mehren, & Merten, 2008; West, Curtis, Greve, & Bianchini, 2010). As such, depending on the context of evaluation, it may be important to consider whether impression management strategies could be contributing to elevated reports of memory complaints.

The primary aim of the current study was to evaluate the relationship between subjective memory complaints and performance on various symptom validity tests (SVTs) in two series of outpatient samples involved in compensation or disability claims. The samples were retained in their original forms in an effort to replicate any significant findings. The inclusion of SVT performances in the current study was thought an important element in the extension of the existing literature. It was hypothesized that, as scores on SVTs diminished, self-reports of memory complaints would increase. As an ancillary aim, we also sought to replicate the literature comparing subjective reports of memory deficits with objective neuropsychological measures. We hypothesized that in those who demonstrated valid test performances, there would be no correlation between the two variables.

Methods

Study participants consisted of two samples taken from the outpatient private practices of the second (R.G.) and the third authors (P.G.). The first sample consisted of 1,597 consecutive patients with predominantly neurological conditions evaluated in the third author's private practice. Primary neurological diagnoses were head injury (45%), Cerebral Vascular Accident (5%), and MS (2%). Psychiatric diagnoses included depression (12%) and anxiety (2%). Patients in Sample 1 were referred for disability-related evaluations through sources like disability insurers (37%), the Workers’ Compensation system (36%), and plaintiff or defense attorneys (13%). The second sample consisted of 2,118 consecutive patients with predominantly non-neurological conditions taken from the second author's private practice. Patients in Sample 2 were referred for disability-related evaluations through the Workers’ Compensation system (72%), plaintiff or defense attorneys (18%), or disability insurers (6%). Primary non-mutually exclusive diagnoses were anxiety (32%), depression (21%), and chronic pain (32%). All ethical and legal guidelines and requirements necessary for retrospective analysis of de-identified clinical data in the Province of Alberta, Canada (where the clinical work was completed) were followed.

Procedures and Measures

All patients were administered the MCI (Green, 2004a) as well as a range of SVTs and neurocognitive measures as part of a comprehensive neuropsychological test battery. Consecutive referrals in each sample were reviewed for cases that were administered the MCI and either the Word Memory Test (WMT; Green, 2003), Medical SVT (MSVT; Green, 2004b), Non-Verbal MSVT (NV-MSVT; Green, 2008), Test of Memory Malingering (TOMM; Tombaugh, 1996), Reliable Digit Span (RDS; Greiffenstein, Baker, & Gola, 1994), or California Verbal Learning Test (CVLT) Recognition subtest (Delis, Kramer, Kaplan, & Ober, 1987). Not every patient was administered the MCI and every SVT noted above. Table 1 depicts the sample sizes and demographics for each subsample as a function of the test administered.

Table 1.

Demographic variables as a function of symptom validity test administered in study Samples 1 and 2

 Demographic variable WMT MSVT NV-MSVT TOMM RDS CVLT Rec Hits 
Sample 1 Age: Mean (SD43.6 (11.6), n= 1,515 45.1 (11.4), n= 658 45.9 (11.5), n= 375 45.5 (11.9), n= 276 45.4 (11.3), n= 584 43.2 (11.5), n= 1,457 
Education: Mean (SD12.6 (2.8), n= 1,515 12.7 (2.5), n= 658 12.8 (2.6), n= 375 12.8 (2.6), n= 276 12.7 (2.6), n= 584 12.6 (2.8), n= 1,773 
FSIQ: Mean (SD101.1 (13.8), n= 1,360 102.3 (14.0), n= 575 103.4 (13.6), n= 326 103.8 (13.0), n= 242 102.5 (14.0), n= 517 101.0 (13.8), n= 1,457 
Gender: % men 61 58 56 54 58 62 
Sample 2 Age: Mean (SD47.7 (11.0), n= 1,949 76.0 (11.1), n= 1,038 43.2 (11.4), n= 762 41.6 (10.7), n= 1,597 42.9 (11.2), n= 923 41.4 (10.8), n= 1,247 
Education: Mean (SD11.7 (3.5), n= 1,949 11.8 (4.3), n= 1,038 11.8 (4.8), n= 762 11.6 (2.6), n= 1,597 11.8 (4.4), n= 923 11.9 (2.5), n = 1,247 
FSIQ: Mean (SD98.7 (14.1), n= 1,511 100.3 (14.1), n= 860 101.1 (13.7), n= 630 98.0 (14.3), n= 1,228 100.5 (14.1), n= 781 98.2 (14.4), n= 1,067 
Gender: % men 59 61 63 60 62 55 
 Demographic variable WMT MSVT NV-MSVT TOMM RDS CVLT Rec Hits 
Sample 1 Age: Mean (SD43.6 (11.6), n= 1,515 45.1 (11.4), n= 658 45.9 (11.5), n= 375 45.5 (11.9), n= 276 45.4 (11.3), n= 584 43.2 (11.5), n= 1,457 
Education: Mean (SD12.6 (2.8), n= 1,515 12.7 (2.5), n= 658 12.8 (2.6), n= 375 12.8 (2.6), n= 276 12.7 (2.6), n= 584 12.6 (2.8), n= 1,773 
FSIQ: Mean (SD101.1 (13.8), n= 1,360 102.3 (14.0), n= 575 103.4 (13.6), n= 326 103.8 (13.0), n= 242 102.5 (14.0), n= 517 101.0 (13.8), n= 1,457 
Gender: % men 61 58 56 54 58 62 
Sample 2 Age: Mean (SD47.7 (11.0), n= 1,949 76.0 (11.1), n= 1,038 43.2 (11.4), n= 762 41.6 (10.7), n= 1,597 42.9 (11.2), n= 923 41.4 (10.8), n= 1,247 
Education: Mean (SD11.7 (3.5), n= 1,949 11.8 (4.3), n= 1,038 11.8 (4.8), n= 762 11.6 (2.6), n= 1,597 11.8 (4.4), n= 923 11.9 (2.5), n = 1,247 
FSIQ: Mean (SD98.7 (14.1), n= 1,511 100.3 (14.1), n= 860 101.1 (13.7), n= 630 98.0 (14.3), n= 1,228 100.5 (14.1), n= 781 98.2 (14.4), n= 1,067 
Gender: % men 59 61 63 60 62 55 

Notes: WMT = Word Memory Test; MVST = Medical Symptom Validity Test; NV-MSVT = Non-Verbal Medical Symptom Validity Test; TOMM = Test of Memory Malingering; RDS = Reliable Digit Span; CVLT Rec Hits = California Verbal Learning Test Recognition subtest. FSIQ = Full Scale IQ.

Measures

The MCI is a 58-item computer administered self-report measure of potential memory problems. The measure consists of nine scales rationally designed to tap specific types of reported memory problems: General Memory Problems, Numeric Information Problems, Visuospatial Memory Problems (VSMP), Verbal Memory Problems (VMP), Pain Interferes with Memory, Memory Interferes with Work, Impairment of Remote Memory (IRM), Amnesia for Complex Behavior (ACB), and Amnesia for Antisocial Behavior (AAB). The first six scales include plausible memory complaints. In contrast, the latter three scales contain items that would be considered implausible for most individuals with memory problems secondary to an organic etiology (e.g., “There are large gaps in my memory of my childhood” [IRM]; “I have hit people and had no memory of doing it” [AAB]; “Minutes or hours can go by and I have no idea what I have just done” [ACB]). The endorsement of such symptoms typically reflects either psychiatric origins or exaggerated/feigned memory complaints. The MCI has been employed as an external criterion for the validation of MMPI-2 and MMPI-2-RF subscales (Gervais et al., 2008; Gervais, Ben-Porath, Wygant, & Sellbom, 2010).

The WMT (Green, 2003) is a computer-administered verbal memory test with multiple subtests designed to assess verbal memory, effort, and response consistency. Twenty semantically related work pairs are presented twice for examinees to learn. Directly after the learning trials, Immediate Recognition (IR) memory is tested. Following a delay, Delayed Recognition (DR) memory is assessed. This is then followed by a series of subtests comprising multiple choice, paired associate (PA), and free recall formats. In addition to these five subtests, a consistency (CNS) score is calculated to gauge recall consistency across select trials. Failure on the WMT was defined as performance below the cut score on the IR, DR, and/or CNS subtests as defined in the test manual. A number of studies have demonstrated the utility of this measure in the discrimination between those with genuine memory impairment and those simulating impairment in a range of patient samples (e.g., Green, Lees-Haley, & Allen, 2002; Hartman, 2002; Wynkoop & Denney, 2005).

The MSVT (Green, 2004b) is a shortened version of the WMT and thus follows a very similar format. In the MSVT, 10 semantically related word pairs representing a single common object are shown across two trials. Afterwards, IR memory is tested. Following a short delay, DR memory is tested. A PA trial is then administered and the measure is concluded with a Free Recall trial. In addition to these four subtests, a CNS score is calculated to gauge recall consistency across select trials. Failure on this measure is defined as performance below the cut score on the IR, DR, and/or CNS subtests as outlined in the test manual. A number of studies have demonstrated the utility of this measure in the discrimination between those with genuine memory impairment and those simulating impairment in a range of patient samples (e.g., Chafetz, 2008; Howe & Loring, 2008; Singhal, Green, Ashaye, Shankar, & Gill, 2009).

The NV-MSVT (Green, 2008) is a brief automated non-verbal memory screening with several subtests designed to measure non-verbal memory and response consistency. Ten artist-drawn colored images representing an intuitive pair of items (e.g., a baseball and a baseball bat) are shown across two trials. Afterwards, IR memory is tested via forced choice format involving 20 pairs of targets and foil items (e.g., baseball vs. car). Following a short delay, there are three forced choice tasks asking the patient to select items seen before on the computer. Encompassed in this delayed task are three subtests. The DR subtest is similar to the IR and involves the presentation of the 20 target items seen before paired with a novel foil (e.g., baseball vs. bus). The DR Variations (DRV) subtest involves 10 presentations of the complete image from the original list (e.g., baseball and baseball bat) paired with the similar image that differs only by one small detail (e.g., baseball with stitching missing and a baseball bat). The DR Archetypes (DRA) subtest involves 20 presentations of items which were previously used as a foil during the IR trial (e.g., car) paired with a vivid archetypal image, such as a coiled snake with mouth open and teeth viciously exposed, which has not been presented before. The DR tasks are then followed by a PA recall subtest, where the examinee is presented with one part of the pair (e.g., baseball) and asked to respond with the corresponding item (e.g., baseball bat). The final subtest is a free recall task in which the examinee is asked to recall from memory as many items from the original list of paired items as possible. Failure of this measure was determined as specified in the test manual. The sensitivity and specificity of the NV-MSVT as a measure of symptom validity has been demonstrated in a variety of patient samples (e.g., Green, 2008; Green, Flaro, Brockhaus, & Montijo, 2010; Henry, Merten, Wolf, & Harth, 2009; Singhal et al., 2009).

The TOMM (Tombaugh, 1996) is a forced choice recognition task involving the presentation of 50 line drawings across two trials. After each trial, the examinee is shown a target picture paired with a foil and is asked to select the target item. The psychometric properties of the TOMM are outlined in the test manual (Tombaugh, 1996).

RDS (Greiffenstein et al., 1994) is an effort measure embedded into the Wechsler Adult Intelligence Scales Digit Span subtest. Performance is measured by adding the highest string of digits forward and digits backward where the patient successfully completed both trials. Scores at or below the cut score of 7 are thought to represent suboptimal effort.

The CVLT (Delis et al., 1987) is a commonly used measure of verbal learning and memory. Among the various subtests is a yes/no recognition hits measure. Performance on this subtest has been associated with suboptimal effort in select patient samples (Curtis, Greve, Bianchini, & Brennan, 2006; Trueblood, 1994). The potentially low specificity of this embedded validity measure in individuals with genuine memory impairments is acknowledged. However, since the current study included a number of well-validated SVTs that could provide a context in which to interpret the CVLT recognition hits subtest, we felt it reasonable to include this measure in such a capacity.

Data analysis

In an effort to examine the primary study question related to the potential relationship between MCI scores and SVT performances, SVT scores were categorized into ranges reflecting levels of performance on the measure (e.g., see ranges of scores on the WMT effort measures in Tables 2 and 3). In an attempt to replicate any significant findings, data across the two samples were not collapsed and were maintained in their original forms. In order to sample the whole range of variability, we did not treat the SVTs as dichotomous pass/fail measures, but rather as continuous variables. The WMT and MSVT were categorized as a function of the average score (percent correct) across the easy subtests (IR, DR, and CNS). The NV-MSVT was categorized as a function of the average score (percent correct) on DR, CNS, DRA, and DRV subtests. RDS and CVLT Recognition Hits were categorized via the raw scores. TOMM scores were categorized by the number correct on the second trial. In reference to the TOMM, given the size of Sample 2, we were able to maintain the six ranges employed across the other effort measures. However, due to the smaller size of Sample 1, we collapsed TOMM performance into three ranges so that statistical comparisons across the various MCI subtests remained meaningful.

Table 2.

MCI scores as a function of WMT performance sample 1 (N= 1,515)

  WMT score range
 
ANOVA
 
ES
 
91%–100% (n = 933) 81%–90% (n = 263) 71%–80% (n = 138) 61%–70% (n = 93) 51%–60% (n = 61) < 51% (n = 27) F η2 d1 d2 d3 
GMP 27.3 (21.3)a 35.4 (22.3)b 43.6 (23.0)c 51.4 (21.2)cd 59.2 (22.8)de 66.8 (20.5)e 64.1 0.18 0.74 1.13 1.89 
NIP 32.7 (22.6)a 42.0 (30.1)b 50.2 (22.7)c 54.3 (21.4)cd 63.0 (22.0)de 73.3 (16.8)e 50.6 0.14 0.77 0.98 2.04 
VSMP 21.5 (19.7)a 28.9 (21.0)b 37.1 (23.4)c 45.5 (22.7)d 54.8 (23.6)de 61.5 (21.2)e 72.1 0.19 0.72 1.13 1.95 
VMP 40.6 (26.6)a 49.2 (26.5)b 60.1 (24.4)c 64.0 (21.3)cd 70.1 (22.2)cd 80.0 (14.2)d 45.9 0.13 0.76 0.97 1.85 
PIM 30.9 (31.5)a 36.2 (30.0)ab 45.8 (36.0)c 53.2 (32.5)cd 59.7 (30.6)cd 66.7 (30.6)d 24.9 0.08 0.44 0.70 1.15 
MIW 32.1 (28.5)a 43.0 (29.4)b 52.4 (29.6)c 63.1 (25.9)cd 73.1 (24.2)d 77.4 (19.0)d 58.6 0.16 0.70 1.14 1.87 
IRM 16.3 (15.1)a 21.4 (17.5)b 23.0 (17.6)bc 30.9 (19.1)d 36.5 (20.8)d 40.5 (26.2)d 39.2 0.12 0.41 0.85 1.13 
ACB 16.7 (17.9)a 22.7 (18.5)b 29.2 (20.6)c 36.7 (21.0)d 45.1 (24.2)d 59.0 (21.6)e 69.5 0.19 0.65 1.03 2.13 
AAB 6.2 (10.6)a 9.3 (13.1)b 11.9 (14.9)bc 17.2 (16.5)d 20.8 (20.7)d 30.4 (21.5)e 44.4 0.13 0.44 0.79 1.43 
Mean MCI 29.9 (17.7)a 32.0 (17.7)b 39.3 (18.5)c 46.3 (15.9)d 53.6 (18.0)de 61.7 (15.1)e 78.4 0.21 0.52 0.97 1.93 
  WMT score range
 
ANOVA
 
ES
 
91%–100% (n = 933) 81%–90% (n = 263) 71%–80% (n = 138) 61%–70% (n = 93) 51%–60% (n = 61) < 51% (n = 27) F η2 d1 d2 d3 
GMP 27.3 (21.3)a 35.4 (22.3)b 43.6 (23.0)c 51.4 (21.2)cd 59.2 (22.8)de 66.8 (20.5)e 64.1 0.18 0.74 1.13 1.89 
NIP 32.7 (22.6)a 42.0 (30.1)b 50.2 (22.7)c 54.3 (21.4)cd 63.0 (22.0)de 73.3 (16.8)e 50.6 0.14 0.77 0.98 2.04 
VSMP 21.5 (19.7)a 28.9 (21.0)b 37.1 (23.4)c 45.5 (22.7)d 54.8 (23.6)de 61.5 (21.2)e 72.1 0.19 0.72 1.13 1.95 
VMP 40.6 (26.6)a 49.2 (26.5)b 60.1 (24.4)c 64.0 (21.3)cd 70.1 (22.2)cd 80.0 (14.2)d 45.9 0.13 0.76 0.97 1.85 
PIM 30.9 (31.5)a 36.2 (30.0)ab 45.8 (36.0)c 53.2 (32.5)cd 59.7 (30.6)cd 66.7 (30.6)d 24.9 0.08 0.44 0.70 1.15 
MIW 32.1 (28.5)a 43.0 (29.4)b 52.4 (29.6)c 63.1 (25.9)cd 73.1 (24.2)d 77.4 (19.0)d 58.6 0.16 0.70 1.14 1.87 
IRM 16.3 (15.1)a 21.4 (17.5)b 23.0 (17.6)bc 30.9 (19.1)d 36.5 (20.8)d 40.5 (26.2)d 39.2 0.12 0.41 0.85 1.13 
ACB 16.7 (17.9)a 22.7 (18.5)b 29.2 (20.6)c 36.7 (21.0)d 45.1 (24.2)d 59.0 (21.6)e 69.5 0.19 0.65 1.03 2.13 
AAB 6.2 (10.6)a 9.3 (13.1)b 11.9 (14.9)bc 17.2 (16.5)d 20.8 (20.7)d 30.4 (21.5)e 44.4 0.13 0.44 0.79 1.43 
Mean MCI 29.9 (17.7)a 32.0 (17.7)b 39.3 (18.5)c 46.3 (15.9)d 53.6 (18.0)de 61.7 (15.1)e 78.4 0.21 0.52 0.97 1.93 

Notes: Means with different alphabets are significantly different (Tukey HSD). df for all ANOVA cells is 5, 1,514. p < .001 for all ANOVA comparisons. ANOVA = analysis of variance; WMT = Word Memory Test; GMP = General Memory Problems; NIP = Numeric Information Problems; VSMP = Visuospatial Memory Problems; VMP = Verbal Memory Problems; PIM = Pain Interferes with Memory; MIW = Memory Interferes with Work; IRM = Impairment of Remote Memory; ACB = Amnesia for Complex Behavior; AAB = Amnesia for Antisocial Behavior; MCI = Memory Complaints Inventory; d1 = WMT score range 91%–100% versus 71%–80%; d2 = WMT score range 91%–100% versus 61%–70%; d3 = WMT score range 91%–100% versus <51%.

Table 3.

MCI scores as a function of WMT performance sample 2 (N= 1949)

  WMT score range
 
ANOVA
 
ES
 
91%–100% (n = 1,162) 81%–90% (n = 388) 71%–80% (n = 172) 61%–70% (n = 114) 51%–60% (n = 68) <51% (n = 45) F η2 d1 d2 d3 
GMP 22.9 (19.3)a 32.0 (22.9)b 37.3 (23.4)c 46.9 (24.7)d 53.1 (24.1)de 58.1 (24.4)e 78.0 0.17 0.67 1.08 1.60 
NIP 26.9 (20.4)a 37.2 (23.0)b 42.6 (22.4)b 52.5 (25.1)c 57.1 (22.3)c 60.0 (28.6)c 76.4 0.16 0.73 1.12 1.33 
VSMP 16.6 (16.8)a 25.7 (21.6)b 31.3 (20.5)c 41.7 (24.5)c 47.6 (23.3)c 49.7 (25.5)c 95.3 0.20 0.78 1.19 1.53 
VMP 33.3 (23.4)a 44.1 (25.7)b 50.3 (25.8)b 60.4 (25.7)c 65.1 (22.0)c 65.9 (24.1)c 67.4 0.15 0.69 1.10 1.37 
PIM 36.0 (29.1)a 49.3 (30.6)b 55.7 (30.2)bc 59.9 (31.2)c 73.0 (28.2)d 71.6 (26.5)cd 53.0 0.12 0.66 0.79 1.28 
MIW 24.6 (24.2)a 36.4 (27.8)b 43.1 (27.4)c 53.6 (29.3)d 62.1 (24.6)d 63.1 (27.7)d 76.4 0.16 0.72 1.08 1.48 
IRM 13.9 (14.0)a 19.9 (16.5)b 22.2 (15.8)b 29.4 (21.0)c 32.4 (18.5)c 35.9 (24.6)c 55.1 0.12 0.56 0.87 1.10 
ACB 13.8 (16.0)a 22.1 (20.1)b 26.0 (20.0)b 34.2 (22.7)c 38.4 (23.0)cd 45.6 (23.6)d 77.0 0.17 0.67 1.04 1.58 
AAB 7.1 (11.8)a 11.6 (15.9)b 14.9 (17.3)bc 18.7 (16.6)cd 18.3 (18.7)cd 25.2 (21.0)d 38.7 0.09 0.53 0.81 1.06 
Mean MCI 21.7 (15.8)a 30.9 (18.4)b 35.9 (18.1)c 44.2 (20.2)d 49.7 (18.0)de 52.8 (21.0)e 102.9 0.21 0.84 1.24 1.70 
  WMT score range
 
ANOVA
 
ES
 
91%–100% (n = 1,162) 81%–90% (n = 388) 71%–80% (n = 172) 61%–70% (n = 114) 51%–60% (n = 68) <51% (n = 45) F η2 d1 d2 d3 
GMP 22.9 (19.3)a 32.0 (22.9)b 37.3 (23.4)c 46.9 (24.7)d 53.1 (24.1)de 58.1 (24.4)e 78.0 0.17 0.67 1.08 1.60 
NIP 26.9 (20.4)a 37.2 (23.0)b 42.6 (22.4)b 52.5 (25.1)c 57.1 (22.3)c 60.0 (28.6)c 76.4 0.16 0.73 1.12 1.33 
VSMP 16.6 (16.8)a 25.7 (21.6)b 31.3 (20.5)c 41.7 (24.5)c 47.6 (23.3)c 49.7 (25.5)c 95.3 0.20 0.78 1.19 1.53 
VMP 33.3 (23.4)a 44.1 (25.7)b 50.3 (25.8)b 60.4 (25.7)c 65.1 (22.0)c 65.9 (24.1)c 67.4 0.15 0.69 1.10 1.37 
PIM 36.0 (29.1)a 49.3 (30.6)b 55.7 (30.2)bc 59.9 (31.2)c 73.0 (28.2)d 71.6 (26.5)cd 53.0 0.12 0.66 0.79 1.28 
MIW 24.6 (24.2)a 36.4 (27.8)b 43.1 (27.4)c 53.6 (29.3)d 62.1 (24.6)d 63.1 (27.7)d 76.4 0.16 0.72 1.08 1.48 
IRM 13.9 (14.0)a 19.9 (16.5)b 22.2 (15.8)b 29.4 (21.0)c 32.4 (18.5)c 35.9 (24.6)c 55.1 0.12 0.56 0.87 1.10 
ACB 13.8 (16.0)a 22.1 (20.1)b 26.0 (20.0)b 34.2 (22.7)c 38.4 (23.0)cd 45.6 (23.6)d 77.0 0.17 0.67 1.04 1.58 
AAB 7.1 (11.8)a 11.6 (15.9)b 14.9 (17.3)bc 18.7 (16.6)cd 18.3 (18.7)cd 25.2 (21.0)d 38.7 0.09 0.53 0.81 1.06 
Mean MCI 21.7 (15.8)a 30.9 (18.4)b 35.9 (18.1)c 44.2 (20.2)d 49.7 (18.0)de 52.8 (21.0)e 102.9 0.21 0.84 1.24 1.70 

Notes: Means with different alphabets are significantly different (Tukey HSD). df for all ANOVA cells is 5, 1,948. p< .001 for all ANOVA comparisons. ANOVA = analysis of variance; WMT = Word Memory Test; GMP = General Memory Problems; NIP = Numeric Information Problems; VSMP = Visuospatial Memory Problems; VMP = Verbal Memory Problems; PIM = Pain Interferes with Memory; MIW = Memory Interferes with Work; IRM = Impairment of Remote Memory; ACB = Amnesia for Complex Behavior; AAB = Amnesia for Antisocial Behavior; MCI = Memory Complaints Inventory; d1 = WMT score range 91%–100% versus 71%–80%; d2 = WMT score range 91%–100% versus 61%–70%; d3 = WMT score range 91%–100% versus <51%.

The second study question examining the relationships between subjective reports of memory complaints and objective test findings was examined via correlational analyses. Gervais and colleagues (2008) have already correlated CVLT performance with the mean MCI responses in the second sample used in this study. They demonstrated a non-significant correlation between mean MCI scores and CVLT Trials 1–5, Trial 1, Trial 5, Long Delay Free Recall, and Recognition Hits in the 513 individuals who passed effort measures. There was a significant correlation between the MCI and the CVLT Short Delay Free Recall (r = −.10, p = .030) but the authors questioned the clinical utility of this finding.

In an effort to expand this type of analysis, specific MCI subtests querying verbal and visual memory were correlated with objective measures of these respective domains. With each analysis, individuals who failed select effort measures were excluded. As each sample consisted of a variety of SVTs from which to judge the credibility of the examinee's performances, the most sensitive measures of effort were employed. When examining subjective reports of VMPs, we chose to judge credible effort by employing an SVT based on verbal stimuli, namely the WMT. When examining the subjective reports of non-VMPs, we judged credible effort by utilizing an SVT that employed non-verbal/visual stimuli, namely the NV-MSVT. Each of these measures has shown good sensitivity in detecting suboptimal effort (Armistead-Jehle & Gervais, in press; Green, 2011; Green et al., 2002).

Within each of the two samples, individuals who passed the WMT were selected and a correlational analysis examining MCI VMP and CVLT scores was performed. In an effort to examine the domain of visual memory, we also conducted a correlational analysis between the MCI VSMP subscale and Rey Complex Figure (Meyers & Meyers, 1995) scores in individuals who passed the NV-MVST. Secondary to test selection, this analysis was only available in Sample 1.

Results

Tables 2–13 depict the mean and standard deviations of each MCI subtest as a function of the overall level of scores on the included SVTs. Across each of the nine MCI subscales, there was a general and systematic increase in the average memory complaint scores as SVT performance worsened. In an effort to illustrate this relationship more clearly, Figs 1 and 2 show MCI responses in each of the two samples as a function of WMT performance. In the interest of space, similar figures were not constructed for the other SVTs, but as shown in Tables 4–13, similar depictions would be created. With each SVT, we conducted a one-way analysis of variance (ANOVA) to examine if there were statistically significance differences on the various MCI subscale scores or the overall MCI average as a function of SVT performance. As shown in Tables 2–13, all ANOVAs were significant at the p< .001 level. The results of post hoc analyses across the samples and SVTs showed some minor variations; however, the overwhelming pattern was for memory complaints to increase as SVT performance declined. For each SVT across both samples, Cohen's d effect size estimates were calculated comparing the top performing SVT groups to lower performing groups. Across SVTs in both samples as SVT performance declined the effect sizes increased, serving to support our hypothesis that effort in neurocognitive testing is related to self-report of memory deficits.

Table 4.

MCI scores as a function of MSVT performance sample 1 (N= 658)

  MSVT score range
 
ANOVA
 
ES
 
91%–100% (n = 498) 81%–90% (n = 63) 71%–80% (n = 42) 61%–70% (n = 27) 51%–60% (n = 16) <51% (n = 12) F η2 d1 d2 d3 
GMP 27.6 (20.9)a 40.6 (21.8)b 50.2 (20.4)bc 56.5 (23.7)c 57.8 (19.4)c 51.3 (24.0)bc 26.7 0.17 1.09 1.29 1.05 
NIP 33.2 (26.5)a 47.7 (18.9)b 54.5 (21.5)b 55.7 (22.3)b 67.3 (17.6)b 59.3 (23.5)b 17.8 0.12 0.88 0.92 1.04 
VSMP 22.2 (19.6)a 36.5 (19.4)b 41.8 (21.7)bc 48.9 (24.8)bc 55.3 (20.3)c 48.8 (23.3)bc 28.9 0.18 0.95 1.19 0.87 
VMP 38.3 (25.7)a 56.3 (25.0)b 64.6 (22.1)b  62.0 (24.9)b 70.3 (20.7)b 62.5 (24.4)b 21.1 0.14 1.10 0.94 0.97 
PIM 26.3 (29.7)a 38.3 (31.9)b 53.2 (31.7)bc 60.8 (32.0)c 68.3 (34.3)c 57.5 (36.2)bc 19.3 0.13 0.88 1.12 0.94 
MIW 32.3 (28.3)a 49.5 (29.8)b 58.6 (26.8)bc 59.2 (28.6)bc 72.8 (24.2)c 61.7 (22.6)bc 20.3 0.13 0.95 0.95 1.15 
IRM 15.9 (14.8)a 27.0 (17.2)b 29.3 (20.2)b 26.5 (16.8)b 37.8 (18.7)b 35.6 (24.4)b 19.0 0.13 0.76 0.67 0.98 
ACB 16.9 (17.3)a 27.9 (20.6)b 35.6 (23.8)bc 39.9 (24.9)bc 41.8 (23.4)bc 45.4 (20.9)c 25.3 0.16 0.90 1.07 1.49 
AAB 6.2 (9.6)a 13.8 (14.8)b 18.6 (20.2)bc 20.5 (18.4)bc 26.2 (20.0)c 26.1 (20.4)c 28.6 0.18 0.78 0.97 1.25 
Mean MCI 24.3 (17.1)a 37.5 (16.7)b 45.2 (17.8)bc 47.8 (18.7)bc 55.3 (16.5)c 49.8 (20.0)bc 35.4 0.21 1.20 1.32 1.37 
  MSVT score range
 
ANOVA
 
ES
 
91%–100% (n = 498) 81%–90% (n = 63) 71%–80% (n = 42) 61%–70% (n = 27) 51%–60% (n = 16) <51% (n = 12) F η2 d1 d2 d3 
GMP 27.6 (20.9)a 40.6 (21.8)b 50.2 (20.4)bc 56.5 (23.7)c 57.8 (19.4)c 51.3 (24.0)bc 26.7 0.17 1.09 1.29 1.05 
NIP 33.2 (26.5)a 47.7 (18.9)b 54.5 (21.5)b 55.7 (22.3)b 67.3 (17.6)b 59.3 (23.5)b 17.8 0.12 0.88 0.92 1.04 
VSMP 22.2 (19.6)a 36.5 (19.4)b 41.8 (21.7)bc 48.9 (24.8)bc 55.3 (20.3)c 48.8 (23.3)bc 28.9 0.18 0.95 1.19 0.87 
VMP 38.3 (25.7)a 56.3 (25.0)b 64.6 (22.1)b  62.0 (24.9)b 70.3 (20.7)b 62.5 (24.4)b 21.1 0.14 1.10 0.94 0.97 
PIM 26.3 (29.7)a 38.3 (31.9)b 53.2 (31.7)bc 60.8 (32.0)c 68.3 (34.3)c 57.5 (36.2)bc 19.3 0.13 0.88 1.12 0.94 
MIW 32.3 (28.3)a 49.5 (29.8)b 58.6 (26.8)bc 59.2 (28.6)bc 72.8 (24.2)c 61.7 (22.6)bc 20.3 0.13 0.95 0.95 1.15 
IRM 15.9 (14.8)a 27.0 (17.2)b 29.3 (20.2)b 26.5 (16.8)b 37.8 (18.7)b 35.6 (24.4)b 19.0 0.13 0.76 0.67 0.98 
ACB 16.9 (17.3)a 27.9 (20.6)b 35.6 (23.8)bc 39.9 (24.9)bc 41.8 (23.4)bc 45.4 (20.9)c 25.3 0.16 0.90 1.07 1.49 
AAB 6.2 (9.6)a 13.8 (14.8)b 18.6 (20.2)bc 20.5 (18.4)bc 26.2 (20.0)c 26.1 (20.4)c 28.6 0.18 0.78 0.97 1.25 
Mean MCI 24.3 (17.1)a 37.5 (16.7)b 45.2 (17.8)bc 47.8 (18.7)bc 55.3 (16.5)c 49.8 (20.0)bc 35.4 0.21 1.20 1.32 1.37 

Notes: Means with different alphabets are significantly different (Tukey HSD). df for all ANOVA cells is 5, 657. p< .001 for all ANOVA comparisons. ANOVA = analysis of variance; MSVT = Medical Symptom Validity Test; GMP = General Memory Problems; NIP = Numeric Information Problems; VSMP = Visuospatial Memory Problems; VMP = Verbal Memory Problems; PIM = Pain Interferes with Memory; MIW = Memory Interferes with Work; IRM = Impairment of Remote Memory; ACB = Amnesia for Complex Behavior; AAB = Amnesia for Antisocial Behavior; MCI = Memory Complaints Inventory; d1 = MSVT score range 91%–100% versus 71%–80%; d2 = MSVT score range 91%–100% versus 61%–70%; d3 = MSVT score range 91%–100% versus <51%.

Table 5.

MCI scores as a function of MSVT performance sample 2 (N= 1,038)

  MSVT score range
 
ANOVA
 
ES
 
91%–100% (n= 819) 81%–90% (n= 100) 71%–80% (n= 52) 61%–70% (n= 38) 51%–60% (n= 13) <51% (n= 16) F η2 d1 d2 d3 
GMP 27.6 (20.9)a 40.6 (21.8)b 50.2 (20.4)bc 56.5 (23.7)c 57.8 (24.0)c 51.3 (24.0)c 35.1 0.15 1.09 1.29 1.05 
NIP 33.2 (26.5)a 47.7 (18.9)b 54.5 (21.5)c 55.7 (22.3)bc 67.3 (17.6)c 59.3 (23.5)c 35.0 0.15 0.88 0.92 1.04 
VSMP 22.2 (19.6)a 36.5 (19.4)b 41.8 (21.7)bc 48.9 (24.8)bc 55.3 (20.3)c 48.8 (23.3)c 40.3 0.16 0.95 1.19 1.24 
VMP 38.3 (25.7)a 56.3 (25.0)b 64.6 (22.1)b 62.0 (24.9)b 70.3 (20.7)b 62.5 (24.4)b 31.2 0.13 1.10 0.94 0.97 
PIM 26.3 (29.7)a 38.3 (31.9)b 53.2 (31.7)b 60.8 (32.0)b 68.3 (34.3)ab 57.5 (36.2)b 28.0 0.12 0.88 1.12 0.94 
MIW 32.3 (28.3)a 49.5 (29.8)b 58.6 (26.8)bc 59.2 (28.6)c 72.8 (24.2)c 61.7 (22.6)c 35.6 0.15 0.95 0.95 1.15 
IRM 15.9 (14.8)a 27.0 (17.2)b 29.3 (20.2)c 26.5 (16.8)c 37.8 (18.7)bc 35.6 (24.4)c 33.3 0.14 0.76 0.67 0.98 
ACB 16.9 (17.3)a 27.9 (20.6)b 35.6 (23.8)c 39.9 (24.9)c 41.8 (23.4)c 45.4 (20.9)c 44.1 0.18 0.90 1.07 1.49 
AAB 6.2 (9.6)a 13.8 (14.8)ab 18.6 (20.2)bc 20.5 (18.4)cd 26.2 (20.0)bcd 26.1 (20.4)d 18.5 0.08 0.78 0.97 1.25 
Mean MCI 25.0 (16.7)a 37.4 (17.9)b 46.2 (16.8)c 48.7 (18.4)c 55.2 (19.7)c 57.4 (20.2)c 50.2 0.20 1.27 1.35 1.74 
  MSVT score range
 
ANOVA
 
ES
 
91%–100% (n= 819) 81%–90% (n= 100) 71%–80% (n= 52) 61%–70% (n= 38) 51%–60% (n= 13) <51% (n= 16) F η2 d1 d2 d3 
GMP 27.6 (20.9)a 40.6 (21.8)b 50.2 (20.4)bc 56.5 (23.7)c 57.8 (24.0)c 51.3 (24.0)c 35.1 0.15 1.09 1.29 1.05 
NIP 33.2 (26.5)a 47.7 (18.9)b 54.5 (21.5)c 55.7 (22.3)bc 67.3 (17.6)c 59.3 (23.5)c 35.0 0.15 0.88 0.92 1.04 
VSMP 22.2 (19.6)a 36.5 (19.4)b 41.8 (21.7)bc 48.9 (24.8)bc 55.3 (20.3)c 48.8 (23.3)c 40.3 0.16 0.95 1.19 1.24 
VMP 38.3 (25.7)a 56.3 (25.0)b 64.6 (22.1)b 62.0 (24.9)b 70.3 (20.7)b 62.5 (24.4)b 31.2 0.13 1.10 0.94 0.97 
PIM 26.3 (29.7)a 38.3 (31.9)b 53.2 (31.7)b 60.8 (32.0)b 68.3 (34.3)ab 57.5 (36.2)b 28.0 0.12 0.88 1.12 0.94 
MIW 32.3 (28.3)a 49.5 (29.8)b 58.6 (26.8)bc 59.2 (28.6)c 72.8 (24.2)c 61.7 (22.6)c 35.6 0.15 0.95 0.95 1.15 
IRM 15.9 (14.8)a 27.0 (17.2)b 29.3 (20.2)c 26.5 (16.8)c 37.8 (18.7)bc 35.6 (24.4)c 33.3 0.14 0.76 0.67 0.98 
ACB 16.9 (17.3)a 27.9 (20.6)b 35.6 (23.8)c 39.9 (24.9)c 41.8 (23.4)c 45.4 (20.9)c 44.1 0.18 0.90 1.07 1.49 
AAB 6.2 (9.6)a 13.8 (14.8)ab 18.6 (20.2)bc 20.5 (18.4)cd 26.2 (20.0)bcd 26.1 (20.4)d 18.5 0.08 0.78 0.97 1.25 
Mean MCI 25.0 (16.7)a 37.4 (17.9)b 46.2 (16.8)c 48.7 (18.4)c 55.2 (19.7)c 57.4 (20.2)c 50.2 0.20 1.27 1.35 1.74 

Notes: Means with different alphabets are significantly different (Tukey HSD). df for all ANOVA cells is 5, 1,037. p< .001 for all ANOVA comparisons. ANOVA = analysis of variance; MSVT = Medical Symptom Validity Test; GMP = General Memory Problems; NIP = Numeric Information Problems; VSMP = Visuospatial Memory Problems; VMP = Verbal Memory Problems; PIM = Pain Interferes with Memory; MIW = Memory Interferes with Work; IRM = Impairment of Remote Memory; ACB = Amnesia for Complex Behavior; AAB = Amnesia for Antisocial Behavior; MCI = Memory Complaints Inventory; d1 = MSVT score range 91%–100% versus 71%–80%; d2 = MSVT score range 91%–100% versus 61%–70%; d3 = MSVT score range 91%–100% versus <51%.

Table 6.

MCI scores as a function of NV-MSVT performance sample 1 (N= 375)

  NV-MSVT score range
 
ANOVA
 
ES
 
91%–100% (n = 287) 81%–90% (n = 53) 71%–80% (n = 17) 61%–70% (n = 10) 51%–60% (n = 3) <51% (n = 5) F η2 d1 d2 
GMP 26.7 (21.1)a 37.5 (23.2)b 50.6 (24.4)bc 58.3 (19.1)bc 42.7 (9.5)abc 40.8 (31.8)abc 9.5 0.11 1.04 1.57 
NIP 34.2 (29.3)a 40.4 (24.3)ab 56.1 (26.9)bc 70.1 (19.8)c 53.0 (13.2)abc 46.6 (37.7)abc 5.3 0.07 0.78 1.44 
VSMP 22.0 (19.6)a 34.1 (22.4)b 48.8 (25.6)bc 56.5 (24.8)c 43.3 (16.1)abc 39.0 (35.1)abc 13.1 0.15 1.76 1.54 
VMP 35.8 (25.3)a 47.3 (23.8)b 62.1 (28.6)bc 75.5 (16.1)c 55.0 (26.5)abc 45.0 (34.3)abc 9.3 0.11 0.97 1.87 
PIM 24.1 (28.4)a 32.5 (34.6)ab 66.2 (35.3)c 62.5 (26.9)c 47.3 (21.1)abc 60.0 (30.9)abc 11.0 0.13 1.31 1.39 
MIW 30.3 (27.7)a 43.1 (27.1)b 67.1 (31.5)c 70.0 (23.1)c 48.3 (15.3)abc 43.0 (39.6)abc 10.4 0.12 1.24 1.56 
IRM 15.9 (15.0)a 25.3 (17.0)b 23.4 (18.7)ab 39.7 (17.1)b 32.3 (15.4)ab 27.6 (29.2)ab 8.3 0.10 0.44 1.48 
ACB 16.1 (16.7)a 26.3 (20.4)b 39.8 (24.8)b 42.8 (24.3)b 29.3 (15.0)ab 36.0 (33.9)ab 12.1 0.14 1.12 1.26 
AAB 7.0 (11.2)a 9.9 (12.9)ab 20.6 (20.3)c 25.8 (16.9)c 19.3 (17.2)abc 20.8 (23.1)abc 9.5 0.11 0.83 1.31 
Mean MCI 23.6 (17.2)a 32.9 (19.1)b 48.3 (21.0)c 55.7 (16.7)c 41.2 (12.9)abc 39.9 (30.5)abc 14.3 0.16 1.29 1.89 
  NV-MSVT score range
 
ANOVA
 
ES
 
91%–100% (n = 287) 81%–90% (n = 53) 71%–80% (n = 17) 61%–70% (n = 10) 51%–60% (n = 3) <51% (n = 5) F η2 d1 d2 
GMP 26.7 (21.1)a 37.5 (23.2)b 50.6 (24.4)bc 58.3 (19.1)bc 42.7 (9.5)abc 40.8 (31.8)abc 9.5 0.11 1.04 1.57 
NIP 34.2 (29.3)a 40.4 (24.3)ab 56.1 (26.9)bc 70.1 (19.8)c 53.0 (13.2)abc 46.6 (37.7)abc 5.3 0.07 0.78 1.44 
VSMP 22.0 (19.6)a 34.1 (22.4)b 48.8 (25.6)bc 56.5 (24.8)c 43.3 (16.1)abc 39.0 (35.1)abc 13.1 0.15 1.76 1.54 
VMP 35.8 (25.3)a 47.3 (23.8)b 62.1 (28.6)bc 75.5 (16.1)c 55.0 (26.5)abc 45.0 (34.3)abc 9.3 0.11 0.97 1.87 
PIM 24.1 (28.4)a 32.5 (34.6)ab 66.2 (35.3)c 62.5 (26.9)c 47.3 (21.1)abc 60.0 (30.9)abc 11.0 0.13 1.31 1.39 
MIW 30.3 (27.7)a 43.1 (27.1)b 67.1 (31.5)c 70.0 (23.1)c 48.3 (15.3)abc 43.0 (39.6)abc 10.4 0.12 1.24 1.56 
IRM 15.9 (15.0)a 25.3 (17.0)b 23.4 (18.7)ab 39.7 (17.1)b 32.3 (15.4)ab 27.6 (29.2)ab 8.3 0.10 0.44 1.48 
ACB 16.1 (16.7)a 26.3 (20.4)b 39.8 (24.8)b 42.8 (24.3)b 29.3 (15.0)ab 36.0 (33.9)ab 12.1 0.14 1.12 1.26 
AAB 7.0 (11.2)a 9.9 (12.9)ab 20.6 (20.3)c 25.8 (16.9)c 19.3 (17.2)abc 20.8 (23.1)abc 9.5 0.11 0.83 1.31 
Mean MCI 23.6 (17.2)a 32.9 (19.1)b 48.3 (21.0)c 55.7 (16.7)c 41.2 (12.9)abc 39.9 (30.5)abc 14.3 0.16 1.29 1.89 

Notes: Means with different alphabets are significantly different (Tukey HSD). df for all ANOVA cells is 5, 374. p< .001 for all ANOVA comparisons. ANOVA = analysis of variance; NV-MSVT = Nonverbal Medical Symptom Validity Test; GMP = General Memory Problems; NIP = Numeric Information Problems; VSMP = Visuospatial Memory Problems; VMP = Verbal Memory Problems; PIM = Pain Interferes with Memory; MIW = Memory Interferes with Work; IRM = Impairment of Remote Memory; ACB = Amnesia for Complex Behavior; AAB = Amnesia for Antisocial Behavior; MCI = Memory Complaints Inventory; d1 = NV-MSVT score range 91%–100% versus 71%–80%; d2 = NV-MSVT score range 91%–100% versus 61%–70%; d3 = NV-MSVT score range 91%–100% versus <51%.

Table 7.

MCI scores as a function of NV-MSVT performance sample 2 (N = 762)

  NV-MSVT score range
 
ANOVA
 
ES
 
91%–100% (n= 579) 81%–90% (n= 97) 71%–80% (n= 47) 61%–70% (n= 14) 51%–60% (n= 16) <51% (n= 9) F η2 d1 d2 d3 
GMP 26.1 (20.7)a 38.2 (23.4)b 48.9 (21.3)bc 43.7 (20.1)bc 58.7 (21.5)c 63.0 (25.0)c 25.7 0.15 1.09 0.86 1.61 
NIP 30.3 (21.6)a 42.5 (23.0)b 55.6 (23.0)c 49.2 (23.6)bc 63.2 (18.5)bc 61.2 (22.7)bc 25.1 0.14 1.13 0.70 1.39 
VSMP 20.4 (19.0)a 30.9 (21.7)b 45.7 (22.2)c 34.6 (17.7)abc 54.2 (20.4)c 62.2 (20.3)c 33.0 0.18 1.22 0.77 2.13 
VMP 35.8 (24.4)a 48.5 (25.5)b 61.2 (23.3)c 47.5 (24.1)abc 69.7 (20.5)c 70.0 (24.7)bc 20.6 0.12 1.06 0.48 1.39 
PIM 35.4 (29.8)a 55.4 (29.0)b 59.4 (31.8)b 61.9 (20.7)b 75.1 (22.4)b 76.8 (25.9)b 20.7 0.12 0.78 1.03 1.48 
MIW 27.9 (25.9)a 43.1 (27.0)b 56.4 (25.1)c 43.6 (19.1)abcd 70.9 (23.0)c 73.9 (24.5)c 27.0 0.15 1.12 0.69 1.82 
IRM 16.3 (15.5)a 21.6 (19.8)b 30.1 (18.8)c 24.4 (13.9)abcd 40.3 (13.7)cde 42.6 (14.3)cde 19.2 0.11 0.80 0.55 1.76 
ACB 17.0 (17.6)a 26.1 (19.8)b 34.5 (21.4)bc 35.4 (18.1)bcd 50.2 (20.3)d 56.3 (24.4)d 28.6 0.16 0.89 1.03 1.84 
AAB 9.3 (13.6)a 14.0 (14.2)b 15.9 (15.7)bc 14.6 (12.7)abcd 26.3 (21.0)cde 34.2 (22.3)e 12.5 0.08 0.45 0.40 1.35 
Mean MCI 24.3 (17.3)a 35.6 (18.1)b 45.3 (16.3)c 39.4 (13.4)bcd 56.5 (15.4)cd 60.0 (19.9)cd 34.6 0.19 1.25 0.98 1.91 
  NV-MSVT score range
 
ANOVA
 
ES
 
91%–100% (n= 579) 81%–90% (n= 97) 71%–80% (n= 47) 61%–70% (n= 14) 51%–60% (n= 16) <51% (n= 9) F η2 d1 d2 d3 
GMP 26.1 (20.7)a 38.2 (23.4)b 48.9 (21.3)bc 43.7 (20.1)bc 58.7 (21.5)c 63.0 (25.0)c 25.7 0.15 1.09 0.86 1.61 
NIP 30.3 (21.6)a 42.5 (23.0)b 55.6 (23.0)c 49.2 (23.6)bc 63.2 (18.5)bc 61.2 (22.7)bc 25.1 0.14 1.13 0.70 1.39 
VSMP 20.4 (19.0)a 30.9 (21.7)b 45.7 (22.2)c 34.6 (17.7)abc 54.2 (20.4)c 62.2 (20.3)c 33.0 0.18 1.22 0.77 2.13 
VMP 35.8 (24.4)a 48.5 (25.5)b 61.2 (23.3)c 47.5 (24.1)abc 69.7 (20.5)c 70.0 (24.7)bc 20.6 0.12 1.06 0.48 1.39 
PIM 35.4 (29.8)a 55.4 (29.0)b 59.4 (31.8)b 61.9 (20.7)b 75.1 (22.4)b 76.8 (25.9)b 20.7 0.12 0.78 1.03 1.48 
MIW 27.9 (25.9)a 43.1 (27.0)b 56.4 (25.1)c 43.6 (19.1)abcd 70.9 (23.0)c 73.9 (24.5)c 27.0 0.15 1.12 0.69 1.82 
IRM 16.3 (15.5)a 21.6 (19.8)b 30.1 (18.8)c 24.4 (13.9)abcd 40.3 (13.7)cde 42.6 (14.3)cde 19.2 0.11 0.80 0.55 1.76 
ACB 17.0 (17.6)a 26.1 (19.8)b 34.5 (21.4)bc 35.4 (18.1)bcd 50.2 (20.3)d 56.3 (24.4)d 28.6 0.16 0.89 1.03 1.84 
AAB 9.3 (13.6)a 14.0 (14.2)b 15.9 (15.7)bc 14.6 (12.7)abcd 26.3 (21.0)cde 34.2 (22.3)e 12.5 0.08 0.45 0.40 1.35 
Mean MCI 24.3 (17.3)a 35.6 (18.1)b 45.3 (16.3)c 39.4 (13.4)bcd 56.5 (15.4)cd 60.0 (19.9)cd 34.6 0.19 1.25 0.98 1.91 

Notes: Means with different alphabets are significantly different (Tukey HSD). df for all ANOVA cells is 5, 756. p< .001 for all ANOVA comparisons. ANOVA = analysis of variance; NV-MSVT = Nonverbal Medical Symptom Validity Test; GMP = General Memory Problems; NIP = Numeric Information Problems; VSMP = Visuospatial Memory Problems; VMP = Verbal Memory Problems; PIM = Pain Interferes with Memory; MIW = Memory Interferes with Work; IRM = Impairment of Remote Memory; ACB = Amnesia for Complex Behavior; AAB = Amnesia for Antisocial Behavior; MCI = Memory Complaints Inventory; d1 = NV-MSVT score range 91%–100% versus 71%–80%; d2 = NV-MSVT score range 91%–100% versus 61%–70%; d3 = NV-MSVT score range 91%–100% versus <51%.

Table 8.

MCI scores as a function of TOMM performance sample 1 (N= 276)

  TOMM score range
 
ANOVA
 
ES
 
48–50 (n = 240) 45–47 (n = 15) <45 (n = 21) F η2 d1 d2 
GMP 28.4 (21.0)a 41.1 (28.2)a 61.9 (20.5)b 25.1 0.16 0.51 1.61 
NIP 35.4 (30.6)a 49.8 (25.1)ab 68.3 (24.6)b 12.8 0.09 0.51 1.19 
VSMP 24.1 (20.6)a 43.3 (28.6)b 56.4 (22.4)b 26.9 0.16 0.77 1.50 
VMP 37.8 (25.1)a 52.0 (26.6)a 74.0 (20.7)b 21.8 0.14 0.55 1.57 
PIM 26.8 (29.3)a 38.9 (41.5)a 70.2 (31.9)b 20.5 0.13 0.34 1.42 
MIW 33.2 (28.1)a 46.3 (34.6)a 71.7 (24.4)b 18.9 0.12 0.42 1.46 
IRM 17.5 (15.0)a 23.1 (19.5)a 37.2 (26.8)b 14.3 0.10 0.32 0.91 
ACB 17.6 (17.1)a 31.0 (23.5)b 50.9 (22.6)c 35.6 0.21 0.65 1.66 
AAB 7.5 (11.3)a 11.5 (17.3)a 26.1 (19.8)b 21.7 0.14 0.27 1.15 
Mean MCI 25.4 (17.3)a 37.5 (23.4)b 57.4 (17.8)c 33.8 0.20 0.59 1.82 
  TOMM score range
 
ANOVA
 
ES
 
48–50 (n = 240) 45–47 (n = 15) <45 (n = 21) F η2 d1 d2 
GMP 28.4 (21.0)a 41.1 (28.2)a 61.9 (20.5)b 25.1 0.16 0.51 1.61 
NIP 35.4 (30.6)a 49.8 (25.1)ab 68.3 (24.6)b 12.8 0.09 0.51 1.19 
VSMP 24.1 (20.6)a 43.3 (28.6)b 56.4 (22.4)b 26.9 0.16 0.77 1.50 
VMP 37.8 (25.1)a 52.0 (26.6)a 74.0 (20.7)b 21.8 0.14 0.55 1.57 
PIM 26.8 (29.3)a 38.9 (41.5)a 70.2 (31.9)b 20.5 0.13 0.34 1.42 
MIW 33.2 (28.1)a 46.3 (34.6)a 71.7 (24.4)b 18.9 0.12 0.42 1.46 
IRM 17.5 (15.0)a 23.1 (19.5)a 37.2 (26.8)b 14.3 0.10 0.32 0.91 
ACB 17.6 (17.1)a 31.0 (23.5)b 50.9 (22.6)c 35.6 0.21 0.65 1.66 
AAB 7.5 (11.3)a 11.5 (17.3)a 26.1 (19.8)b 21.7 0.14 0.27 1.15 
Mean MCI 25.4 (17.3)a 37.5 (23.4)b 57.4 (17.8)c 33.8 0.20 0.59 1.82 

Notes: Means with different alphabets are significantly different (Tukey HSD). df for all ANOVA cells is 2, 275. p< .001 for all ANOVA comparisons. ANOVA = analysis of variance; TOMM = Test of Memory Malingering; GMP = General Memory Problems; NIP = Numeric Information Problems; VSMP = Visuospatial Memory Problems; VMP = Verbal Memory Problems; PIM = Pain Interferes with Memory; MIW = Memory Interferes with Work; IRM = Impairment of Remote Memory; ACB = Amnesia for Complex Behavior; AAB = Amnesia for Antisocial Behavior; MCI = Memory Complaints Inventory; d1 = TOMM score range 48–50 versus 45–47; d2 = TOMM score range 48–50 versus <45.

Table 9.

MCI scores as a function of TOMM performance sample 2 (N= 1,597)

  TOMM score range
 
ANOVA
 
ES
 
48–50 (n = 1,338) 45–47 (n = 60) 42–44 (n = 38) 39–41 (n = 40) 36–38 (n = 30) <36 (n = 91) F η2 d1 d2 d3 
GMP 25.7 (20.9)a 40.6 (25.1)b 51.5 (20.6)bc 47.1 (24.1)bcd 55.5 (26.5)c 63.1 (22.2)cd 78.7 0.20 1.24 0.98 1.77 
NIP 30.4 (21.9)a 46.4 (24.7)b 51.8 (18.7)bc 50.1 (24.4)bcd 60.6 (23.5)cde 66.0 (22.2)e 67.2 0.17 1.05 0.85 1.61 
VSMP 19.6 (19.1)a 35.5 (23.5)b 40.4 (22.9)bc 39.6 (23.3)bcd 46.2 (24.2)bcde 56.7 (22.2)e 85.0 0.21 0.99 0.94 1.79 
VMP 37.2 (24.6)a 52.3 (26.4)b 62.8 (22.7)bc 60.6 (21.6)bc 65.5 (24.1)bc 70.1 (22.5)c 52.1 0.14 1.08 1.01 1.40 
PIM 41.0 (30.2)a 56.5 (27.6)b 64.3 (27.4)bc 67.4 (27.0)bcd 73.3 (27.5)bcd 81.1 (23.1)d 47.0 0.13 0.81 0.92 1.49 
MIW 28.8 (26.1)a 43.8 (25.0)b 56.1 (23.6)bc 49.8 (25.5)bcd 59.5 (29.6)bcde 73.1 (23.7)e 68.1 0.18 1.10 0.81 1.78 
IRM 15.4 (14.5)a 23.0 (17.3)b 30.8 (20.4)bc 27.6 (18.9)bcd 36.5 (26.1)cde 41.3 (21.8)e 65.4 0.17 0.87 0.72 1.40 
ACB 16.4 (17.5)a 27.1 (20.4)b 37.4 (22.1)bc 30.7 (20.1)bcd 39.9 (25.8)cde 51.8 (23.4)f 82.9 0.21 1.05 0.76 1.71 
AAB 8.3 (12.8)a 13.6 (15.5)b 18.7 (16.8)bc 14.5 (16.7)abcd 20.4 (26.8)bcde 31.5 (18.7)f 55.6 0.15 0.70 0.42 1.45 
Mean MCI 24.8 (17.1)a 37.6 (18.5)b 46.0 (16.0)bc 43.0 (17.1)bcd 50.8 (20.7)cde 59.4 (18.0)e 98.3 0.24 1.28 1.06 1.97 
  TOMM score range
 
ANOVA
 
ES
 
48–50 (n = 1,338) 45–47 (n = 60) 42–44 (n = 38) 39–41 (n = 40) 36–38 (n = 30) <36 (n = 91) F η2 d1 d2 d3 
GMP 25.7 (20.9)a 40.6 (25.1)b 51.5 (20.6)bc 47.1 (24.1)bcd 55.5 (26.5)c 63.1 (22.2)cd 78.7 0.20 1.24 0.98 1.77 
NIP 30.4 (21.9)a 46.4 (24.7)b 51.8 (18.7)bc 50.1 (24.4)bcd 60.6 (23.5)cde 66.0 (22.2)e 67.2 0.17 1.05 0.85 1.61 
VSMP 19.6 (19.1)a 35.5 (23.5)b 40.4 (22.9)bc 39.6 (23.3)bcd 46.2 (24.2)bcde 56.7 (22.2)e 85.0 0.21 0.99 0.94 1.79 
VMP 37.2 (24.6)a 52.3 (26.4)b 62.8 (22.7)bc 60.6 (21.6)bc 65.5 (24.1)bc 70.1 (22.5)c 52.1 0.14 1.08 1.01 1.40 
PIM 41.0 (30.2)a 56.5 (27.6)b 64.3 (27.4)bc 67.4 (27.0)bcd 73.3 (27.5)bcd 81.1 (23.1)d 47.0 0.13 0.81 0.92 1.49 
MIW 28.8 (26.1)a 43.8 (25.0)b 56.1 (23.6)bc 49.8 (25.5)bcd 59.5 (29.6)bcde 73.1 (23.7)e 68.1 0.18 1.10 0.81 1.78 
IRM 15.4 (14.5)a 23.0 (17.3)b 30.8 (20.4)bc 27.6 (18.9)bcd 36.5 (26.1)cde 41.3 (21.8)e 65.4 0.17 0.87 0.72 1.40 
ACB 16.4 (17.5)a 27.1 (20.4)b 37.4 (22.1)bc 30.7 (20.1)bcd 39.9 (25.8)cde 51.8 (23.4)f 82.9 0.21 1.05 0.76 1.71 
AAB 8.3 (12.8)a 13.6 (15.5)b 18.7 (16.8)bc 14.5 (16.7)abcd 20.4 (26.8)bcde 31.5 (18.7)f 55.6 0.15 0.70 0.42 1.45 
Mean MCI 24.8 (17.1)a 37.6 (18.5)b 46.0 (16.0)bc 43.0 (17.1)bcd 50.8 (20.7)cde 59.4 (18.0)e 98.3 0.24 1.28 1.06 1.97 

Notes: Means with different alphabets are significantly different (Tukey HSD). df for all ANOVA cells is 5, 1,596. p< .001 for all ANOVA comparisons. ANOVA = analysis of variance; TOMM = Test of Memory Malingering; GMP = General Memory Problems; NIP = Numeric Information Problems; VSMP = Visuospatial Memory Problems; VMP = Verbal Memory Problems; PIM = Pain Interferes with Memory; MIW = Memory Interferes with Work; IRM = Impairment of Remote Memory; ACB = Amnesia for Complex Behavior; AAB = Amnesia for Antisocial Behavior; MCI = Memory Complaints Inventory; d1 = TOMM score range 48–50 versus 42–44; d2 = TOMM score range 48–50 versus 39–41; d3 = TOMM score range 48–50 versus <36%.

Table 10.

MCI scores as a function of RDS performance sample 1 (N= 584)

  RDS range
 
ANOVA
 
ES
 
>11 (n = 101) 10–11 (n = 166) 8–9 (n = 197) 6–7 (n = 104) 4–5 (n = 14) <4 (n = 2) F η2 d1 d2 d3 
GMP 27.0 (22.0)a 27.9 (20.4)ab 32.3 (24.3)abc 43.2 (22.0)d 52.1 (23.8)d 60.5 (14.8)abcd 10.1 0.08 0.23 0.74 1.10 
NIP 29.7 (23.4)a 33.7 (21.5)ab 38.1 (24.3)abc 48.5 (23.6)d 55.3 (22.5)d 64.5 (14.8)abcd 13.3 0.10 0.35 0.80 1.12 
VSMP 21.4 (20.3)a 24.4 (31.4)ab 26.6 (22.4)abc 36.7 (22.0)d 45.0 (23.9)d 55.0 (14.1)abcd 8.4 0.07 0.24 0.72 1.06 
VMP 37.6 (26.5)a 40.3 (26.1)ab 41.6 (27.4)abc 54.1 (26.4)d 64.2 (30.4)d 72.5 (3.5)abcd 7.1 0.06 0.15 0.62 0.93 
PIM 23.2 (30.1)a 28.8 (30.5)ab 30.2 (31.7)bc 43.5 (35.1)d 57.1 (31.3)d 75.0 (11.3)abcd 7.2 0.06 0.23 0.62 1.10 
MIW 29.4 (29.6)a 32.8 (28.1)ab 38.3 (30.5)abc 51.4 (29.6)d 61.4 (26.1)cd 70.0 (0.0)abcd 9.3 0.08 0.30 0.74 1.15 
IRM 15.8 (15.4)a 16.8 (15.0)ab 18.3 (16.8)abc 25.8 (17.5)d 32.6 (25.2)d 44.5 (12.0)abcd 7.8 0.06 0.16 0.61 0.80 
ACB 15.0 (17.4)a 18.8 (18.7)ab 20.4 (21.0)abc 30.1 (20.6)d 40.9 (24.0)d 47.0 (12.7)abcd 10.2 0.08 0.28 0.79 1.24 
AAB 4.8 (8.5)a 8.1 (12.1)ab 8.0 (13.1)abc 16.9 (16.4)d 19.7 (21.6)d 16.5 (12.0)abcd 12.0 0.09 0.29 0.93 0.91 
Mean MCI 22.7 (17.6)a 25.8 (17.6)ab 28.2 (19.7)abc 39.1 (19.4)d 50.1 (20.5)d 56.2 (2.1)abcd 13.9 0.11 0.29 0.89 1.43 
  RDS range
 
ANOVA
 
ES
 
>11 (n = 101) 10–11 (n = 166) 8–9 (n = 197) 6–7 (n = 104) 4–5 (n = 14) <4 (n = 2) F η2 d1 d2 d3 
GMP 27.0 (22.0)a 27.9 (20.4)ab 32.3 (24.3)abc 43.2 (22.0)d 52.1 (23.8)d 60.5 (14.8)abcd 10.1 0.08 0.23 0.74 1.10 
NIP 29.7 (23.4)a 33.7 (21.5)ab 38.1 (24.3)abc 48.5 (23.6)d 55.3 (22.5)d 64.5 (14.8)abcd 13.3 0.10 0.35 0.80 1.12 
VSMP 21.4 (20.3)a 24.4 (31.4)ab 26.6 (22.4)abc 36.7 (22.0)d 45.0 (23.9)d 55.0 (14.1)abcd 8.4 0.07 0.24 0.72 1.06 
VMP 37.6 (26.5)a 40.3 (26.1)ab 41.6 (27.4)abc 54.1 (26.4)d 64.2 (30.4)d 72.5 (3.5)abcd 7.1 0.06 0.15 0.62 0.93 
PIM 23.2 (30.1)a 28.8 (30.5)ab 30.2 (31.7)bc 43.5 (35.1)d 57.1 (31.3)d 75.0 (11.3)abcd 7.2 0.06 0.23 0.62 1.10 
MIW 29.4 (29.6)a 32.8 (28.1)ab 38.3 (30.5)abc 51.4 (29.6)d 61.4 (26.1)cd 70.0 (0.0)abcd 9.3 0.08 0.30 0.74 1.15 
IRM 15.8 (15.4)a 16.8 (15.0)ab 18.3 (16.8)abc 25.8 (17.5)d 32.6 (25.2)d 44.5 (12.0)abcd 7.8 0.06 0.16 0.61 0.80 
ACB 15.0 (17.4)a 18.8 (18.7)ab 20.4 (21.0)abc 30.1 (20.6)d 40.9 (24.0)d 47.0 (12.7)abcd 10.2 0.08 0.28 0.79 1.24 
AAB 4.8 (8.5)a 8.1 (12.1)ab 8.0 (13.1)abc 16.9 (16.4)d 19.7 (21.6)d 16.5 (12.0)abcd 12.0 0.09 0.29 0.93 0.91 
Mean MCI 22.7 (17.6)a 25.8 (17.6)ab 28.2 (19.7)abc 39.1 (19.4)d 50.1 (20.5)d 56.2 (2.1)abcd 13.9 0.11 0.29 0.89 1.43 

Notes: Means with different alphabets are significantly different (Tukey HSD). df for all ANOVA cells is 5, 583. p< .001 for all ANOVA comparisons. ANOVA = analysis of variance; RDS = Reliable Digit Span; GMP = General Memory Problems; NIP = Numeric Information Problems; VSMP = Visuospatial Memory Problems; VMP = Verbal Memory Problems; PIM = Pain Interferes with Memory; MIW = Memory Interferes with Work; IRM = Impairment of Remote Memory; ACB = Amnesia for Complex Behavior; AAB = Amnesia for Antisocial Behavior; MCI = Memory Complaints Inventory; d1 = RDS score range >11 versus 8–9; d2 = RDS score range >11 versus 6–7; d3 = RDS score range >11 versus 4–5.

Table 11.

MCI scores as a function of RDS performance sample 2 (N= 923)

  RDS range
 
ANOVA
 
ES
 
>11 (n = 110) 10–11 (n = 231) 8–9 (n = 367) 6–7 (n = 181) 4–5 (n = 29) <4 (n = 5) F η2 d1 d2 d3 
GMP 25.7 (21.0)a 27.0 (20.5)ab 30.3 (22.6)abc 36.7 (24.0)d 46.5 (24.1)de 39.2 (23.7)abcde 8.1 0.04 0.21 0.49 0.92 
NIP 26.5 (20.3)a 30.1 (21.3)ab 35.1 (23.4)bc 43.4 (22.7)d 48.4 (24.0)de 43.4 (24.2)abcde 12.7 0.07 0.39 0.78 0.99 
VSMP 18.6 (18.3)a 20.6 (19.6)ab 24.0 (20.4)abc 32.7 (22.3)d 46.2 (24.4)e 36.0 (29.5)abcde 15.9 0.08 0.28 0.69 1.28 
VMP 34.5 (23.6)a 37.0 (23.1)ab 41.0 (26.8)bc 47.8 (24.8)d 56.0 (29.7)de 45.0 (30.2)abcde 7.3 0.04 0.26 0.55 0.80 
PIM 29.1 (28.1)a 37.0 (31.4)b 43.6 (31.0)bc 50.5 (30.2)c 57.5 (32.6)c 60.2 (30.7)abc 9.9 0.05 0.49 0.73 0.93 
MIW 25.5 (24.8)a 28.7 (26.8)ab 33.5 (27.6)abc 43.1 (28.4)d 52.1 (31.3)d 51.0 (31.3)abcd 10.8 0.06 0.30 0.66 0.94 
IRM 14.3 (13.1)a 15.3 (14.4)ab 18.8 (16.8)abc 23.6 (17.3)d 37.2 (26.0)e 27.8 (19.9)abcde 14.7 0.07 0.30 0.60 1.11 
ACB 16.7 (17.6)a 16.8 (16.9)ab 19.7 (18.9)abc 26.7 (21.4)d 40.3 (27.5)e 35.0 (21.6)abcde 13.2 0.07 0.16 0.51 1.02 
AAB 8.5 (12.9)a 7.7 (11.4)ab 11.1 (14.4)abc 14.9 (16.5)d 23.6 (23.7)e 11.6 (13.9)abcde 10.2 0.05 0.19 0.43 0.79 
Mean MCI 22.2 (16.6)a 24.5 (16.8)ab 28.6 (18.6)bc 35.5 (19.2)d 45.3 (22.8)d 38.8 (18.1)abcd 15.5 0.08 0.36 0.74 1.15 
  RDS range
 
ANOVA
 
ES
 
>11 (n = 110) 10–11 (n = 231) 8–9 (n = 367) 6–7 (n = 181) 4–5 (n = 29) <4 (n = 5) F η2 d1 d2 d3 
GMP 25.7 (21.0)a 27.0 (20.5)ab 30.3 (22.6)abc 36.7 (24.0)d 46.5 (24.1)de 39.2 (23.7)abcde 8.1 0.04 0.21 0.49 0.92 
NIP 26.5 (20.3)a 30.1 (21.3)ab 35.1 (23.4)bc 43.4 (22.7)d 48.4 (24.0)de 43.4 (24.2)abcde 12.7 0.07 0.39 0.78 0.99 
VSMP 18.6 (18.3)a 20.6 (19.6)ab 24.0 (20.4)abc 32.7 (22.3)d 46.2 (24.4)e 36.0 (29.5)abcde 15.9 0.08 0.28 0.69 1.28 
VMP 34.5 (23.6)a 37.0 (23.1)ab 41.0 (26.8)bc 47.8 (24.8)d 56.0 (29.7)de 45.0 (30.2)abcde 7.3 0.04 0.26 0.55 0.80 
PIM 29.1 (28.1)a 37.0 (31.4)b 43.6 (31.0)bc 50.5 (30.2)c 57.5 (32.6)c 60.2 (30.7)abc 9.9 0.05 0.49 0.73 0.93 
MIW 25.5 (24.8)a 28.7 (26.8)ab 33.5 (27.6)abc 43.1 (28.4)d 52.1 (31.3)d 51.0 (31.3)abcd 10.8 0.06 0.30 0.66 0.94 
IRM 14.3 (13.1)a 15.3 (14.4)ab 18.8 (16.8)abc 23.6 (17.3)d 37.2 (26.0)e 27.8 (19.9)abcde 14.7 0.07 0.30 0.60 1.11 
ACB 16.7 (17.6)a 16.8 (16.9)ab 19.7 (18.9)abc 26.7 (21.4)d 40.3 (27.5)e 35.0 (21.6)abcde 13.2 0.07 0.16 0.51 1.02 
AAB 8.5 (12.9)a 7.7 (11.4)ab 11.1 (14.4)abc 14.9 (16.5)d 23.6 (23.7)e 11.6 (13.9)abcde 10.2 0.05 0.19 0.43 0.79 
Mean MCI 22.2 (16.6)a 24.5 (16.8)ab 28.6 (18.6)bc 35.5 (19.2)d 45.3 (22.8)d 38.8 (18.1)abcd 15.5 0.08 0.36 0.74 1.15 

Notes: Means with different alphabets are significantly different (Tukey HSD). df for all ANOVA cells is 5, 922. p< .001 for all ANOVA comparisons. ANOVA = analysis of variance; RDS = Reliable Digit Span; GMP = General Memory Problems; NIP = Numeric Information Problems; VSMP = Visuospatial Memory Problems; VMP = Verbal Memory Problems; PIM = Pain Interferes with Memory; MIW = Memory Interferes with Work; IRM = Impairment of Remote Memory; ACB = Amnesia for Complex Behavior; AAB = Amnesia for Antisocial Behavior; MCI = Memory Complaints Inventory; d1 = RDS score range >11 versus 8–9; d2 = RDS score range >11 versus 6–7; d3 = RDS score range >11 versus 4–5.

Table 12.

MCI scores as a function of CVLT Recognition Hits performance sample 1 (N= 1,457)

  CVLT REC range
 
ANOVA
 
ES
 
15–16 (n = 752) 13–14 (n = 408) 11–12 (n = 165) 9–10 (n = 67) 7–8 (n = 34) <7 (n = 31) F η2 d1 d2 d3 
GMP 28.7 (21.3)a 34.7 (24.0)b 41.0 (24.2)c 44.7 (27.0)cd 50.5 (21.7)ce 60.6 (23.3)de 26.1 0.08 0.54 0.66 1.43 
NIP 34.5 (25.6)a 40.2 (24.6)b 46.5 (23.3)bc 50.7 (23.3)cd 59.3 (22.4)cd 61.8 (22.2)d 20.8 0.07 0.49 0.66 1.14 
VSMP 22.4 (20.2)a 28.9 (23.0)b 36.0 (22.8)c 39.5 (24.7)cd 45.3 (26.5)cd 51.3 (24.8)d 29.6 0.09 0.63 0.76 1.28 
VMP 42.4 (26.4)a 49.0 (28.0)b 55.9 (26.2)bc 58.8 (26.2)bcd 66.0 (23.2)cd 72.9 (24.4)d 20.4 0.07 0.51 0.62 1.20 
PIM 32.0 (31.9)a 36.5 (32.8)ab 40.6 (34.6)bc 41.4 (33.0)abc 51.9 (30.2)bc 53.8 (29.9)c 6.8 0.02 0.22 0.29 0.71 
MIW 34.6 (29.1)a 41.6 (31.3)b 48.9 (30.7)bc 54.7 (31.7)c 63.2 (26.6)c 64.8 (27.0)c 19.6 0.06 0.48 0.66 1.08 
IRM 17.0 (15.5)a 20.4 (17.9)b 22.7 (17.0)bc 27.9 (20.5)cd 36.1 (21.6)d 33.5 (22.7)d 18.7 0.06 0.35 0.60 0.85 
ACB 17.5 (17.8)a 22.5 (20.4)b 28.5 (22.0)c 32.9 (23.9)cd 38.5 (22.6)cde 50.4 (24.3)e 33.6 0.10 0.55 0.73 1.54 
AAB 6.9 (11.0)a 8.8 (13.6)ab 12.5 (16.5)c 10.9 (13.3)abcd 14.4 (16.0)bcde 21.3 (21.0)e 13.2 0.04 0.40 0.33 0.86 
Mean MCI 26.2 (17.8)a 31.4 (19.8)b 37.0 (19.9)c 40.2 (20.0)cd 47.2 (17.1)de 52.3 (18.9)e 29.4 0.09 0.57 0.74 1.42 
  CVLT REC range
 
ANOVA
 
ES
 
15–16 (n = 752) 13–14 (n = 408) 11–12 (n = 165) 9–10 (n = 67) 7–8 (n = 34) <7 (n = 31) F η2 d1 d2 d3 
GMP 28.7 (21.3)a 34.7 (24.0)b 41.0 (24.2)c 44.7 (27.0)cd 50.5 (21.7)ce 60.6 (23.3)de 26.1 0.08 0.54 0.66 1.43 
NIP 34.5 (25.6)a 40.2 (24.6)b 46.5 (23.3)bc 50.7 (23.3)cd 59.3 (22.4)cd 61.8 (22.2)d 20.8 0.07 0.49 0.66 1.14 
VSMP 22.4 (20.2)a 28.9 (23.0)b 36.0 (22.8)c 39.5 (24.7)cd 45.3 (26.5)cd 51.3 (24.8)d 29.6 0.09 0.63 0.76 1.28 
VMP 42.4 (26.4)a 49.0 (28.0)b 55.9 (26.2)bc 58.8 (26.2)bcd 66.0 (23.2)cd 72.9 (24.4)d 20.4 0.07 0.51 0.62 1.20 
PIM 32.0 (31.9)a 36.5 (32.8)ab 40.6 (34.6)bc 41.4 (33.0)abc 51.9 (30.2)bc 53.8 (29.9)c 6.8 0.02 0.22 0.29 0.71 
MIW 34.6 (29.1)a 41.6 (31.3)b 48.9 (30.7)bc 54.7 (31.7)c 63.2 (26.6)c 64.8 (27.0)c 19.6 0.06 0.48 0.66 1.08 
IRM 17.0 (15.5)a 20.4 (17.9)b 22.7 (17.0)bc 27.9 (20.5)cd 36.1 (21.6)d 33.5 (22.7)d 18.7 0.06 0.35 0.60 0.85 
ACB 17.5 (17.8)a 22.5 (20.4)b 28.5 (22.0)c 32.9 (23.9)cd 38.5 (22.6)cde 50.4 (24.3)e 33.6 0.10 0.55 0.73 1.54 
AAB 6.9 (11.0)a 8.8 (13.6)ab 12.5 (16.5)c 10.9 (13.3)abcd 14.4 (16.0)bcde 21.3 (21.0)e 13.2 0.04 0.40 0.33 0.86 
Mean MCI 26.2 (17.8)a 31.4 (19.8)b 37.0 (19.9)c 40.2 (20.0)cd 47.2 (17.1)de 52.3 (18.9)e 29.4 0.09 0.57 0.74 1.42 

Notes: Means with different alphabets are significantly different (Tukey HSD). df for all ANOVA cells is 5, 1,456. p< .001 for all ANOVA. ANOVA = analysis of variance; CVLT REC = California Verbal Learning Test Recognition Hits Subtest; GMP = General Memory Problems; NIP = Numeric Information Problems; VSMP = Visuospatial Memory Problems; VMP = Verbal Memory Problems; PIM = Pain Interferes with Memory; MIW = Memory Interferes with Work; IRM = Impairment of Remote Memory; ACB = Amnesia for Complex Behavior; AAB = Amnesia for Antisocial Behavior; MCI = Memory Complaints Inventory; d1 = CVLT REC score range 15–16 versus 11–12; d2 = CVLT REC score range 15–16 versus 9–10; d3 = CVLT REC score range 15–16 versus <7.

Table 13.

MCI scores as a function of CVLT Recognition Hits performance sample 2 (N= 1,247)

  CVLT REC range
 
ANOVA
 
ES
 
15–16 (n = 746) 13–14 (n = 303) 11–12 (n = 111) 9–10 (n = 47) 7–8 (n = 24) <7 (n = 16) F η2 d1 d2 d3 
GMP 27.8 (21.1)a 31.7 (21.5)ab 43.7 (24.9)c 47.4 (28.0)c 52.8 (26.8)c 43.5 (26.9)abc 21.4 0.08 0.69 0.79 0.65 
NIP 31.5 (22.0)a 37.7 (22.0)b 47.2 (25.4)c 55.7 (26.6)c 57.3 (28.3)c 49.3 (23.3)bc 24.1 0.09 0.66 0.99 0.79 
VSMP 20.7 (18.9)a 25.3 (20.6)b 35.2 (23.9)c 41.3 (27.1)c 41.3 (26.9)c 38.1 (24.0)bc 22.3 0.08 0.67 0.88 0.71 
VMP 39.1 (24.8)a 44.5 (24.9)b 55.1 (25.9)c 56.5 (28.6)c 68.5 (21.6)c 60.3 (24.7)bc 18.2 0.07 0.63 0.65 0.86 
PIM 40.6 (29.5)a 50.3 (31.3)b 59.4 (29.2)b 58.4 (33.5)b 67.7 (27.4)b 53.6 (34.6)ab 14.6 0.06 0.64 0.56 0.40 
MIW 30.4 (26.5)a 36.8 (27.1)b 48.9 (27.5)c 50.5 (32.0)c 59.6 (22.3)c 52.2 (34.8)bc 18.7 0.07 0.69 0.68 0.70 
IRM 15.5 (14.6)a 19.3 (16.4)b 25.5 (21.2)c 27.6 (16.8)c 34.9 (20.9)c 27.4 (23.7)a 18.5 0.07 0.55 0.77 0.60 
ACB 17.7 (18.0)a 20.4 (18.2)ab 30.8 (23.0)c 36.4 (26.4)c 38.8 (25.3)c 31.1 (22.4)abc 21.5 0.08 0.63 0.83 0.66 
AAB 8.8 (12.5)a 10.2 (13.8)ab 16.7 (18.4)c 22.9 (23.1)c 19.3 (21.8)c 17.2 (18.6)abc 16.0 0.06 0.50 0.76 0.53 
Mean MCI 25.8 (16.9)a 30.7 (17.6)b 40.3 (19.6)c 44.1 (22.4)c 48.9 (20.0)c 41.4 (22.1)bc 28.6 0.10 0.79 0.92 0.79 
  CVLT REC range
 
ANOVA
 
ES
 
15–16 (n = 746) 13–14 (n = 303) 11–12 (n = 111) 9–10 (n = 47) 7–8 (n = 24) <7 (n = 16) F η2 d1 d2 d3 
GMP 27.8 (21.1)a 31.7 (21.5)ab 43.7 (24.9)c 47.4 (28.0)c 52.8 (26.8)c 43.5 (26.9)abc 21.4 0.08 0.69 0.79 0.65 
NIP 31.5 (22.0)a 37.7 (22.0)b 47.2 (25.4)c 55.7 (26.6)c 57.3 (28.3)c 49.3 (23.3)bc 24.1 0.09 0.66 0.99 0.79 
VSMP 20.7 (18.9)a 25.3 (20.6)b 35.2 (23.9)c 41.3 (27.1)c 41.3 (26.9)c 38.1 (24.0)bc 22.3 0.08 0.67 0.88 0.71 
VMP 39.1 (24.8)a 44.5 (24.9)b 55.1 (25.9)c 56.5 (28.6)c 68.5 (21.6)c 60.3 (24.7)bc 18.2 0.07 0.63 0.65 0.86 
PIM 40.6 (29.5)a 50.3 (31.3)b 59.4 (29.2)b 58.4 (33.5)b 67.7 (27.4)b 53.6 (34.6)ab 14.6 0.06 0.64 0.56 0.40 
MIW 30.4 (26.5)a 36.8 (27.1)b 48.9 (27.5)c 50.5 (32.0)c 59.6 (22.3)c 52.2 (34.8)bc 18.7 0.07 0.69 0.68 0.70 
IRM 15.5 (14.6)a 19.3 (16.4)b 25.5 (21.2)c 27.6 (16.8)c 34.9 (20.9)c 27.4 (23.7)a 18.5 0.07 0.55 0.77 0.60 
ACB 17.7 (18.0)a 20.4 (18.2)ab 30.8 (23.0)c 36.4 (26.4)c 38.8 (25.3)c 31.1 (22.4)abc 21.5 0.08 0.63 0.83 0.66 
AAB 8.8 (12.5)a 10.2 (13.8)ab 16.7 (18.4)c 22.9 (23.1)c 19.3 (21.8)c 17.2 (18.6)abc 16.0 0.06 0.50 0.76 0.53 
Mean MCI 25.8 (16.9)a 30.7 (17.6)b 40.3 (19.6)c 44.1 (22.4)c 48.9 (20.0)c 41.4 (22.1)bc 28.6 0.10 0.79 0.92 0.79 

Notes: Means with different subtext are significantly different (Tukey HSD). df for all ANOVA cells = 5, 1,246. p < .001 for all ANOVA. ANOVA = analysis of variance; CVLT REC = California Verbal Learning Test Recognition Hits Subtest; GMP = General Memory Problems; NIP = Numeric Information Problems; VSMP = Visuospatial Memory Problems; VMP = Verbal Memory Problems; PIM = Pain Interferes with Memory; MIW = Memory Interferes with Work; IRM = Impairment of Remote Memory; ACB = Amnesia for Complex Behavior; AAB = Amnesia for Antisocial Behavior; MCI = Memory Complaints Inventory; d1 = CVLT REC score range 15–16 versus 11–12; d2 = CVLT REC score range 15–16 versus 9–10; d3 = CVLT REC score range 15–16 versus <7.

Fig. 1.

MCI scores as a function of WMT performance in Sample 1 (N= 1515).

Fig. 1.

MCI scores as a function of WMT performance in Sample 1 (N= 1515).

Fig. 2.

MCI scores as a function of WMT performance in Sample 2 (N= 1949).

Fig. 2.

MCI scores as a function of WMT performance in Sample 2 (N= 1949).

Correlational analyses are reported on Tables 14 and 15. Consistent with previous research, in those who passed effort tests, there was no correlation between subjective memory complaints and objective measures of the relevant cognitive domain.

Table 14.

Correlations between MCI VMP and CVLT in effort-controlled samples

CVLT Sample 1 (n = 988)
 
Sample 2 (n= 782)
 
r p-value r p-value 
Trials 1–5 Raw Score −.01 .79 −.06 .12 
Trial 1 −.01 .69 −.02 .51 
Trial 5 −.01 .89 −.03 .43 
Short Delay Free Recall −.03 .36 −.06 .09 
Long Delay Free Recall .00 .92 −.07 .06 
CVLT Sample 1 (n = 988)
 
Sample 2 (n= 782)
 
r p-value r p-value 
Trials 1–5 Raw Score −.01 .79 −.06 .12 
Trial 1 −.01 .69 −.02 .51 
Trial 5 −.01 .89 −.03 .43 
Short Delay Free Recall −.03 .36 −.06 .09 
Long Delay Free Recall .00 .92 −.07 .06 

Notes: MCI = Memory Complaints Inventory; VMP = Verbal Memory Problems subscale; CVLT = California Verbal Learning Test. Effort-controlled denotes that Cases failing the Word Memory Test were removed from analysis.

Table 15.

Correlations between MCI VSMP and Rey Complex Figure in effort-controlled sample (N= 282)

RCF r p-value 
Immediate Recall −.06 .29 
Delayed Recall −.10 .09 
Recognition .00 .99 
RCF r p-value 
Immediate Recall −.06 .29 
Delayed Recall −.10 .09 
Recognition .00 .99 

Notes: MCI = Memory Complaints Inventory; VSMP = Visual Memory Problems subscale; RCF = Rey Complex Figure. Effort-controlled denotes that Cases failing the Non-verbal Medical Symptom Validity Test were removed from analysis.

Discussion

The extant literature is rather clear that there exists almost no correlation between subjective reports of memory problems and objective measures of memory. Much of the available literature discusses this relationship in the light of psychological, somatic, and personality factors. However, few studies have worked to highlight the potential role of objectively measured effort in this relationship. The current paper sought to evaluate the association between patients’ reports of memory complaints and SVT performance. As outlined in Tables 2–13 and Figs 1 and 2, there is a significant relationship between worsening SVT performance and augmented reports of memory issues. More specifically, as patients’ performances across a variety of stand-alone and embedded SVTs worsened, there was a corresponding increase in subjective memory complaints on all MCI subscales. Of note, it has been well established in the research literature that SVT performance is not typically impacted by cognitive functioning (e.g., Green et al., 2010; Henry et al., 2009) and actual memory impairments are then a very unlikely etiology for those that performed poorly on symptom validity testing. Consequently, the current results depicting the relationship between MCI increases and declining SVT performances are not likely secondary to actual memory impairments.

In the current samples, composed primarily of disability-seeking examinees, it is then probable that symptom exaggeration is the common underlying variable which explains the strong association between low SVT scores and high memory complaints. The current data suggest that those who exaggerate their cognitive difficulties on self-rating scales like the MCI are also prone to exaggerating their cognitive difficulties by underachieving on cognitive tests and this is reflected in lowered SVT scores. One clinical implication of these findings would be that in individual patients reporting poor memory functioning, effort should be carefully and objectively gauged when conducting medical, psychological, and neuropsychological assessments. Otherwise stated, poor effort or symptom exaggeration should be ruled out as the explanation of elevated memory complaints.

The current paper also worked to expand the literature describing the relationship between subjective reports of memory complaints and objective measures of this domain. Previous literature has tended to focus on general memory complaints, as opposed to specific subcategories of memory problems. Given that the various subscales of the MCI seem to measure different types of memory complaints, the current data were analyzed by matching visual memory complaints (i.e., MCI VSMP subscale) with subscales of a visual memory instrument (i.e., Rey Complex Figure) and verbal memory complaints (i.e., MCI VMP subscale) with subscales of a verbal memory instrument (i.e., CVLT). As with previous literature, in those who passed SVTs, there was a series of non-significant correlations between these variables, further supporting the notion that patients’ subjective reports of memory problems are poorly related to their respective performances on objective measures. These results emerged even in the context of rather large sample sizes that offered sufficient power for this analysis. It may then be concluded that in clinical practice, it is not reasonable to infer actual impairment of memory based on self-reported memory complaints.

Limitations of the current investigation and future research directions are as follows. First, there existed a relative homogeneity in the samples’ compositions in that both consisted primarily of people undergoing disability evaluations. It could be argued that these people had a clear motive to exaggerate symptoms and that the observed relationship between various SVT and MCI scores needs to be further validated in non-disability seeking samples. Next, the study's design as a retrospective review of existing clinical records holds its own disadvantages. This includes the somewhat dissimilar batteries administered to individuals. While this is an understandable consequence of clinical practice, the result empirically is that not every participant was administered the same measures. The internal validity of the research would be augmented by a prospective research design that ensured administration of the same measures to each participant.

Prospective studies could employ simulator designs, which would allow greater manipulation and investigator awareness of the effort offered by study participants. Future research could also be designed to allow a composite investigation of all of the known variables thought to influence the relationship between subjective reports of memory complaints and performances on objective measures of this domain. Regression or structural equation modeling techniques might help to elucidate more precisely the impact of variables previously identified as significant in this relationship, such as depression, somatic features, and personality factors. The current paper, however, suggests that objective measures of effort should be considered in any such investigation. Finally, future research could examine the relationship between subjective reports of memory problems and SVT performances observed here as a function of different group memberships. For example, it may be of import to investigate if the relationship or the magnitude of this relationship changes as function of demographic variables (e.g., gender), diagnostic variables (e.g., psychiatric vs. neurologic conditions), and litigation variables (e.g., plaintiff vs. defense).

In summary, the current investigation demonstrates that as the SVT performances of people involved in disability examinations worsen, there is a corresponding increase in subjective reports of memory complaints across all MCI subscales. The data suggest an underlying dimension of symptom exaggeration, which can influence self-reported memory complaints. Empirically, examinee effort could be one factor that compounds the association between subjective memory complaints and objective test performances and, in theory, poor effort could obscure a true relationship between self-rated and objectively measured memory difficulties. However, in those passing SVTs in the current study, the correlations between self-rated memory complaints and actual memory scores were still non-significant. Clinically, the current data suggest that in the assessment of patients with self-reported memory complaints, objective measures of effort should be included in order to rule out more definitively suboptimal effort and/or conscious attempts at symptom exaggeration affecting the person's presentation.

Funding

None.

Conflict of interest

P.G. is the inventor of the MCI, WMT, MSVT, and NV-MSVT and he partly owns Green's Publishing, which sells each of these instruments commercially.

Acknowledgements

The views, opinions, and/or findings contained in this article are those of the authors and should not be construed as an official Department of the Army position, policy, or decision unless so designated by other official documentation.

References

Armistead-Jehle
P.
Gervais
R. O.
Sensitivity of the Test of Memory Malingering (TOMM) and the Nonverbal Medical Symptom Validity Test (NV-MSVT): A replication study
Applied Neuropsychology
  
in press
Chafetz
M.
Malingering on the social security disability consultative exam: Predictors and base rates
The Clinical Neuropsychologist
 , 
2008
, vol. 
22
 (pg. 
529
-
546
)
Chamelian
L.
Feinstein
A.
The effect of major depression on subjective and objective cognitive deficits in mild to moderate traumatic brain injury
Journal of Neuropsychiatry and Clinical Neurosciences
 , 
2006
, vol. 
18
 (pg. 
33
-
38
)
Constantinou
M.
Bauer
L.
Ashendorf
L.
Fisher
J. M.
McCaffrey
R. J.
Is poor performance on recognition memory effort measures indicative of generalized poor performance on neuropsychological tests
Archives of Clinical Neuropsychology
 , 
2005
, vol. 
20
 (pg. 
191
-
198
)
Curtis
K. L.
Greve
K. W.
Bianchini
K. J.
Brennan
A.
California Verbal Learning Test indicators of malingered neurocognitive dysfunction: Sensitivity and specificity in traumatic brain injury
Assessment
 , 
2006
, vol. 
13
 (pg. 
46
-
61
)
Delis
D. C.
Kramer
J. H.
Kaplan
E.
Ober
B. A.
California Verbal Learning Test (CVLT) manual
 , 
1987
San Antonio, TX
The Psychological Corporation
Ford
N.
Slade
P.
Butler
G.
An absence of evidence linking perceived memory problems to the menopause
The British Journal of General Practice
 , 
2004
, vol. 
54
 (pg. 
434
-
438
)
Fox
D. D.
Symptom validity test failure indicates invalidity of neuropsychological tests
The Clinical Neuropsychologist
 , 
2011
, vol. 
25
 (pg. 
488
-
495
)
Gervais
R. O.
Ben-Porath
Y. S.
Wygant
D. B.
Green
P.
Development and validation of the Response Bias Scale (RBS) for the MMPI-2
Assessment
 , 
2007
, vol. 
14
 (pg. 
196
-
208
)
Gervais
R. O.
Ben-Porath
Y. S.
Wygant
D. B.
Green
P.
Differential sensitivity of the Response Bias Scale (RBS) and MMPI-2 validity scales to memory impairment
The Clinical Neuropsychologist
 , 
2008
, vol. 
22
 (pg. 
1061
-
1079
)
Gervais
R. O.
Ben-Porath
Y. S.
Wygant
D. B.
Sellbom
M.
Incremental validity of the MMPI-2-RF over-reporting scales and RBS in assessing the veracity of memory complaints
Archives of Clinical Neuropsychology
 , 
2010
, vol. 
25
 (pg. 
274
-
284
)
Gervais
R. O.
Russell
A. S.
Green
P.
Allen
L. M.
III
Ferrari
R.
Pieschel
S. D.
Effort testing in patients with fibromyalgia and disability incentives
Journal of Rheumatology
 , 
2001
, vol. 
28
 (pg. 
1892
-
1899
)
Green
P.
Green's Word Memory Test for Windows: User's manual
 , 
2003
Edmonton, Canada
Green's Publishing
Green
P.
Memory complaints inventory
 , 
2004
Edmonton, Canada
Green's Publishing
Green
P.
Green's Medical Symptom Validity Test (MSVT) for Microsoft Windows: User's manual
 , 
2004
Edmonton, Canada
Green's Publishing
Green
P.
The pervasive influence of effort on neuropsychological tests
Physical Medicine and Rehabilitation Clinics of North America
 , 
2007
, vol. 
18
 (pg. 
43
-
68
)
Green
P.
Manual for the Nonverbal Medical Symptom Validity Test
 , 
2008
Edmonton, Canada
Green's Publishing
Green
P.
Comparison between the Test of Memory Malingering (TOMM) and the Nonverbal Medical Symptom Validity Test (NV-MSVT) in adults with disability claims
Applied Neuropsychology
 , 
2011
, vol. 
18
 (pg. 
18
-
26
)
Green
P.
Flaro
L.
Brockhaus
R.
Montijo
J.
Reynolds
C. R.
Horton
A.
Performance on the WMT, MSVT, & NV-MSVT in children with developmental disabilities and in adults with mild traumatic brain injury
Detection of malingering during head injury litigation
 , 
2010
2nd ed.
New York
Plenum Press
Green
P.
Lees-Haley
P. R.
Allen
L. M.
III
The Word Memory Test and the validity of neuropsychological test scores
Journal of Forensic Neuropsychology
 , 
2002
, vol. 
2
 (pg. 
97
-
124
)
Green
P.
Rohling
M. L.
Lees-Haley
P. R.
Allen
L. M.
III
Effort has a greater effect on test scores then severe brain injury in compensation claimants
Brain Injury
 , 
2001
, vol. 
15
 (pg. 
1045
-
1060
)
Greiffenstein
M. F.
Baker
J. W.
Gola
T.
Validation of malingered amnesia measures with a large clinical sample
Psychological Assessment
 , 
1994
, vol. 
6
 (pg. 
218
-
224
)
Hartman
D. E.
The unexamined lie is a lie worth fibbing: Neuropsychological malingering and the Word Memory Test
Archives of Clinical Neuropsychology
 , 
2002
, vol. 
17
 (pg. 
709
-
714
)
Henry
M.
Merten
T.
Wolf
S.
Harth
S.
Nonverbal Medical Symptom Validity Test performance in elderly health adults and clinical neurology patients
Journal of Clinical and Experimental Neuropsychology
 , 
2009
, vol. 
8
 (pg. 
1
-
10
)
Howe
L. L.
Loring
D. W.
Classification accuracy and predictive ability of the Medical Symptom Validity Test's dementia profile and general memory impairment profile
The Clinical Neuropsychologist
 , 
2009
, vol. 
23
 (pg. 
329
-
342
)
Landrø
N. I.
Sletvold
H.
Celius
E. G.
Memory functioning and emotional changes in early phase multiple sclerosis
Archives Clinical Neuropsychology
 , 
2000
, vol. 
15
 (pg. 
37
-
46
)
Lezak
M. D.
Howieson
D. B.
Loring
D.
Neuropsychological assessment
 , 
2004
4th ed.
New York
Oxford University Press
Matotek
K.
Saling
M. M.
Gates
P.
Sedal
L.
Subjective complaints, verbal fluency, and working memory in mild multiple sclerosis
Applied Neuropsychology
 , 
2001
, vol. 
8
 (pg. 
204
-
210
)
McCracken
L.
Iverson
G. L.
Predicting complaints of impaired cognitive functioning in patients with chronic pain
Journal of Pain and Symptom Management
 , 
2001
, vol. 
21
 (pg. 
392
-
396
)
Meyers
J. E.
Meyers
K. R.
Rey Complex Figure Test and Recognition Trial: Professional manual
 , 
1995
Odessa, FL
Psychological Assessment Resources
Meyers
J. E.
Volbrecht
M.
Axelrod
B. N.
Reinsch-Boothby
L.
Embedded symptom validity tests and overall neuropsychological test performance
Archives of Clinical Neuropsychology
 , 
2011
, vol. 
26
 (pg. 
8
-
15
)
Mol
M. E.
van Boxtel
M. P. J.
Willems
D.
Jolles
J.
Do subjective memory complaints predict cognitive dysfunction over time? A six-year follow-up of the Maastricht Aging Study
International Journal of Geriatric Psychiatry
 , 
2006
, vol. 
21
 (pg. 
432
-
441
)
Moss
A.
Jones
C.
Fokias
D.
Quinn
D.
The mediating effects of effort upon the relationship between head injury severity and cognitive functioning
Brain Injury
 , 
2003
, vol. 
17
 (pg. 
377
-
387
)
Munoz
M.
Esteve
R.
Reports of memory functioning by patients with chronic pain
Clinical Journal of Pain
 , 
2005
, vol. 
21
 (pg. 
287
-
291
)
Pearman
A.
Predictors of subjective memory in young adults
Journal of Adult Development
 , 
2009
, vol. 
16
 (pg. 
101
-
107
)
Pearman
A.
Storandt
M.
Predictors of subjective memory in older adults
Journal of Gerontology
 , 
2004
, vol. 
59B
 (pg. 
4
-
6
)
Singhal
A.
Green
P.
Ashaye
K.
Shankar
K.
Gill
D.
High specificity of the medical symptom validity test in patients with very severe memory impairment
Archives of Clinical Neuropsychology
 , 
2009
, vol. 
24
 (pg. 
721
-
728
)
Stevens
A.
Friedel
E.
Mehren
G.
Merten
T.
Malingering and uncooperativeness in psychiatric and psychological assessment: Prevalence and effects in a German sample of claimants
Psychiatry Research
 , 
2008
, vol. 
157
 (pg. 
191
-
200
)
Suhr
J. A.
Neuropsychological impairment in fibromyalgia: Relations to depression, fatigue, and pain
Journal of Psychosomatic Research
 , 
2003
, vol. 
55
 (pg. 
321
-
329
)
Tombaugh
T. N.
The Test of Memory Malingering
 , 
1996
Los Angeles
Western Psychology Corporation
Trueblood
W.
Qualitative and quantitative characteristics of malingered and other invalid WAIS-R and clinical memory data
Journal of Clinical and Experimental Neuropsychology
 , 
1994
, vol. 
16
 (pg. 
597
-
607
)
West
L. K.
Curtis
K. L.
Greve
K. W.
Bianchini
K. J.
Memory in traumatic brain injury: The effects of severity and effort on the Wechsler Memory Scale-III
Journal of Neuropsychology
 , 
2010
, vol. 
5
 (pg. 
114
-
125
)
Wynkoop
T. F.
Denney
R. L.
Test Review: Green's Word Memory Test (WMT) for Windows
Journal of Forensic Neuropsychology
 , 
2005
, vol. 
4
 (pg. 
101
-
105
)