Abstract

The application of the Boston Naming Test (BNT) is time-consuming and shortened versions need to be developed for screening purposes. The aims of this study were to develop four equivalent 15-item forms of a Spanish adaptation of the BNT, to test the equivalence of the new versions in a clinical sample, and to provide normative data. The normative sample consisted of 340 subjects. The clinical sample included 172 patients (76 Mild Cognitive Impairment and 96 Alzheimer's disease). An empirical procedure was used to develop the shortened versions. All new versions demonstrated satisfactory internal consistency. Pearson's coefficient analysis showed strong relationships among the four short-form versions as well as between each of them and the 60-item test. The inferential confidence interval method demonstrated the equivalence between the four shortened versions. Age and education affected the score of all short-form versions, but sex was found to be unrelated to the performance. Normative data were calculated for midpoint age groups. This paper proposes four 15-item equivalent versions that could be useful and time-saving tools for screening purposes.

Introduction

Word retrieval difficulty is one of the most prevalent symptoms associated with neuropsychological impairment. Anomia has been related to many neurological disorders such as dementia, left temporal lobe epilepsy, or cerebrovascular events. The Boston Naming Test (BNT; Kaplan, Goodglass, & Weintraub, 1978) is one of the most commonly used tests for the assessment of confrontation naming (Rabin, Barr, & Burton, 2005). Several reports have shown that the BNT efficiently discriminates the healthy elderly from those with dementia (LaBarge, Edwards, & Knesevich, 1986; Lansing, Ivnik, Cullum, & Randolph, 1999; Martin & Fedio, 1983; Welch, Doineau, Johnson, & King, 1996).

A first experimental version of the BNT included 85 items (Kaplan et al., 1978). The modified version, published in 1983, was limited to 60 drawings (Kaplan, Goodglass, & Weintraub, 1983). In 2001, Kaplan, Goodglass, and Weintraub published the second edition of the test, with multiple-choice options and error codes to categorize incorrect responses, which included a 15-item short-form developed by Mack, Freed, Williams, and Henderson (1992). There is a large volume of published normative studies concerning the BNT in various languages (seeLezak, Howieson, & Loring, 2004; Mistrushina, Boone, Razani, & D'Elia, 2005; Strauss, Sherman, & Spreen, 2006; for a review). The contribution of the MOANS and MOAANS projects to this test has been considerable providing normative data for elder Americans and Afro-Americans subjects (Lucas et al., 2005; Steinberg, Bieliauskas, Smith, Langellotti, & Ivnik, 2005). Zec, Burkett, Markwell, and Larsen (2007) also provided normative data from a sample of 1026 subjects aged over 49 years.

There are a number of versions of the BNT in Spanish. A first 60-item version was proposed as an adaptation to Spanish from the modified version (Kaplan, Goodglass, & Weintraub, 1986). A second modified version was proposed as a new adaptation for Spanish speaking populations (Kaplan, Goodglass, & Weintraub, 2005). Previous studies have presented normative data in Spanish, one from an Argentinean sample (Allegri et al., 1997), others from a young adult Spanish sample (Aranciva et al., 2012; Quiñones-Ubeda, Peña-Casanova, Böhm, Gramunt-Fombuena, & Comas, 2004). Recently, two studies have published normative data from a sample of elderly Spanish subjects (Peña-Casanova, Quiñones-Ubeda, et al., 2009; Rami et al., 2008).

Various short-form versions of BNT have been proposed. They could offer many advantages in clinical assessment, especially when impaired or low educational level patients are examined (e.g., short forms may be less taxing for low educational level patients). Short-form versions are also essential in the test–retest designs in treatment monitoring or in research studies (Calero, Arnedo, Navarro, Ruiz-Pedrosa, & Carnero, 2002; Fastenau, Denburg, & Mauer, 1998; Mack et al., 1992). The administration of the 60-item version of the BNT requires 15–30 min, time that is beyond the scope of a routine screening for cognitive impairment (Deveugele, Derese, van den Brink-Muinene, Bensing, & De Maeseneer, 2002; Villarejo & Puertas-Martín, 2011). In order to improve the efficiency of the assessment, shorter versions of the BNT have been developed. A variety of methods was used to construct abbreviated versions. Specifically, for the 30-item versions, an even and an odd version were developed from the 60-item test (Williams, Mack, & Henderson, 1989). The same authors built an empirical version by examining differences between group means of individual items from normal controls and patients with Alzheimer disease (Williams et al., 1989). These two versions have been analyzed by a large number of authors (Fisher, Tierney, Snow, & Szalai, 1999; Graves, Bezeau, Fogarty, & Blair, 2004; Jefferson et al., 2007; Kent & Luszcz, 2002; Lansing et al., 1999; Mack et al., 1992; Tombaugh & Hubley, 1997). Fastenau and colleagues (1998) combined the four 15-item versions developed by Mack and colleagues (1992) to construct two 30-item versions. Saxton and colleagues (2000) created two empirical versions on the basis of achieving equivalent word frequency. Using item response theory, Graves and colleagues (2004) developed another 30-item version treating the difficulty of each item as information to be incorporated in the selection of items.

Regarding 15-item versions, the first proposal was suggested in 1989 by the Consortium to Establish a Registry for Alzheimer's disease (CERAD). This version was later assessed by several authors (Kent & Luszcz, 2002; Lansing et al., 1999; Mack et al., 1992). In addition, Teng and colleagues (1989) developed four 15-item versions by using item redistribution according to its difficulty. Afterwards, Mack and colleagues (1992) published four 15-item versions in order to establish equivalence among them. An empirical version was created on the basis of the item discrimination capacity between normal controls and Alzheimer's disease patients (Lansing et al., 1999). Graves and colleagues (2004) made a 15-item version using the same methodology as in their 30-item version.

Although a considerable amount of shortened versions of the test have been developed for diverse populations, most of the authors conclude that a reliable shortened version should be specially designed and validated for each target population. As all these shortened versions of BNT were devised for English-speaking communities, several items were not appropriate for populations with a different cultural background. On these grounds, Serrano and colleagues (2001) developed a 12-item shortened version adapted to Argentina. Later, Calero and colleagues (2002) tested the shortened version proposed by Mack and colleagues (1992) in southern Spain. Recently, Nebreda and colleagues (2011) proposed a short-form version for language screening in dementia in a bilingual rural community in Galicia (Fernández-Blázquez et al., 2012).

The present report is part of the NEURONORMA project, a multicenter study of normalization and validation of neurocognitive and functional tools with genetic and neuroimaging correlation for the detection, diagnosis, and follow-up of cognitive deterioration in aging and dementia (Peña-Casanova, Blesa, et al., 2009), which represents the most comprehensive and largest normative study for a Spanish population on selected neuropsychological tests. This project was designed following a specific methodology allowing the co-normalization of a battery of tests covering different cognitive areas. Accordingly, the hypothesis we tested in this study was that four 15-item specially designed shortened versions of the BNT could be used equally in a dementia screening context.

The aims of the study were therefore: (a) to design four shortened versions as an alternative to the 60-item BNT; (b) to study equivalence among each other; and (c) to provide normative data for the four short versions from a Spanish adult control sample.

Materials and Methods

Research Participants

A total sample of 535 subjects was included in the entire NEURONORMA project. Participants included 356 cognitively normal adults, 79 patients diagnosed with Mild Cognitive Impairment (MCI), and 100 patients diagnosed with AD. The ethnic background of all participants was Caucasian. The project was reviewed and approved by the Research Ethics Committee of the Municipal Institute of Medical Care of Barcelona, Spain, and was conducted in accordance with the Declaration of Helsinki (World Medical Association, 1977) and its subsequent amendments, and the European Union regulations concerning medical research. All participants were required to have an informant who could answer questions about their cognition, function, and health.

The diagnosis, included the selection of controls, was based on a clinical interview with the patient and the informant and physical and neurological examination. An initial cognitive assessment was completed by trained neuropsychologists. The selection tests were the Mini-Mental State Examination (Folstein, Folstein, & McHugh, 1975) in a validated Spanish version (Blesa et al., 2001), the abbreviated Barcelona Test (Peña-Casanova, 2005; Quintana et al., 2011, 2012), and the Interview for Deterioration of Daily Living in Dementia (IDDD; Teunisse, Derix, & Crever, 1991) in its validated Spanish version (Böhm et al., 1998) was used to evaluate functional status.

Cognitively normal adult definition

Entry criteria for the control group included consecutive individuals according to a series of inclusion and exclusion criteria. Recruitment procedures and socio-demographic characteristics of the sample have been reported in a previous paper (Peña-Casanova, Blesa, et al., 2009). Volunteers did not need to be completely medically healthy to participate (Pedraza et al., 2005). Patients with active, chronic medical, psychiatric, or neurological conditions or physical disabilities or handicaps were included if the researcher judged that the condition was correctly controlled or resolved and not causing cognitive impairment. The same criterion was applied in the case of use of psychoactive medications. Three hundred and forty subjects were included in the BNT control sample (Peña-Casanova, Quiñones-Ubeda, et al., 2009), 202 women and 138 men, between 50 and 85 years old, with a mean age of 65 years (SD = 9.3) and a mean education of 10.5 years (SD = 5.5). The BNT normative sample demographic information is presented in Table 1.

Table 1.

Normative sample sociodemographic characteristics

 Count Percent of total 
Sex 
 Men 138 40.6 
 Women 202 59.4 
Groups of age (years) 
 50–56 75 22.0 
 57–59 51 15.0 
 60–62 33 9.7 
 63–65 18 5.3 
 66–68 25 7.3 
 69–71 49 14.4 
 72–74 31 9.1 
 75–77 29 8.5 
 78–80 19 5.6 
 >80 10 2.9 
Education (years) 
 0–5 69 20.3 
 6–12 151 44.4 
 >12 120 35.3 
 Count Percent of total 
Sex 
 Men 138 40.6 
 Women 202 59.4 
Groups of age (years) 
 50–56 75 22.0 
 57–59 51 15.0 
 60–62 33 9.7 
 63–65 18 5.3 
 66–68 25 7.3 
 69–71 49 14.4 
 72–74 31 9.1 
 75–77 29 8.5 
 78–80 19 5.6 
 >80 10 2.9 
Education (years) 
 0–5 69 20.3 
 6–12 151 44.4 
 >12 120 35.3 

The clinical sample definition

All patients were recruited from dementia consultations at nine hospitals from different regions of Spain (seePeña-Casanova, Blesa, et al., 2009 for details). As part of the recruitment protocol subjects were interviewed by skilled clinicians to explore relevant medical antecedents and the presence of depressive symptoms, functional disability, and cerebrovascular risk. For such purpose, the Hamilton Depression Rating Scale (Hamilton, 1960), the IDDD, and the Modified Ischemia Score (Rosen, Terry, Fuld, Katzman, & Peck, 1980) were administered.

The current sample was composed of patients with cognitive impairment who came from the NEURONORMA project (Quintana et al., 2011) and to whom the BNT was administered. One hundred and seventy-two subjects were included in the BNT clinical sample, 105 women and 67 men, with a mean age of 73 years (SD = 7.13) and a mean education of 7.83 years (SD = 4.78). Seventy-six patients were diagnosed with amnestic MCI according the following criteria: (a) presence of subjective memory complaints; (b) functional abilities essentially preserved confirmed by an informant; (c) a minimal evolution of 6 months; (d) evidence of objective memory impairment, defined as a score below the 15th percentile of the age and education-matched control group on a test of verbal delayed recall (Barcelona Test paragraph recall), but no other significant deficits on neuropsychological examination; (e) National Institute of Neurological and Communication Disorders and Stroke-Alzheimer's Disease and Related Disorders Association (NINCDS-ADRDA; McKhann et al., 1984) criteria for probable AD not met; and (f) a Global Deterioration Scale (GDS; Reisberg, Ferris, de Leon, & Crook, 1982) score of 3. Ninety-six patients with a diagnosis of probable Alzheimer disease fulfilled Diagnostic and Statistical Manual for the Mental Disorders-Fourth Edition criteria (DSM-IV; American Psychiatric Association, 1994) and NINCDS-ADRDA criteria; they were at mild to moderate dementia stages and were at GDS stages 4 and 5.

Neuropsychological Measures

The neuropsychological tests of the entire project were administered as part of the NEURONORMA battery (Peña-Casanova, Blesa, et al., 2009). Although other measures were included as part of this larger study, the authors chose only to investigate the BNT for the purpose of this paper. Tests were administered and scored by neuropsychologists specifically trained for this project.

The test consists of a book with 60 cards with black and white drawings to be named. On the back of each card there are four printed name choices (semantically, phonologically, or perceptively related to the word target). Following the BNT instructions, participants were allowed up to 20 s to name each item. A stimulus cue was provided when no response was given after 20 s, the participant stated that he/she did not know the name, or the item was incorrectly perceived. First, he/she was given the semantic stimulus cue and again allowed up to 20 s to name the picture. If the participant still did not recognize the picture after receiving the semantic cue, or misnamed the picture, the examiner proceeded to phonemic cueing. In those cases in which the participant named the semantic class, or superordinate, he/she was prompted to give the specific name. Finally, after the test was completed, the examiner returned to each item incorrectly named after a phonemic cue and presented the card with that item and the four printed name choices. The examiner read each word and asked the participant to indicate the correct name. The total score was the number of correct responses produced spontaneously and with the aid of semantic cue. Maximum score was 60 for the 60-item version and 15 for the four shortened versions that were developed specifically for this study.

A Spanish experimental adaptation (Quiñones-Úbeda et al., 2004) of the latest BNT version (Kaplan et al., 2001) was applied in this study. This latest BNT version was slightly modified in order to adapt the test to Spain. The process of adaptation was described in previous papers (Peña-Casanova, Quiñones-Ubeda, et al., 2009; Quiñones-Úbeda et al., 2004). Briefly, the procedure was the following: A multiple choice form was developed following a three-step process. First, three translations into Spanish were prepared by researchers. Second, the three translations were reconciled into one version, and words checked in the official dictionary of the Royal Academy of Spanish Language (2001). Finally, this version was tested empirically for clarity and acceptability of wording with four individuals who were native in Spanish. In order to adapt the vocabulary to Spain, an extra item was added: “magdalena” (a cupcake or fairy cake made in a small paper cup container [muffin]), as an alternative to “pretzel.” Standard instructions indicate beginning with Item 30 and proceeding forward unless an error is made prior to achieving eight consecutive correct responses. Instead of standard instructions, as this was a normative study, the test was administered entirely from Item 1 to Item 60 to know the specific contribution of each item on the final score.

Data Management and Statistical Analyses

With the purpose of developing four 15-item short versions (A, B, C, and D), BNT items were arranged by correct answer percentage in decreasing order. An item named spontaneously or after being provided with the semantic cue was considered a correct answer. Subsequently, an item balanced assignment to short forms was completed (Table 2). It was performed by carrying out the following sequence: A, B, C, D – D, A, B, C – C, D, A, B – B, C, D, A, and so on, to balance difficulty among the four versions (Table 3). Basic descriptive analyses included mean and standard deviation. In order to obtain a measure of internal consistency, Cronbach's alpha was calculated.

Table 2.

Correct answer percentage from the results in the normative sample (n = 340) and item assignment to A, B, C, and D short-form versions

Correct answer (%) Item Word Version 
100.000 Cama (bed) 
100.000 Árbol (tree) 
100.000 Casa (house) 
100.000 Tijeras (scissors) 
100.000 Peine (comb) 
100.000 12 Escoba (broom) 
99.709 Flor (flower) 
99.709 10 Cepillo de dientes (toothbrush) 
99.709 22 Caracol (snail) 
99.128 Sierra (saw) 
99.128 20 Banco (bench) 
98.837 Silbato (whistle) 
98.837 37 Escaleras mecánicas (escalator) 
98.547 16 Silla de ruedas (wheelchair) 
98.256 17 Camello (camel) 
97.965 13 Pulpo (octopus) 
97.965 14 Seta (mushroom) 
97.674 15 Percha (hanger) 
97.384 Lápiz (pencil) 
97.384 46 Embudo (funnel) 
97.093 21 Raqueta (racquet) 
96.802 11 Helicóptero (helicopter) 
96.802 44 Bozal (muzzle) 
96.221 18 Máscara (mask) 
95.349 47 Acordeón (accordion) 
95.058 49 Espárrago (asparagus) 
94.477 28 Corona de flores (wreath) 
92.733 23 Volcán (volcano) 
92.442 32 Bellota (acorn) 
91.860 43 Pirámide (pyramid) 
90.698 35 Dominó (dominoes) 
90.116 54 Pinzas (tongs) 
88.372 50 Compás (compass) 
85.756 36 Cactus (cactus) 
84.302 30 Armónica (harmonica) 
84.302 31 Rinoceronte (rhinoceros) 
83.721 24 Caballito de mar (seahorse) 
81.977 61 Magdalena (muffin) 
80.523 38 Arpa (harp) 
79.942 27 Globo terráqueo (globe) 
72.384 52 Trípode (tripod) 
69.477 39 Hamaca (hammock) 
66.279 40 Aldaba (knocker) 
65.988 25 Dardo (dart) 
62.791 48 Soga (noose) 
62.500 53 Pergamino (scroll) 
62.500 58 Paleta (palette) 
61.337 26 Canoa (canoe) 
59.012 41 Pelícano (pelican) 
58.721 34 Zancos (stilts) 
57.558 56 Yugo (yoke) 
55.233 51 Pestillo (latch) 
53.779 33 Iglú (igloo) 
52.035 45 Unicornio (unicorn) 
47.965 55 Esfinge (sphinx) 
30.523 42 Estetoscopio (stethoscope) 
26.744 60 Ábaco (abacus) 
19.767 29 Castor (beaver) 
14.826 59 Transportador (protractor) 
6.977 57 Pérgola (trellis) 
6.686 19 Pretzel (pretzel)  
Correct answer (%) Item Word Version 
100.000 Cama (bed) 
100.000 Árbol (tree) 
100.000 Casa (house) 
100.000 Tijeras (scissors) 
100.000 Peine (comb) 
100.000 12 Escoba (broom) 
99.709 Flor (flower) 
99.709 10 Cepillo de dientes (toothbrush) 
99.709 22 Caracol (snail) 
99.128 Sierra (saw) 
99.128 20 Banco (bench) 
98.837 Silbato (whistle) 
98.837 37 Escaleras mecánicas (escalator) 
98.547 16 Silla de ruedas (wheelchair) 
98.256 17 Camello (camel) 
97.965 13 Pulpo (octopus) 
97.965 14 Seta (mushroom) 
97.674 15 Percha (hanger) 
97.384 Lápiz (pencil) 
97.384 46 Embudo (funnel) 
97.093 21 Raqueta (racquet) 
96.802 11 Helicóptero (helicopter) 
96.802 44 Bozal (muzzle) 
96.221 18 Máscara (mask) 
95.349 47 Acordeón (accordion) 
95.058 49 Espárrago (asparagus) 
94.477 28 Corona de flores (wreath) 
92.733 23 Volcán (volcano) 
92.442 32 Bellota (acorn) 
91.860 43 Pirámide (pyramid) 
90.698 35 Dominó (dominoes) 
90.116 54 Pinzas (tongs) 
88.372 50 Compás (compass) 
85.756 36 Cactus (cactus) 
84.302 30 Armónica (harmonica) 
84.302 31 Rinoceronte (rhinoceros) 
83.721 24 Caballito de mar (seahorse) 
81.977 61 Magdalena (muffin) 
80.523 38 Arpa (harp) 
79.942 27 Globo terráqueo (globe) 
72.384 52 Trípode (tripod) 
69.477 39 Hamaca (hammock) 
66.279 40 Aldaba (knocker) 
65.988 25 Dardo (dart) 
62.791 48 Soga (noose) 
62.500 53 Pergamino (scroll) 
62.500 58 Paleta (palette) 
61.337 26 Canoa (canoe) 
59.012 41 Pelícano (pelican) 
58.721 34 Zancos (stilts) 
57.558 56 Yugo (yoke) 
55.233 51 Pestillo (latch) 
53.779 33 Iglú (igloo) 
52.035 45 Unicornio (unicorn) 
47.965 55 Esfinge (sphinx) 
30.523 42 Estetoscopio (stethoscope) 
26.744 60 Ábaco (abacus) 
19.767 29 Castor (beaver) 
14.826 59 Transportador (protractor) 
6.977 57 Pérgola (trellis) 
6.686 19 Pretzel (pretzel)  
Table 3.

Shortened versions A, B, C, and D

Item 
Cama Árbol Casa Tijeras 
Escoba Flor Cepillo de dientes Peine 
Banco Silbato Caracol Sierra 
Pulpo Escaleras mecánicas Silla de ruedas Camello 
Seta Percha Lápiz Embudo 
Helicóptero Bozal Máscara Raqueta 
Corona de flores Volcán Acordeón Espárrago 
Pinzas Bellota Pirámide Dominó 
Compás Cactus Harmónica Rinoceronte 
10 Magdalena Arpa Globo terráqueo Caballito de mar 
11 Aldaba Dardo Trípode Hamaca 
12 Canoa Soga Pergamino Paleta 
13 Pelícano Zancos Yugo Pestillo 
14 Unicornio Esfinge Estetoscopio Iglú 
15 Transportador Pérgola Ábaco Castor 
Item 
Cama Árbol Casa Tijeras 
Escoba Flor Cepillo de dientes Peine 
Banco Silbato Caracol Sierra 
Pulpo Escaleras mecánicas Silla de ruedas Camello 
Seta Percha Lápiz Embudo 
Helicóptero Bozal Máscara Raqueta 
Corona de flores Volcán Acordeón Espárrago 
Pinzas Bellota Pirámide Dominó 
Compás Cactus Harmónica Rinoceronte 
10 Magdalena Arpa Globo terráqueo Caballito de mar 
11 Aldaba Dardo Trípode Hamaca 
12 Canoa Soga Pergamino Paleta 
13 Pelícano Zancos Yugo Pestillo 
14 Unicornio Esfinge Estetoscopio Iglú 
15 Transportador Pérgola Ábaco Castor 

Following the suggestion of a reviewer and the indications of Ross, Furr, Carter, and Weinberg (2006), this study employed Tryon's (2001) method for examining statistical equivalence between all shortened versions using inferential confidence intervals (CIs) as an adjunct to null hypothesis significance testing (NHST). This first method compares the maximum probable difference between two means, also called Rg, to delta, a value that represents an amount considered inconsequential. Rg is the range of two appropriately reduced inferential CIs. Rg begins with the lower CI limit of the lesser mean and extends to the upper CI limit of the greater mean. If Rg is less than delta, then the maximum amount of difference between test forms can be considered inconsequential, and the 95% CI test for statistical equivalence is satisfied (for an extensive description of the method, seeTryon, 2001). The present study predetermined a delta value of 3.2076 as a result of the following calculation: The lesser mean of the control sample minus the greater mean of the clinical sample of the shortened versions scores. We opted for this value because no agreed upon rationale for determining this value currently exists for the BNT shortened forms.

To test equivalence using NHST the analysis of variance (ANOVA) and a post hoc analysis (Scheffé), and Pearson's correlation coefficients were conducted to examine differences and correlations in the four shortened versions scores. To analyze the adequacy of these shortened versions as an alternative to the 60-item BNT, Pearson's correlation coefficients were calculated. All these analyses were carried out within the clinical sample.

Considering that the ability to compare all co-normed test scores directly with each other facilitates clinical interpretation of neuropsychological test profiles, a uniform normative procedure was applied to all measures in the NEURONORMA project. Data management and characteristics of statistics analyses for the normative procedures of the entire project have been reported extensively in a previous paper (Peña-Casanova, Blesa, et al., 2009). Briefly the procedure was the following: (a) the overlapping interval strategy (Pauker, 1988) was adopted to maximize the number of subjects contributing to the normative distribution at each midpoint age interval. Each midpoint age group provides norms for individuals of that age, plus or minus 1 year; (b) determination of age, sex, and education effects on raw subtest scores. Coefficients of correlation (r) and determination (R2) of raw scores with age, years of education, and sex were determined for the BNT; (c) creation of age-adjusted normative tables. To ensure a normal distribution, the frequency distribution of the raw scores was converted into age-adjusted scaled scores, NSSA (NEURONORMA scaled score age-adjusted). For each age range, a cumulative frequency distribution of the raw scores was generated. Raw scores were assigned percentile ranks in function of their place within a distribution. Subsequently, percentile ranks were converted to scaled scores (from 2 to 18) based on percentile ranges. This transformation of raw scores to NSSA produced a distribution close to the normal distribution (mean = 10; SD = ±3) on which linear regressions could be applied; (d) education adjustments. Years of education were modeled using the following equation: NSSA = k + (β × Education). The regression coefficient (β) from this analysis was used as the basis for education adjustments. A linear regression was employed to derive age- and education-adjusted scaled scores. The following formula outlined by Mungas, Marshall, Weldon, Haan, and Reed (1996) was employed: 

formula

The obtained value was truncated to the next lower integer.

Results

Table 1 summarizes the normative sample's demographic characteristics. Age distribution of this control sample made it possible to calculate norms for the following 10 midpoint age groups: 50–56, 57–59, 60–62, 63–65, 66–68, 69–71, 72–74, 75–77, 78–80, >80. Sample sizes resulting from midpoint age intervals are presented in A, B, C, and D normative tables (Tables 9–12 and 14–17).

Means and standard deviations from the short-form versions of the normative and clinical sample are provided in Table 4. No significant statistical differences were found between all short-form versions when an ANOVA and a post hoc were applied. The four short-form versions presented a satisfactory internal consistency when Cronbach's alpha was calculated (A version: α > 0.75; B version: α > 0.76; C version: α > 0.74; D version: α > 0.78). Table 5 shows strong relationships among the four short-form versions as well as between each of them and the 60-item test based on Pearson's correlation coefficient analysis tested within the clinical group. Table 6 shows the required statistics to carry out calculations to test equivalence. Based on these data, pairwise comparisons between the four shortened versions with the related inferential CIs and the resultant Rg are presented in Table 7. All the Rg values were less than 3.2076 for all combinations. Fig. 1 illustrates the inferential CIs plotted pairwise. We can appreciate that all the groups presented overlapping inferential CIs and an Rg less than the amount that substantively defines equivalence (Delta).

Table 4.

Mean comparisons of the four shortened versions

 ANOVA 
Normative sample (N = 340) 
 Mean (SD12.0424 (2.0858) 11.8970 (1.9086) 11.9515 (2.0296) 12.1000 (2.1591) N.S. 
Clinical sample (N = 172) 
 Mean (SD8.4410 (2.9492) 8.3416 (2.9519) 8.6398 (2.7353) 8.6894 (2.6838) N.S. 
 ANOVA 
Normative sample (N = 340) 
 Mean (SD12.0424 (2.0858) 11.8970 (1.9086) 11.9515 (2.0296) 12.1000 (2.1591) N.S. 
Clinical sample (N = 172) 
 Mean (SD8.4410 (2.9492) 8.3416 (2.9519) 8.6398 (2.7353) 8.6894 (2.6838) N.S. 
Table 5.

Pearson's correlation coefficient between the four shortened versions and the 60-item test within the clinical sample (N = 172)

 60-item test 
60-item test — — — — 
.919a — — — 
.933a .804a — — 
.926a .814a .803a — 
.928a .779a .846a .822a 
 60-item test 
60-item test — — — — 
.919a — — — 
.933a .804a — — 
.926a .814a .803a — 
.928a .779a .846a .822a 

ap < .0001.

Table 6.

Descriptive statistics for scores for A, B, C, and D shortened versions for the clinical sample

Statistic 
Mean 8.4410 8.3416 8.6398 8.6894 
SD 2.9492 2.9519 2.7353 2.6838 
N 161 161 161 161 
df (N − 1) 160 160 160 160 
t (df1.9749 1.9749 1.9749 1.9749 
SE 0.2324 0.2326 0.2156 0.2115 
Statistic 
Mean 8.4410 8.3416 8.6398 8.6894 
SD 2.9492 2.9519 2.7353 2.6838 
N 161 161 161 161 
df (N − 1) 160 160 160 160 
t (df1.9749 1.9749 1.9749 1.9749 
SE 0.2324 0.2326 0.2156 0.2115 

Notes:t(df) = t value associated to N–1 for an alfa of 0.05.

Table 7.

95% inferential confidence intervals and Rg values for scores for A, B, C, and D shortened versions

  B–A B–C C–D A–C A–D B–D 
0.7071 0.7076 0.7071 0.7076 0.7079 0.7079  
tx 1.3965 1.3975 1.3965 1.3974 1.3980 1.3980  
A (95% CI) Lower 7.0445   7.0435 7.04300  
 Upper 9.8375   9.8384 9.8390  
B (95% CI) Lower 6.9451 6.9441    6.9435 
 Upper 9.7381 9.7391    9.7396 
C (95% CI) Lower  7.2423 7.2433 7.2423   
 Upper  10.0373 10.0363 10.0372   
D (95% CI) Lower   7.2929  7.2914 7.2913 
 Upper   10.0859  10.0874 10.0874 
Rg 2.8923 3.0931 2.8426 2.9937 3.0444 3.1439 
  B–A B–C C–D A–C A–D B–D 
0.7071 0.7076 0.7071 0.7076 0.7079 0.7079  
tx 1.3965 1.3975 1.3965 1.3974 1.3980 1.3980  
A (95% CI) Lower 7.0445   7.0435 7.04300  
 Upper 9.8375   9.8384 9.8390  
B (95% CI) Lower 6.9451 6.9441    6.9435 
 Upper 9.7381 9.7391    9.7396 
C (95% CI) Lower  7.2423 7.2433 7.2423   
 Upper  10.0373 10.0363 10.0372   
D (95% CI) Lower   7.2929  7.2914 7.2913 
 Upper   10.0859  10.0874 10.0874 
Rg 2.8923 3.0931 2.8426 2.9937 3.0444 3.1439 

Notes: E and tx are necessary values to calculate the 95% inferential CI. For more details see Tryon, 2001; CI = confidence interval; Rg = the maximum probable difference associated with using different versions.

Fig. 1.

Inferential CIs plotted pairwise.

Fig. 1.

Inferential CIs plotted pairwise.

Pearson's correlations (r) and determination coefficient (R2) of the four BNT short-form version scores with years of age, years of education, and sex are presented in Table 8. Age and education accounted significantly for the raw-score variance of all short-form versions (R2 > 0.05), indicative of a significant statistic effect of these variables on BNT total score. Sex differences were not observed in any of the four versions, indicating that no need to control this demographic variable.

Table 8.

Correlations (r) and share variance (R2) of the four BNT shortened version scores with years of age, years of education, and sex

 Age (years)
 
Education (years)
 
Sex
 
r R2 r R2 r R2 
−.261 .068 .435 .189 −.096 .009 
−.298 .089 .483 .233 −.085 .007 
−.273 .075 .588 .346 −.085 .007 
−.291 .085 .456 .208 −.093 .009 
 Age (years)
 
Education (years)
 
Sex
 
r R2 r R2 r R2 
−.261 .068 .435 .189 −.096 .009 
−.298 .089 .483 .233 −.085 .007 
−.273 .075 .588 .346 −.085 .007 
−.291 .085 .456 .208 −.093 .009 

Age-adjusted NEURONORMA scaled scores (NSSA) for each BNT short-form version are provided in Tables 9–12 and include percentile ranks, ranges of ages contributing to each normative subsample, and the number of participants contributing to each test's normative estimates. To use the table, select the appropriate column corresponding to the patient's age, find the patient's raw score, and subsequently refer to the corresponding NSSA and percentile rank (left part of the tables). As expected, the normative adjustments reduce shared variance of age to virtually <1%. Education, however, continues to account significantly for age-adjusted test-score variance in all cases, up to 15% in all versions (Table 13). The transformation of raw scores to NSSA produced a distribution close to the normal distribution on which linear regressions could be applied. Regression coefficients from this analysis were used as the basis for education corrections. The resulting computational formulae were used to calculate NSSA&E (β = 0.25243 for A version; β = 0.26599 for B version; β = 0.34083 for C version; β = 0.24325 for D version). From these data, we have constructed adjustment tables for age and education for each version (Tables 14–17). To use the tables, select the appropriate column corresponding to the patient's years of education, find the patient's NSSA, and subsequently refer to the corresponding NSSA&E.

Table 9.

Age-adjusted NEURONORMA scores (NSSA) for the BNT A shortened version

Scaled score Percentile range Age range
 
50–56 57–59 60–62 63–65 66–68 69–71 72–74 75–77 78–80 81+ 
<1 ≤7 ≤6 ≤6 ≤6 ≤6 ≤6 ≤5 ≤4 ≤4 ≤4 
      
       
3–5 7–8 7–8   
6–10     
11–18 10 9–10 10 8–9 
19–28  10 10 10   10  8–9 8–9 
29–40 11 11 11 11 11 11  10 10 10 
10 41–59 12 12 12 12 12 12 11–12 11 11 11 
11 60–71 13 13 13 13 13 13  12   
12 72–81       13 13 12 12 
13 82–89 14         13 
14 90–94  14 14 14     13  
15 95–97     14 14 14    
16 98        14  14 
17 99         14  
18 >99 15 15 15 15 15 15 15 15 15 15 
Age range 50–60 53–63 56–66 59–69 62–72 65–75 68–78 71–81 74–84 77–90 
Sample size 134 132 123 105 118 124 125 100 67 42 
Scaled score Percentile range Age range
 
50–56 57–59 60–62 63–65 66–68 69–71 72–74 75–77 78–80 81+ 
<1 ≤7 ≤6 ≤6 ≤6 ≤6 ≤6 ≤5 ≤4 ≤4 ≤4 
      
       
3–5 7–8 7–8   
6–10     
11–18 10 9–10 10 8–9 
19–28  10 10 10   10  8–9 8–9 
29–40 11 11 11 11 11 11  10 10 10 
10 41–59 12 12 12 12 12 12 11–12 11 11 11 
11 60–71 13 13 13 13 13 13  12   
12 72–81       13 13 12 12 
13 82–89 14         13 
14 90–94  14 14 14     13  
15 95–97     14 14 14    
16 98        14  14 
17 99         14  
18 >99 15 15 15 15 15 15 15 15 15 15 
Age range 50–60 53–63 56–66 59–69 62–72 65–75 68–78 71–81 74–84 77–90 
Sample size 134 132 123 105 118 124 125 100 67 42 
Table 10.

Age-adjusted NEURONORMA scores (NSSA) for the BNT B shortened version

Scaled score Percentile range Age range
 
50–56 57–59 60–62 63–65 66–68 69–71 72–74 75–77 78–80 81+ 
<1 ≤7 ≤7 ≤7 ≤6 ≤6 ≤6 ≤5 ≤5 ≤5 ≤5 
      
          
3–5   
6–10 10  
11–18  10 10 
19–28 11 11 11 10 10 10  
29–40    11 11  10 10 10 9–10 
10 41–59 12 12 12 12 12 11 11 11 11 11 
11 60–71      12 12 12   
12 72–81 13 13 13 13 13 13   12 12 
13 82–89       13 13   
14 90–94         13 13 
15 95–97 14 14 14   14     
16 98    14 14  14 14  14 
17 99         14  
18 >99 15 15 15 15 15 15 15 15 15 15 
Age range 50–60 53–63 56–66 59–69 62–72 65–75 68–78 71–81 74–84 77–90 
Sample size 134 132 123 105 118 124 125 100 67 42 
Scaled score Percentile range Age range
 
50–56 57–59 60–62 63–65 66–68 69–71 72–74 75–77 78–80 81+ 
<1 ≤7 ≤7 ≤7 ≤6 ≤6 ≤6 ≤5 ≤5 ≤5 ≤5 
      
          
3–5   
6–10 10  
11–18  10 10 
19–28 11 11 11 10 10 10  
29–40    11 11  10 10 10 9–10 
10 41–59 12 12 12 12 12 11 11 11 11 11 
11 60–71      12 12 12   
12 72–81 13 13 13 13 13 13   12 12 
13 82–89       13 13   
14 90–94         13 13 
15 95–97 14 14 14   14     
16 98    14 14  14 14  14 
17 99         14  
18 >99 15 15 15 15 15 15 15 15 15 15 
Age range 50–60 53–63 56–66 59–69 62–72 65–75 68–78 71–81 74–84 77–90 
Sample size 134 132 123 105 118 124 125 100 67 42 
Table 11.

Age-adjusted NEURONORMA scores (NSSA) for the BNT C shortened version

Scaled score Percentile range Age range
 
50–56 57–59 60–62 63–65 66–68 69–71 72–74 75–77 78–80 81+ 
<1 ≤9 ≤6 ≤6 ≤6 ≤5 ≤6 ≤5 ≤5 ≤5 ≤5 
      
       
3–5  8–9   
6–10   8–9  
11–18 10 10  9–10  8–9   
19–28   10 10  10 10 10 8–9 
29–40 11 11 11 11 11    10 9–10 
10 41–59 12 12 12 12  11 11 11 11 11 
11 60–71 13    12 12 12 12   
12 72–81  13 13 13  13   12 12 
13 82–89 14 14 14  13–14 14 13 13 13  
14 90–94    14   14 14  13 
15 95–97         14  
16 98          14 
17 99           
18 >99 15 15 15 15 15 15 15 15 15 15 
Age range 50–60 53–63 56–66 59–69 62–72 65–75 68–78 71–81 74–84 77–90 
Sample size 134 132 123 105 118 124 125 100 67 42 
Scaled score Percentile range Age range
 
50–56 57–59 60–62 63–65 66–68 69–71 72–74 75–77 78–80 81+ 
<1 ≤9 ≤6 ≤6 ≤6 ≤5 ≤6 ≤5 ≤5 ≤5 ≤5 
      
       
3–5  8–9   
6–10   8–9  
11–18 10 10  9–10  8–9   
19–28   10 10  10 10 10 8–9 
29–40 11 11 11 11 11    10 9–10 
10 41–59 12 12 12 12  11 11 11 11 11 
11 60–71 13    12 12 12 12   
12 72–81  13 13 13  13   12 12 
13 82–89 14 14 14  13–14 14 13 13 13  
14 90–94    14   14 14  13 
15 95–97         14  
16 98          14 
17 99           
18 >99 15 15 15 15 15 15 15 15 15 15 
Age range 50–60 53–63 56–66 59–69 62–72 65–75 68–78 71–81 74–84 77–90 
Sample size 134 132 123 105 118 124 125 100 67 42 
Table 12.

Age-adjusted NEURONORMA scores (NSSA) for the BNT D shortened version

Scaled score Percentile range Age range
 
50–56 57–59 60–62 63–65 66–68 69–71 72–74 75–77 78–80 81+ 
<1 ≤7 ≤6 ≤7 ≤6 ≤6 ≤5 ≤5 ≤4 ≤4 ≤4 
      
       
3–5     6–7 6–7   
6–10 6–7 6–7 
11–18 10  
19–28 11 10 10 10 10 10   
29–40 12 11 11 11 11 11 10–11 10  
10 41–59  12 12 12 12 12 12 11 10–11 10–11 
11 60–71 13 13 13 13 13   12 12 12 
12 72–81 14     13 13    
13 82–89  14 14 14 14   13  13 
14 90–94      14   13  
15 95–97       14 14   
16 98           
17 99           
18 >99 15 15 15 15 15 15 15 15 14 14 
Age range 50–60 53–63 56–66 59–69 62–72 65–75 68–78 71–81 74–84 77–90 
Sample size 134 132 123 105 118 124 125 100 67 42 
Scaled score Percentile range Age range
 
50–56 57–59 60–62 63–65 66–68 69–71 72–74 75–77 78–80 81+ 
<1 ≤7 ≤6 ≤7 ≤6 ≤6 ≤5 ≤5 ≤4 ≤4 ≤4 
      
       
3–5     6–7 6–7   
6–10 6–7 6–7 
11–18 10  
19–28 11 10 10 10 10 10   
29–40 12 11 11 11 11 11 10–11 10  
10 41–59  12 12 12 12 12 12 11 10–11 10–11 
11 60–71 13 13 13 13 13   12 12 12 
12 72–81 14     13 13    
13 82–89  14 14 14 14   13  13 
14 90–94      14   13  
15 95–97       14 14   
16 98           
17 99           
18 >99 15 15 15 15 15 15 15 15 14 14 
Age range 50–60 53–63 56–66 59–69 62–72 65–75 68–78 71–81 74–84 77–90 
Sample size 134 132 123 105 118 124 125 100 67 42 
Table 13.

Correlations (r) and share variance (R2) of age-adjusted NEURONORMA scores (NSSA) with age and education

 Age (years)
 
Education (years)
 
r R2 r R2 
−.073 .005 .417 .174 
−.082 .007 .459 .211 
−.083 .007 .564 .318 
−.083 .007 .389 .151 
 Age (years)
 
Education (years)
 
r R2 r R2 
−.073 .005 .417 .174 
−.082 .007 .459 .211 
−.083 .007 .564 .318 
−.083 .007 .389 .151 
Table 14.

Education adjustment for BNT A shortened version scale scores

NSSA Education (years)
 
10 11 12 13 14 15 16 17 18 19 20 
-1 
10 
11 10 10 10 10 
12 11 11 11 11 10 10 10 10 
10 13 12 12 12 12 11 11 11 11 10 10 10 10 
11 14 13 13 13 13 12 12 12 12 11 11 11 11 10 10 10 
12 15 14 14 14 14 13 13 13 13 12 12 12 12 11 11 11 10 10 10 10 
13 16 15 15 15 15 14 14 14 14 13 13 13 13 12 12 12 11 11 11 11 10 
14 17 16 16 16 16 15 15 15 15 14 14 14 14 13 13 13 12 12 12 12 11 
15 18 17 17 17 17 16 16 16 16 15 15 15 15 14 14 14 13 13 13 13 12 
16 19 18 18 18 18 17 17 17 17 16 16 16 16 15 15 15 14 14 14 14 13 
17 20 19 19 19 19 18 18 18 18 17 17 17 17 16 16 16 15 15 15 15 14 
18 21 20 20 20 20 19 19 19 19 18 18 18 18 17 17 17 16 16 16 16 15 
NSSA Education (years)
 
10 11 12 13 14 15 16 17 18 19 20 
-1 
10 
11 10 10 10 10 
12 11 11 11 11 10 10 10 10 
10 13 12 12 12 12 11 11 11 11 10 10 10 10 
11 14 13 13 13 13 12 12 12 12 11 11 11 11 10 10 10 
12 15 14 14 14 14 13 13 13 13 12 12 12 12 11 11 11 10 10 10 10 
13 16 15 15 15 15 14 14 14 14 13 13 13 13 12 12 12 11 11 11 11 10 
14 17 16 16 16 16 15 15 15 15 14 14 14 14 13 13 13 12 12 12 12 11 
15 18 17 17 17 17 16 16 16 16 15 15 15 15 14 14 14 13 13 13 13 12 
16 19 18 18 18 18 17 17 17 17 16 16 16 16 15 15 15 14 14 14 14 13 
17 20 19 19 19 19 18 18 18 18 17 17 17 17 16 16 16 15 15 15 15 14 
18 21 20 20 20 20 19 19 19 19 18 18 18 18 17 17 17 16 16 16 16 15 

Notes: Education adjustment by applying the following formula: NSSA&E = NSSA – (β × [education – 12]), where β = 0.25243.

Table 15.

Education adjustment for BNT B shortened version scale scores

NSSA Education (years)
 
10 11 12 13 14 15 16 17 18 19 20 
10 
11 10 10 10 10 
12 11 11 11 11 10 10 10 10 
10 10 13 12 12 12 12 11 11 11 11 10 10 10 10 
11 11 14 13 13 13 13 12 12 12 12 11 11 11 11 10 10 10 
12 12 15 14 14 14 14 13 13 13 13 12 12 12 12 11 11 11 10 10 10 10 
13 13 16 15 15 15 15 14 14 14 14 13 13 13 13 12 12 12 11 11 11 11 
14 14 17 16 16 16 16 15 15 15 15 14 14 14 14 13 13 13 12 12 12 12 
15 15 18 17 17 17 17 16 16 16 16 15 15 15 15 14 14 14 13 13 13 13 
16 16 19 18 18 18 18 17 17 17 17 16 16 16 16 15 15 15 14 14 14 14 
17 17 20 19 19 19 19 18 18 18 18 17 17 17 17 16 16 16 15 15 15 15 
18 18 21 20 20 20 20 19 19 19 19 18 18 18 18 17 17 17 16 16 16 16 
NSSA Education (years)
 
10 11 12 13 14 15 16 17 18 19 20 
10 
11 10 10 10 10 
12 11 11 11 11 10 10 10 10 
10 10 13 12 12 12 12 11 11 11 11 10 10 10 10 
11 11 14 13 13 13 13 12 12 12 12 11 11 11 11 10 10 10 
12 12 15 14 14 14 14 13 13 13 13 12 12 12 12 11 11 11 10 10 10 10 
13 13 16 15 15 15 15 14 14 14 14 13 13 13 13 12 12 12 11 11 11 11 
14 14 17 16 16 16 16 15 15 15 15 14 14 14 14 13 13 13 12 12 12 12 
15 15 18 17 17 17 17 16 16 16 16 15 15 15 15 14 14 14 13 13 13 13 
16 16 19 18 18 18 18 17 17 17 17 16 16 16 16 15 15 15 14 14 14 14 
17 17 20 19 19 19 19 18 18 18 18 17 17 17 17 16 16 16 15 15 15 15 
18 18 21 20 20 20 20 19 19 19 19 18 18 18 18 17 17 17 16 16 16 16 

Notes: Education adjustment by applying the following formula: NSSA&E = NSSA – (β × [education – 12]), where β = 0.26599.

Table 16.

Education adjustment for BNT C shortened version scale scores

NSSA Education (years)
 
10 11 12 13 14 15 16 17 18 19 20 
−1 −1 −1 
10 
11 10 10 10 
12 11 11 11 10 10 10 
13 12 12 12 11 11 11 10 10 10 
10 14 13 13 13 12 12 12 11 11 11 10 10 10 
11 15 14 14 14 13 13 13 12 12 12 11 11 11 10 10 
12 16 15 15 15 14 14 14 13 13 13 12 12 12 11 11 10 10 10 
13 17 16 16 16 15 15 15 14 14 14 13 13 13 12 12 11 11 11 10 10 10 
14 18 17 17 17 16 16 16 15 15 15 14 14 14 13 13 12 12 12 11 11 11 
15 19 18 18 18 17 17 17 16 16 16 15 15 15 14 14 13 13 13 12 12 12 
16 20 19 19 19 18 18 18 17 17 17 16 16 16 15 15 14 14 14 13 13 13 
17 21 20 20 20 19 19 19 18 18 18 17 17 17 16 16 15 15 15 14 14 14 
18 22 21 21 21 20 20 20 19 19 19 18 18 18 17 17 16 16 16 15 15 15 
NSSA Education (years)
 
10 11 12 13 14 15 16 17 18 19 20 
−1 −1 −1 
10 
11 10 10 10 
12 11 11 11 10 10 10 
13 12 12 12 11 11 11 10 10 10 
10 14 13 13 13 12 12 12 11 11 11 10 10 10 
11 15 14 14 14 13 13 13 12 12 12 11 11 11 10 10 
12 16 15 15 15 14 14 14 13 13 13 12 12 12 11 11 10 10 10 
13 17 16 16 16 15 15 15 14 14 14 13 13 13 12 12 11 11 11 10 10 10 
14 18 17 17 17 16 16 16 15 15 15 14 14 14 13 13 12 12 12 11 11 11 
15 19 18 18 18 17 17 17 16 16 16 15 15 15 14 14 13 13 13 12 12 12 
16 20 19 19 19 18 18 18 17 17 17 16 16 16 15 15 14 14 14 13 13 13 
17 21 20 20 20 19 19 19 18 18 18 17 17 17 16 16 15 15 15 14 14 14 
18 22 21 21 21 20 20 20 19 19 19 18 18 18 17 17 16 16 16 15 15 15 

Notes: Education adjustment by applying the following formula: NSSA&E = NSSA – (β × [education – 12]), where β = 0.34083.

Table 17.

Education adjustment for BNT D shortened version scale scores

NSSA Education (years)
 
10 11 12 13 14 15 16 17 18 19 20 
10 10 10 10 
11 11 11 11 10 10 10 10 
10 12 12 12 12 11 11 11 11 10 10 10 10 10 
11 13 13 13 13 12 12 12 12 11 11 11 11 11 10 10 10 10 
12 14 14 14 14 13 13 13 13 12 12 12 12 12 11 11 11 11 10 10 10 10 
13 15 15 15 15 14 14 14 14 13 13 13 13 13 12 12 12 12 11 11 11 11 
14 16 16 16 16 15 15 15 15 14 14 14 14 14 13 13 13 13 12 12 12 12 
15 17 17 17 17 16 16 16 16 15 15 15 15 15 14 14 14 14 13 13 13 13 
16 18 18 18 18 17 17 17 17 16 16 16 16 16 15 15 15 15 14 14 14 14 
17 19 19 19 19 18 18 18 18 17 17 17 17 17 16 16 16 16 15 15 15 15 
18 20 20 20 20 19 19 19 19 18 18 18 18 18 17 17 17 17 16 16 16 16 
NSSA Education (years)
 
10 11 12 13 14 15 16 17 18 19 20 
10 10 10 10 
11 11 11 11 10 10 10 10 
10 12 12 12 12 11 11 11 11 10 10 10 10 10 
11 13 13 13 13 12 12 12 12 11 11 11 11 11 10 10 10 10 
12 14 14 14 14 13 13 13 13 12 12 12 12 12 11 11 11 11 10 10 10 10 
13 15 15 15 15 14 14 14 14 13 13 13 13 13 12 12 12 12 11 11 11 11 
14 16 16 16 16 15 15 15 15 14 14 14 14 14 13 13 13 13 12 12 12 12 
15 17 17 17 17 16 16 16 16 15 15 15 15 15 14 14 14 14 13 13 13 13 
16 18 18 18 18 17 17 17 17 16 16 16 16 16 15 15 15 15 14 14 14 14 
17 19 19 19 19 18 18 18 18 17 17 17 17 17 16 16 16 16 15 15 15 15 
18 20 20 20 20 19 19 19 19 18 18 18 18 18 17 17 17 17 16 16 16 16 

Notes: Education adjustment by applying the following formula: NSSA&E = NSSA – (β × [education – 12]), where β = 0. 24325.

Discussion

The main purpose of this report was to design four shortened versions as an alternative to the 60-item BNT in order to facilitate clinical assessment, to study the equivalence between the shortened versions in a clinical sample, and to provide normative data from a Spanish adult sample.

Four shortened versions were proposed. Following an empirical procedure an item assignation to each version was carried out according to item difficulty analysis. This procedure is in line with other works (Saxton et al., 2000) and, even though a rigorous method to determine item difficulty for creation of these short forms was not used, the methodology utilized was superior to any arbitrary method. A satisfactory internal consistency was reported for each short-form version.

It is interesting to note that high correlations were found among each short-form version and the original 60-item version when Pearson's correlations were calculated with scores from the clinical sample. These results suggest that the four shortened versions would be a good alternative to the 60-item version. This study also examined equivalence of versions A, B, C, and D of the shortened BNT. Using traditional NHST, these versions were similar across scores. The results showed that there were no significant differences between the mean raw scores between the four short-form versions. Taking into account that NHST is an insufficient form of evidence to argue for form equivalence (Nickerson, 2000), we applied the Tryon's method. Using the inferential CI method, the maximum probable difference between two means (Rg values) were calculated for each shortened version. This Rg was compared to the delta value that represents an amount considered inconsequential. In this study, it was specified a generic delta of 3.2076. We also opted for presenting the Rg values to allow comparisons criteria considering other uses of the shortened versions. All shortened versions showed Rg values below a delta of 3.2076; therefore, considering this value, the four versions would be equivalent. Consequently, these forms could be used interchangeably for most practical purposes in retest clinical assessment. These findings have important implications for neuropsychological assessment in a multidisciplinary clinical context in which effectiveness and efficiency are crucial.

In order to obtain adjusted normative data from the four short-form versions, sociodemographic factors were analyzed. The results showed that raw scores of all versions were influenced by education and age. This finding is in agreement with previous studies that observed significant effects of age on shortened BNT version scores (Fastenau et al., 1998). We found a weak correlation between age and the scores obtained in the four short-form versions of the BNT. This correlation was weak probably because of the range of age observed. We could hypothesize that more differences had been found in a sample with a wider range of age. When normative adjustments were applied, the variance produced by age was minimized. Similarly, education had a significant impact on raw scores. These results are consistent with other reports which found years of education to have a considerable influence on BNT scores (Jefferson et al., 2007; Lansing et al., 1999; Pontón et al., 1996; Saxton et al., 2000; Tombaugh & Hubley, 1997). It is important to clarify that we included a group of participants with 0–5 years of education. This group of low educated subjects, even if commonly seen for the post-war generations in Spain, could have probably driven the results. In a similar manner to previous reports (Calero et al., 2002), sex did not affect the raw scores of any of the shortened versions tested in this study.

The combination of these findings supports the use of these shortened versions for clinical assessment and research. Even so, this study presents limitations. The most important one lies in the fact that these data stemmed from the 60-item version administration. However, in reviewing the literature (Lansing et al., 1999; Mack et al., 1992; Saxton et al., 2000), it could be hypothesized that our results would have been similar if data had been originated from separate administrations. This procedure facilitates control of some confounding variables, such as test retest variability. Additionally, as the BNT normative study of the NEURONORMA project justified (Peña-Casanova, Quiñones-Ubeda, et al., 2009), this study utilized the word “magdalena” as an alternative to “pretzel” because of its extremely low frequency of correct responses presented in a Spanish control sample. As a result, the four short-form versions maintained the original items but changed “pretzel” for “magadalena.” This condition confers some difficulties when comparing the results of this study to previous Spanish studies data. Finally, as in all normative studies, the validity of these norms is clearly dependent upon the similarity between the characteristics of the studied subjects and the demographic features of the normative sample. Despite the fact that some American countries share the same language with Spain, cultural and linguistic differences do exist. Therefore, it would be advisable to apply these norms with caution to these other Spanish speaking populations. For future research, and in order to establish the adaptation of these BNT norms, it would be interesting to study the test performance in these populations.

In summary, this paper presents normative data for 15-item specially designed shortened versions of the BNT. Our data show good equivalence among the shortened versions of the BNT. In addition, the four short-forms are presented as a good alternative to the original BNT. As a result, the four 15-item versions can be used instead of the original BNT for screening purposes.

Funding

This study was mainly supported by a grant from the Pfizer Foundation and by the Medical Department of Pfizer, SA, Spain. It was also supported by the Neurofunctionality of Brain and Language group of the Program of Neurosciences of the Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain. JP-C has received an intensification research grant from the CIBERNED (Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas), Instituto Carlos III (Ministry of Health & Consumer Affairs of Spain).

Conflict of Interest

None declared.

Appendix: Members of the NEURONORMAES Study Team

Steering Committee: JP-C, Hospital del Mar, Barcelona, Spain; RB, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; MA, Hospital Mútua de Terrassa, Terrassa, Spain.

Principal Investigators: JP-C, Hospital del Mar, Barcelona, Spain; RB, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; MA, Hospital Mútua de Terrassa, Terrassa, Spain; JLM, Hospital Clínic, Barcelona, Spain; AR, Hospital Clínico Universitario, Santiago de Compostela, Spain; MSB (deceased), Hospital Clínico San Carlos, Madrid, Spain; CA, Hospital Virgen Arrixaca, Murcia, Spain; CM-P, Hospital Virgen Macarena, Sevilla, Spain; AF-G, Hospital Universitario La Paz, Madrid, Spain; MF, Hospital de Cruces, Bilbao, Spain.

Genetics substudy: RO, Service of Genetics, Hospital Clínic, Barcelona, Spain.

Neuroimaging substudy: BG-A, Radiology Department and IDIBAPS, Hospital Clínic, Barcelona, Spain. Research Fellows: Gemma Monte, Elena Alayrach, Aitor Sainz, and Claudia Caprile, Fundació Clínic, Hospital Clínic, Barcelona, Spain; Gonzalo Sánchez, Behavioral Neurology Group, Institut Municipal d'Investigació Mèdica. Barcelona, Spain.

Clinicians, Psychologists, and Neuropsychologists: Nina Gramunt (coordinator), Peter Böhm, Sonia González, Yolanda Buriel, María Quintana, Sonia Quiñones, Gonzalo Sánchez, Rosa M. Manero, Gracia Cucurella, Institut Municipal d'Investigació Mèdica, Barcelona, Spain; Eva Ruiz, Mónica Serradell, Laura Torner, Hospital Clínic, Barcelona, Spain; Dolors Badenes, Laura Casas, Noemí Cerulla, Silvia Ramos, Loli Cabello, Hospital Mútua de Terrassa, Terrassa, Spain; Dolores Rodríguez, Clinical Psychology and Psychobiology Department, University of Santiago de Compostela, Spain; María Payno, Clara Villanueva, Hospital Clínico San Carlos, Madrid, Spain; Rafael Carles, Judit Jiménez, Martirio Antequera, Hospital Virgen Arixaca, Murcia, Spain; Jose Manuel Gata, Pablo Duque, Laura Jiménez, Hospital Virgen Macarena, Sevilla, Spain; Azucena Sanz, María Dolores Aguilar, Hospital Universitario La Paz, Madrid, Spain; Ana Molano, Maitena Lasa, Hospital de Cruces, Bilbao, Spain.

Administrative Management: Carme Pla (deceased), Romina Ribas, Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, and Behavioral Neurology Group, Institut Municipal d'Investigació Mèdica, Barcelona, Spain.

References

Allegri
R. F.
Mangone
C. A.
Fernández Villavicencio
A.
Rymberg
S.
Taragano
F. E.
Baumann
D.
Spanish Boston naming test norms
The Clinical Neuropsychologist
 , 
1997
, vol. 
11
 
4
(pg. 
416
-
420
)
American Psychiatric Association.
Diagnostic and statistical manual of mental disorders
 , 
1994
4th ed.
Washington, DC
Author
Aranciva
F.
Casals-Coll
M.
Sánchez-Benavides
G.
Quintana
M.
Manero
R. M.
Rognoni
T.
, et al.  . 
Estudios normativos españoles en población adulta joven (Proyecto NEURONORMA jóvenes): Normas para el Boston Naming Test y el Token Test
Neurología
 , 
2012
, vol. 
27
 
7
(pg. 
394
-
399
)
Blesa
R.
Pujol
M.
Aguilar
M.
Santacruz
P.
Bertran-Serra
I.
Hernández
G.
, et al.  . 
Clinical validity of the “mini-mental state” for Spanish Speaking communities
Neuropsychologia
 , 
2001
, vol. 
39
 
11
(pg. 
1150
-
1157
)
Böhm
P.
Peña-Casanova
J.
Aguilar
M.
Hernández
G.
Sol
J. M.
Blesa
R.
Clinical validity and utility of the interview for deterioration of daily living in dementia for Spanish-speaking communities
International Psychogeriatrics
 , 
1998
, vol. 
10
 
3
(pg. 
261
-
270
)
Calero
M. D.
Arnedo
M. L.
Navarro
E.
Ruiz-Pedrosa
M.
Carnero
C.
Usefulness of a 15-Item version of the Boston naming test in neuropsychological assessment of low-educational elders with dementia
Journals of Gerontology, Series B: Psychological Sciences and Social Sciences
 , 
2002
, vol. 
57
 
2
(pg. 
187
-
191
)
Deveugele
M.
Derese
A.
van den Brink-Muinene
A.
Bensing
J.
De Maeseneer
J.
Consultation length in general practice: Cross sectional study in six European countries
British Medical Journal
 , 
2002
, vol. 
32
 
7362
pg. 
472
 
Fastenau
P. S.
Denburg
N. L.
Mauer
B. A.
Parallel short forms for the Boston naming test: Psychometric properties and norms for older adults
Journal of Clinical and Experimental Neuropsychology
 , 
1998
, vol. 
20
 
6
(pg. 
828
-
834
)
Fernández-Blázquez
M. A.
Ruiz-Sánchez de León
J. M.
López-Pina
J. A.
Llanero-Luque
M.
Montenegro-Peña
M.
Montejo-Carrasco
P.
Nueva versión reducida del test de denominación de Boston para mayores de 65 años: aproximación desde la teoría de respuesta al ítem
Revista de Neurología
 , 
2012
, vol. 
55
 (pg. 
399
-
407
)
Fisher
N. J.
Tierney
M. C.
Snow
W. G.
Szalai
J. P.
Odd/even short forms of the Boston naming test: Preliminary geriatric norms
The Clinical Neuropsychologist
 , 
1999
, vol. 
13
 
3
(pg. 
359
-
364
)
Folstein
M. F.
Folstein
S. E.
McHugh
P. R.
“Mini mental state”: A practical method for grading the cognitive state of patients for the clinician
Journal of Psychiatric Research
 , 
1975
, vol. 
12
 
3
(pg. 
189
-
198
)
Graves
R. E.
Bezeau
S. C.
Fogarty
J.
Blair
R.
Boston naming test short forms: A comparison of previous forms with new item response theory based forms
Journal of Clinical and Experimental Neuropsychology
 , 
2004
, vol. 
26
 
7
(pg. 
891
-
902
)
Hamilton
M.
A rating scale for depression
Journal of Neurology Neurosurgery and Psychiatry
 , 
1960
, vol. 
23
 (pg. 
56
-
62
)
Jefferson
A. L.
Wong
S.
Gracer
T. S.
Ozonoff
A.
Green
R. C.
Stern
R. A.
Geriatric performance on an abbreviated version of the Boston naming test
Applied Neuropsychology
 , 
2007
, vol. 
14
 
3
(pg. 
215
-
223
)
Kaplan
E. F.
Goodglass
H.
Weintraub
S.
The Boston naming test: Experimental edition
 , 
1978
Boston
Lippincott Williams and Wilkins
Kaplan
E. F.
Goodglass
H.
Weintraub
S.
The Boston naming test
 , 
1983
Philadelphia
Lippincott Williams & Wilkins
Kaplan
E. F.
Goodglass
H.
Weintraub
S.
Test de Vocabulario de Boston
 , 
1986
Madrid
Editorial Médica Panamericana
Kaplan
E. F.
Goodglass
H.
Weintraub
S.
The Boston naming test
 , 
2001
2nd ed.
Philadelphia
Lippincott Williams and Wilkins
Kaplan
E. F.
Goodglass
H.
Weintraub
S.
Test de Vocabulario de Boston
 , 
2005
2nd ed.
Madrid
Editorial Médica Panamericana
Kent
P. S.
Luszcz
M. A.
A review of the Boston naming test and multiple-occasion normative data for older adults on 15-Item versions
The Clinical Neuropsychologist
 , 
2002
, vol. 
16
 
4
(pg. 
555
-
574
)
LaBarge
E.
Edwards
D.
Knesevich
J. W.
Performance of normal elderly on the Boston naming test
Brain Language
 , 
1986
, vol. 
27
 
2
(pg. 
380
-
384
)
Lansing
A. E.
Ivnik
R. J.
Cullum
C. M.
Randolph
C.
An empirically derived short form of the Boston naming test
Archives of Clinical Neuropsychology
 , 
1999
, vol. 
14
 
6
(pg. 
481
-
487
)
Lezak
M. D.
Howieson
D. B.
Loring
D. W.
Neuropsychological assessment
 , 
2004
4th ed.
New York
Oxford University Press
Lucas
J. A.
Ivnik
R. J.
Smith
G. E.
Ferman
T. J.
Willis
F. B.
Petersen
R. C.
, et al.  . 
Mayo's Older African Americans Normative Studies: Norms for Boston Naming Test, Controlled Oral Word Association, Category Fluency, Animal Naming, Token Test, Wrat-3 Reading, Trail Making Test, Stroop Test, and Judgment of Line Orientation
The Clinical Neuropsychologist
 , 
2005
, vol. 
19
 
2
(pg. 
243
-
269
)
Mack
W. J.
Freed
D. M.
Williams
B. W.
Henderson
V. W.
Boston naming test: Shortened versions for use in Alzheimer's disease
Journal of Gerontology
 , 
1992
, vol. 
47
 
3
(pg. 
154
-
158
)
Martin
A.
Fedio
P.
Word production and comprehension in Alzheimer's disease. The breakdown of semantic knowledge
Brain and Language
 , 
1983
, vol. 
19
 
1
(pg. 
124
-
141
)
McKhann
G.
Drachman
D.
Folstein
M.
Katzman
R.
Price
D.
Stadlen
E. M.
Clinical diagnosis of Alzheimer's disease: Report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer's disease
Neurology
 , 
1984
, vol. 
34
 
7
(pg. 
939
-
944
)
Mistrushina
M.
Boone
K. B.
Razani
J.
D'Elia
J. F.
Handbook of normative data for neuropsychological assessment
 , 
2005
2nd ed.
New York
Oxford University Press
Mungas
D.
Marshall
S. C.
Weldon
M.
Haan
M.
Reed
B. R.
Age and education correction of Mini-Mental State Examination for English and Spanish-speaking elderly
Neurology
 , 
1996
, vol. 
46
 (pg. 
700
-
706
)
Nebreda
M. C.
García-Caballero
A.
Asensio
E.
Revilla
P.
Rodriguez-Girondo
M.
Mateos
R.
A short-form version of the Boston Naming Test for language screening in dementia in a bilingual rural community in Galicia (Spain)
International Psychogeriatrics
 , 
2011
, vol. 
23
 
3
(pg. 
435
-
441
)
Nickerson
R. S.
Null hypothesis significance testing: A review of an old and continuing controversy
Psychological Methods
 , 
2000
, vol. 
5
 (pg. 
241
-
301
)
Pauker
J.
Constructing overlapping cell tables to maximize the clinical usefulness of normative test data: rationale and an example from neuropsychology
Journal of Clinical Psychology
 , 
1988
, vol. 
44
 
6
(pg. 
930
-
933
)
Pedraza
O.
Lucas
J. A.
Smith
G. E.
Willis
F. B.
Graff-Radford
N. R.
Ferman
T. J.
, et al.  . 
Mayo's older African American normative studies: Confirmatory factor analysis of a core battery
Journal of the International Neuropsychological Society
 , 
2005
, vol. 
11
 
2
(pg. 
184
-
191
)
Peña-Casanova
J.
Programa Integrado de Exploración Neuropsicológica. Test Barcelona-Revisado
 , 
2005
Barcelona
Masson
Peña-Casanova
J.
Blesa
R.
Aguilar
M.
Gramunt-Fombuena
N.
Gómez-Ansón
B.
Oliva
R.
, et al.  . 
Spanish Multicenter Normative Studies (NEURONORMA project): Methods and sample characteristics
Archives of Clinical Neuropsychology
 , 
2009
, vol. 
24
 
4
(pg. 
307
-
319
)
Peña-Casanova
J.
Quiñones-Ubeda
S.
Gramunt-Fombuena
N.
Aguilar
M.
Casas
L.
Molinuevo
J. L.
, et al.  . 
Spanish Multicenter Normative Studies (NEURONORMA Project): Norms for Boston naming test and token test
Archives of Clinical Neuropsychology
 , 
2009
, vol. 
24
 
4
(pg. 
343
-
354
)
Pontón
M. O.
Satz
P.
Herrera
L.
Ortiz
F.
Urrutia
C. P.
Young
R.
, et al.  . 
Normative data stratified by age and education for the Neuropsychological Screening Battery for Hispanics (NeSBHIS): Initial report
Journal of the International Neuropsychological Society
 , 
1996
, vol. 
2
 
2
(pg. 
96
-
104
)
Quintana
M.
Guàrdia
J.
Sánchez-Benavides
G.
Aguilar
M.
Molinuevo
J. L.
Robles
A.
, et al.  . 
Using artificial neural networks in clinical neuropsychology: High performance in mild cognitive impairment and Alzheimer's disease
Journal of Clinical and Experimental Neuropsychology
 , 
2012
, vol. 
34
 
2
(pg. 
195
-
208
)
Quintana
M.
Peña-Casanova
J.
Sánchez-Benavides
G.
Langohr
K.
Manero
R. M.
Aguilar
M.
, et al.  . 
Norms for the abbreviated Barcelona test
Archives of Clinical Neuropsychology
 , 
2011
, vol. 
26
 (pg. 
144
-
157
)
Quiñones-Ubeda
S.
Peña-Casanova
J.
Böhm
P.
Gramunt-Fombuena
N.
Comas
L.
Estudio normativo piloto de la segunda edición del Boston Naming Test en una muestra española de adultos jóvenes (20 a 49 años)
Neurología
 , 
2004
, vol. 
19
 
5
(pg. 
248
-
253
)
Rabin
L. A.
Barr
W. B.
Burton
L. A.
Assessment practices of clinical neuropsychologists in the United States and Canada: A survey of INS, NAN, and APA Division 40 members
Archives of Clinical Neuropsychology
 , 
2005
, vol. 
20
 
1
(pg. 
33
-
65
)
Rami
L.
Serradell
M.
Bosch
B.
Caprile
C.
Sekler
A.
Villar
A.
, et al.  . 
Normative data for the Boston naming test and the pyramids and palm trees test in the elderly Spanish population
Journal of Clinical and Experimental Neuropsychology
 , 
2008
, vol. 
30
 
1
(pg. 
1
-
6
)
Reisberg
B.
Ferris
S. H.
de Leon
M. J.
Crook
T.
The Global Deterioration Scale for assessment of primary degenerative dementia
American Journal of Psychiatry
 , 
1982
, vol. 
139
 
9
(pg. 
1136
-
1139
)
Rosen
W. G.
Terry
R. D.
Fuld
P.
Katzman
R.
Peck
A.
Pathological verification of Ischemia Score in differentiation of dementias
Annals of Neurology
 , 
1980
, vol. 
7
 
5
(pg. 
486
-
488
)
Ross
T. P.
Furr
A. E.
Carter
S. E.
Weinberg
M.
The psychometric equivalence of two alternate forms of the controlled oral word association test
The Clinical Neuropsychologist
 , 
2006
, vol. 
20
 
3
(pg. 
414
-
431
)
Royal Academy of Spanish Language [Real Academia Española (RAE)]
Diccionario de la Lengua Española
 , 
2001
22nd ed.
Madrid
Espasa Calpe
Saxton
J.
Ratcliff
G.
Munro
C. A.
Coffey
C. E.
Becker
J. T.
Fried
L.
, et al.  . 
Normative data on the Boston Naming Test and two equivalent 30-Item short forms
The Clinical Neuropsychologist
 , 
2000
, vol. 
14
 
4
(pg. 
526
-
534
)
Serrano
C.
Allegri
R. F.
Drake
M.
Butman
J.
Harris
P.
Nagle
C.
, et al.  . 
Version abreviada en español del test de denominación de Boston: su utilidad en el diagnóstico diferencial de la enfermedad de Alzheimer
Revista de Neurología
 , 
2001
, vol. 
33
 
7
(pg. 
624
-
627
)
Steinberg
B. A.
Bieliauskas
L. A.
Smith
G. E.
Langellotti
C.
Ivnik
R. J.
Mayo's Older Americans Normative Studies: Age- and IQ-adjusted norms for the Boston Naming Test, the MAE Token Test, and the Judgment of Line Orientation Test
The Clinical Neuropsychologist
 , 
2005
, vol. 
19
 
3–4
(pg. 
280
-
328
)
Strauss
E.
Sherman
E.
Spreen
O.
A compendium of neuropsychological tests: administration, norms, and commentary
 , 
2006
3rd ed.
New York
Oxford University Press
Teng
E. L.
Wimer
C.
Roberts
E.
Damasio
A. R.
Eslinger
P. J.
Folstein
M. F.
, et al.  . 
Alzheimer's dementia: Performance on parallel forms of the dementia assessment battery
Journal of Clinical and Experimental Neuropsychology
 , 
1989
, vol. 
11
 
6
(pg. 
899
-
912
)
Teunisse
S.
Derix
M.
Crever
H.
Assessing the severity of dementia. Patient and caregiver
Archives of Neurology
 , 
1991
, vol. 
48
 
3
(pg. 
274
-
277
)
Tombaugh
T. M.
Hubley
A. M.
The 60-item Boston Naming Test: Norms for cognitively intact adults aged 25 to 88 years
Journal of Clinical and Experimental Neuropsychology
 , 
1997
, vol. 
19
 
6
(pg. 
922
-
932
)
Tryon
W. W.
Evaluating statistical difference, equivalence, and indeterminacy using inferential confidence interval: An integrated alternative method of conducting null hypothesis statistical tests
Psychological Methods
 , 
2001
, vol. 
6
 (pg. 
371
-
386
)
Villarejo
A.
Puertas-Martín
V.
Utilidad de los test breves en el cribado de demencia
Neurología
 , 
2011
, vol. 
26
 
7
(pg. 
425
-
433
)
Welch
L. W.
Doineau
D.
Johnson
S.
King
D.
Educational and gender normative data for the Boston Naming Test in a group of older adults
Brain Language
 , 
1996
, vol. 
53
 
2
(pg. 
260
-
266
)
Williams
B. W.
Mack
W.
Henderson
V. W.
Boston Naming Test in Alzheimer's disease
Neuropsychologia
 , 
1989
, vol. 
27
 
8
(pg. 
1073
-
1079
)
World Medical Association
Declaration of Helsinki. Recommendations guiding physicians in biomedical research involving human subjects
Journal of the American Medical Association
 , 
1997
, vol. 
277
 
11
(pg. 
925
-
926
)
Zec
R. F.
Burkett
N. R.
Markwell
S. J.
Larsen
D. L.
Normative data stratified for age education and gender on the Boston naming test
The Clinical Neuropsychologist
 , 
2007
, vol. 
21
 
4
(pg. 
617
-
637
)