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The importance of studying the health impacts of exposure mixtures is increasingly being recognized, but
such research presents many methodological and interpretation difficulties. We used Bayesian g-computation
to estimate effects of a simulated public health action on exposure mixtures and birth weights in Milwaukee,
Wisconsin, in 2011-2013. We linked data from birth records with census-tract-level air toxics data from the
Environmental Protection Agency’s National Air Toxics Assessment model. We estimated the difference between
observed and expected birth weights that theoretically would have followed a hypothetical intervention to reduce
exposure to 6 airborne metals by decommissioning 3 coal-fired power plants in Milwaukee County prior to
2010. Using Bayesian g-computation, we estimated a 68-g (95% credible interval: 25, 135) increase in birth
weight following this hypothetical intervention. This example demonstrates the utility of our approach for using
observational data to evaluate and contrast possible public health actions. Additionally, Bayesian g-computation
offers a flexible strategy for estimating the effects of highly correlated exposures, addressing statistical issues
such as variance inflation, and addressing conceptual issues such as the lack of interpretability of independent

effects.

air toxics; air pollution; Bayesian methods; causal inference; g-computation; metals

Abbreviations: BMA, Bayesian model averaging; Crl, credible interval; MCMC, Markov chain Monte Carlo; NATA, National Air

Toxics Assessment; PIP, posterior inclusion probability.

Editor’s note: An invited commentary on this article ap-
pears on page 2658, and the authors’ response appears on
page 2662.

Many determinants of human health are naturally clus-
tered. Nutrients cluster in vegetables; exposure to stressors
and toxins correlates with poverty; genes are inherited on
chromosome segments; and multiple environmental chemi-
cal pollutants arise from food packaging, personal care prod-
ucts, tobacco smoke, and vehicle emissions. Environmental
epidemiology, in particular, is increasingly concerned with
quantifying the health impacts of complex exposure mix-
tures (1, 2). Such study is complicated by the presence of
highly correlated, high-dimensional, or sparse exposure data

which can yield imprecise or invalid statistical results (3, 4).
Much of the methodological development in mixtures relates
to these statistical challenges (5, 6).

While the statistical problems of mixtures have been
a useful focal point for progress, there has been a lesser
focus on developing the inferential framework which would
address the public health questions of interest. These ques-
tions emphasize potentially measurable health impacts of
interventions, such as “How much could we have improved
health in a city if we had intervened on sources of multiple
specific pollutants, compared with no intervention?”. Causal
inferential questions can directly inform public health
action and yield answers that are more interpretable than
conventional approaches to exposure mixtures. The results
correspond to a simple comparison of 2 hypothetical
interventions on multiple exposures versus a conventional
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approach reporting multidimensional exposure-response sur-
faces or multiple independent association measures. Despite
these virtues, little has been done to bridge mixtures methods
with causal inference to ask public-health-relevant study
questions from difficult mixtures data (7, 8).

A potentially useful framework for asking these causal
questions with mixtures is g-computation, which can map
statistical models to explicit comparisons of public health
actions. Applications of g-computation often include tar-
get parameters that extend past standard statistical model
parameters, such as static plans (e.g., what happens when
everyone is treated (9)), dynamic plans (e.g., the optimal
time to treat (10)), joint treatments (e.g., what happens
when multiple treatments are given (11)), and generalized
impact fractions (e.g., who to treat and at what level (12)).
However, such work has not often been applied to settings
with the challenges that occur in mixtures research, such as
correlated, continuous exposures with no natural contrasts
(e.g., “treated versus untreated”).

Toward these ends, we propose and demonstrate an
approach that leverages methodological developments in
mixtures methods to ask questions in a causal framework
(13). As our example, we address associations between
metal mixtures present in coal-fired power plant emissions
(e.g., mercury, arsenic) and infant birth weight. These
metals are known to be detrimental to fetal development
(14), and such emissions have been associated with birth
outcomes (15-17). However, estimation of the effects
of decommissioning such power plants in the absence
of natural experiments is not straightforward (18). Here
we demonstrate how such effects can be estimated using
data on coal-fired power plant emissions and Bayesian g-
computation. We estimate the difference in average birth
weight following a hypothetical intervention to reduce
exposure to 6 airborne metals by decommissioning 3
coal-fired power plants (hereafter called “coal plants™) in
Milwaukee, Wisconsin, in 2010. While we seek to answer
this question as accurately as possible with existing data,
the primary contribution of this work is to demonstrate
the unique data and modeling considerations of addressing
causal questions involving correlated mixtures.

METHODS
Data

Our study population comprised all live births that oc-
curred in Milwaukee from January 1, 2011, to December 31,
2013. The study was conducted in coordination with the Mil-
waukee Health Department and under the ethical oversight
of the University of Wisconsin-Milwaukee. The maternal
residential address on the birth certificate was geocoded to
the 2010 US Census tract, which was used to link the address
to data on airborne metal exposure. Information on birth
weight and all covariates was obtained from vital records
data. Starting from 30,248 live births, we excluded births
that could not be matched to a 2010 census tract within the
Milwaukee city boundaries (n = 2,174). We further excluded
971 births with missing data on covariates, for a final sample
size of 27,103.

From the Environmental Protection Agency’s National
Air Toxics Assessment (NATA) 2011 (19, 20), we obtained
modeled, census-tract—level data on ambient concentrations
of the following airborne metals for the year 2011: mercury
compounds, selenium compounds, beryllium compounds,
organic and inorganic arsenic compounds, hexavalent chro-
mium, and nickel compounds. The NATA uses emissions
data collected from federal to local levels, including point,
area, and mobile pollutant sources, along with weather data.
For simplicity, we refer to the model-predicted airborne
exposure levels, corresponding to one of the 219 census
tracts in Milwaukee, as “measured” exposures.

Statistical methods

We quantified bivariate relationships between the 6 metals
considered in our analysis with Spearman rank correlation
coefficients.

Target trial.  Our goal was to estimate effects of a reduction
in airborne metal exposures that would occur as a conse-
quence of an intervention to deactivate all 3 coal plants in
Milwaukee (Figure 1). Though infeasible, we can concep-
tualize our study question as a target randomized trial (21)
in which we recruit all Milwaukee women who become
pregnant between April 2010 and about April 2013. Among
the recruited women who give birth, we would record the
birth weight. In the “standard of care” arm, we would follow
the natural course (i.e., no intervention on exposures). In
the intervention arm (requiring a doppelganger Milwaukee),
we would intervene to decommission the 3 coal plants that
existed in Milwaukee as of January 1, 2010, while replacing
them with clean power sources (with no effects on birth
weight). The target parameter would then be the mean dif-
ference in birth weight between study arms.

We hypothesize that much of the effect of such an interven-
tion would result from consequent reductions in pollution,
specifically metals, so the target trial can be approximated as
areduction in coal plant metal emissions. We used emissions
inventory data included with NATA 2011 and NATA 2005
data (reported under the Wisconsin Air Toxics Rule (22)) to
determine which of the metal air toxics included in NATA
2011 could be plausibly attributable to coal plant emissions.
We identified 6 metals that demonstrated 1) a high (40%-
99%) proportion of total emissions in Milwaukee County
attributable to the 3 coal plants and 2) a consistent proportion
of total emissions across both NATA years, so that the NATA
2011 data could better represent airborne metal exposures
from coal plants incurred during the prenatal period span-
ning over the course of more than 3 years.

We operationalized the “intervention” arm of the target
trial as a proportional reduction in exposure to each of the 6
identified metals, relative to the observed or “natural value”
of exposure (23). This was required because the airborne
metals also arose from other pollution sources. For each
metal, this proportion was equal to the sum of the reported
NATA 2011 emissions from the 3 coal plants divided by the
total reported emissions in Milwaukee County. For example,
we estimated that 91% of local chromium emissions were
from coal plants. This implies that an individual with an
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Figure 1. Estimated (National Air Toxics Assessment (19, 20))
ambient arsenic concentrations in Milwaukee County, Wisconsin, by
US Census tract, 2011. Black dots represent the locations of the 3
coal-fired power plants in operation in Milwaukee County during the
study period.

observed exposure of 0.5 ng/m> would have an “interven-
tion” exposure of 0.5 ng/m> x (I — 0.09) = 0.045 ng/m’.
The intervention is represented by a joint reduction in expo-
sure to all 6 metals. The analyst did not have access to
data on maternal location, and thus we necessarily assumed
uniform reductions across the study area. All nonexposure
covariates were kept fixed across possible interventions.
We used scatter plots to assess the extent to which our
intervention metal values were within the range of observed
values.

Bayesian g-computation. We evaluated the relationships
between the 6 metals of interest and birth weight using
Bayesian g-computation (13). Under the assumptions dis-
cussed below, this approach can 1) estimate independent
or joint effects of exposure mixture components in terms
of exposure-response functions and 2) estimate the effects
of hypothetical interventions on exposure sources that may
emit multiple adverse exposures.

For time-fixed exposures such as ours, the Bayesian g-
computation algorithm (described elsewhere in detail (13))
consists of the following steps: 1) fit a Bayesian linear model
(the “statistical model””) with birth weight as the outcome
and including terms for the 6 airborne metal exposures and
adjustment variables; 2) use the model parameters from
step 1 to predict birth weight under each intervention; and
3) estimate the mean difference in predicted average birth
weight between interventions.

To address potential confounding, in the statistical model
we adjust for maternal race/Hispanicity (indicator variables
for non-Hispanic Black, non-Hispanic White, Hispanic
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White, and other), maternal smoking during pregnancy (yes
or no), maternal marital status (yes or no), and maternal
age at birth (quadratic polynomial). We also adjust for a
nonconfounder, child’s sex, to improve precision.

Standard statistical models often favor parsimonious
models over complex but potentially more accurate models,
to enhance interpretability (24). Bayesian g-computation
does not rely on directly interpreting model coefficients, so
models can be made more potentially complex by including,
for example, many product terms. Such models risk overfit,
however, and it is uncertain which nonlinear terms are
important. We use Bayesian model averaging (BMA) to
account for model uncertainty and avoid overfitting (25).
This algorithm starts with a “full model” from which pos-
sible “submodels” (e.g., models in which some coefficients
are set to 0) are explored stochastically. We implement
this approach using Markov chain Monte Carlo (MCMC
(26)) methods, which simulate the posterior and allow a
potentially different submodel to be fitted in each simulation
iteration. Fully Bayesian inference for model parameters is
then performed by averaging over the MCMC iterations,
resulting in a weighted average of submodels with weights
proportional to the submodel posterior probability. Our full
model includes an intercept and 83 terms comprising all
main terms for the 6 metals and 7 covariates, as well as
all 2-way product terms for interaction between continuous
variables (all metals and maternal age) and all other variables
(including “self-interaction” quadratic terms). The basic
model form is given by

Birth weight ~ normal(u, 02)

14 83
w=pBo+ D 8BXi+ > ubiTr, ()
j=1 k=15

where the j terms represent all main-term coefficients (X;
refers to exposures and confounders) plus a quadratic term
for maternal age and the k terms represent product terms
(T, refers to product terms for the interaction between expo-
sures and confounders, and quadratic terms for exposures).
The B’s represent model coefficients, 3;,8; are discrete
(1/0) parameters representing inclusion/exclusion from the
model, and o2 is the variance of the error term. The model
is hierarchical, allowing B to shrink toward j- and k-specific
means. We standardize all continuous variables (including
birth weight) to have a mean value of 0 and a standard
deviation of 1.

The posterior means of 3;, 8 terms are interpreted as pos-
terior inclusion probabilities (PIP) for each X; or Ty, which is
the posterior probability that the coefficient is nonzero. We
group coefficients into 2 groups (main or product terms) and
set higher prior skepticism for product terms, relative to main
effect terms. All priors for our analyses are given in Web
Table 1 (available at https://doi.org/10.1093/aje/kwab053).

The final step of Bayesian g-computation is to contrast
predicted birth weight under the “natural course” (no inter-
vention) scenario with predicted birth weight under exposure
levels corresponding to the hypothetical intervention. With
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point-exposure data, g-computation is similar to marginaliz-
ing a model-based target parameter over the empirical dis-
tribution of covariates (27). Bayesian g-computation yields
a full posterior distribution of the target parameter, which
in our example accounts for model uncertainty. Further
description is available in Web Appendix 1.

We took 40,000 MCMC draws over 8§ independent chains,
including 500 burn-in iterations on each chain that were
discarded. We used standard MCMC convergence and mix-
ing diagnostics (28). We report posterior means and 95%
credible intervals (a Bayesian counterpart to confidence
intervals).

Sensitivity analyses. In sensitivity analyses, we fitted sev-
eral alternative Bayesian models that assessed the influence
of quadratic terms, the hierarchical structure, model selec-
tion priors, and forcing certain variables into the model.
Further description is available in Web Appendix 2. We also
fitted conventional adjusted linear models for birth weight
for each metal individually (“single-pollutant models™) and
all metals together (“multipollutant model”’), which included
main terms of confounders/exposures and a quadratic term
for maternal age. We fitted these latter models using maxi-
mum likelihood for computational efficiency and because a
difference from the Bayesian approach would be minimal in
this simple setting.

To assess whether the direction or precision of the find-
ings was sensitive to our operationalization of the hypo-
thetical intervention (and to reduce model extrapolation),
we additionally used Bayesian g-computation to estimate
the expected mean birth weight from the 10th to the 90th
empirical percentiles of the 6 exposures of interest (e.g., the
intervention “50th percentile” means that all 6 metals were
set to the sample medians). Further details are given in Web
Appendix 3.

Simulation analyses

Because our primary analysis relied on predictions at low
exposure levels, we performed a small simulation analysis
to assess the potential impacts of model extrapolation con-
trasting BMA, Bayesian hierarchical modeling, and maxi-
mum likelihood approaches with g-computation. Simulation
methods are given in Web Appendix 4. Briefly, in 1,000
simulated data sets of n € {100, 1,000, 10,000}, we sim-
ulated a random normal outcome with a mean that is a
linear function of 2 continuous, correlated exposures (X,
X5) and 3 continuous confounders, as well as all 2-way
product terms. We estimated the expected outcome if we
could set both exposures either to 15.0 (denoted Y(15)),
close to the population mean (E(X;) ~ E(X,) ~ 15), or
to 1.0 (denoted Y(1)), which was outside the range of the
observed exposures (thus requiring model extrapolation).
We compared point estimates of the expected outcomes and
the mean difference between these outcomes (similar to our
example above with coal plants) in terms of bias, Monte
Carlo standard deviation, and mean squared error. Illustra-
tive code with which to replicate our simulation analyses is
available on GitHub (29).

Hg |l Se || Be || As || Cr || Ni

A“ 0.51 0.55 0.62 0.54 0.32|Hg

3"“ j\\m 0.81 0.91 0.67 0.61|Se
}' jf /’\L 0.94 0.49 0.29|Be
j }‘ / /\061 0.51] As

J, ,w.ﬁ 3# MOGOCr
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Figure 2. Bivariate scatter plots, univariate kernel density plots,
and Spearman correlation matrix for a hypothetical intervention to
reduce exposure to 6 airborne metals by decommissioning 3 coal-
fired power plants, Milwaukee County, Wisconsin, 2011. Hg, mercury;
Se, selenium; Be, beryllium; As, arsenic; Cr, chromium; Ni, nickel.

RESULTS

Mothers of the 27,103 infants included the study were pre-
dominantly Black (46%), unmarried (65%), and nonsmokers
(83%) (Table 1). The median birth weight was 3,232 g, and
the proportion of births with low birth weight (<2,500 g)
was 10%, higher than the 2011 US average of 6.3% (30).

Three pairs of metals had correlation coefficients of p >
0.7, and the rest were more modestly correlated. Arsenic and
beryllium levels were the most highly correlated (p = 0.94)
(Figure 2). The proposed intervention to decommission coal
plants in the Milwaukee area would result in joint exposure
values that were often outside the range of the observed
data, while joint percentiles of exposures (used in sensitivity
analyses) were always in the range of the observed exposures
(Web Figure 1).

Bayesian g-computation

In our primary analysis using BMA, we estimated an
increase in the average birth weight of 68 g (95% credible
interval (Crl): 25, 135) following the hypothetical interven-
tion to decommission the 3 Milwaukee coal plants, cor-
responding to a reduced proportion of low birth weight
(<2,500 g) from 10.2% in the study population to 8.6%
(Table 2, Web Figure 2).

Sensitivity analyses

Our results were robust to priors on model selection and
hierarchical variance, as well as the functional form of
maternal age. In contrast, results varied when the model
was “forced” to include certain (or all) variables. A model
with main terms only provided inference similar to that of
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Table 1. Demographic, Birth Weight, and Exposure Characteristics of 27,103 Live Births, Milwaukee, Wisconsin,

2011-2013
Characteristic No. of Births % Median (IQR)

Maternal race/ethnicity

Non-Hispanic White 6,800 25.1

Non-Hispanic Black 12,333 45.5

Non-Hispanic, other race 6,954 25.7

Hispanic, any race 1,016 3.7
Married mother 9,373 34.6
Any maternal smoking during pregnancy 4,511 16.6
Female child sex 13,298 491
Preterm birth (<37 weeks) 2,881 10.6
Low birth weight (<2,500 g) 2,760 10.2
Very low birth weight (<1,500 g) 597 2.2
Maternal age at birth, years 27 (22-31)
Birth weight, g 3,232 (2,892-3,572)
Gestational age at birth, weeks 39 (38-40)

NATA 2011 metals exposure, ng/m3
Mercury compounds
Selenium compounds
Beryllium compounds
Arsenic compounds
Hexavalent chromium
Nickel compounds

1.60 (1.50-1.70)

0.50 (0.46-0.56)
0.09 (0.07-0.11)
0.18 (0.15-0.22)
0.09 (0.08- 0.12)
1.24 (0.80-2.87)

Abbreviations: IQR, interquartile range; NATA, National Air Toxics Assessment.

our main analysis. When all main terms (exposures and
confounders) were forced into the primary model (with
variable selection), the estimated mean difference increased
from 68 g to 128 g, and the width of the 95% credible interval
doubled (95% Crl: 29, 228). Without model averaging, the
estimated mean difference was larger and much less precise
(241 g, 95% Crl: —224, 706). Upon removal of hierarchical
priors, the estimated mean difference increased further to
581 g, which was similar to the point estimate obtained
using maximum likelihood (577 g). The 95% credible inter-
vals for all analyses without model averaging fully con-
tained the 95% credible intervals of all of the analyses that
included model averaging, demonstrating consistency across
approaches even with highly variable point estimators.

The differences among statistical models were much
smaller in sensitivity analyses using interventions that were
within the range of the observed data (10th-90th percentiles
of the observed empirical exposure distributions, Web
Figure 3). Results were qualitatively similar to those from
the main analysis and demonstrated that precision losses
at the tails of the exposure distribution were smaller when
using BMA (Figure 3).

BMA coefficients

Among the metals, the main term for chromium had the
highest posterior inclusion probability (PIP = 0.64, Web
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Table 2). Except for a product term for the interaction
between maternal age at birth and smoking (PIP = 0.99), all
product terms had PIPs less than 0.1, and most PIPs were
0. PIPs that accounted for inclusion of any term including a
metal were very similar to PIPs for main term coefficients.
A main term for at least one of arsenic and beryllium (the
most highly correlated exposures) was included in 79% of
the models. Main terms for 5 of the 6 metals were negative,
indicating a reduction in birth weight with increasing levels
of each metal, which can be roughly interpreted as indepen-
dent associations (due to the low PIPs of product terms).
Parameter estimates for metals in non-Bayesian, single-
pollutant models were less variable than those in adjusted
models and maintained a consistent effect direction, in con-
trast with the highly variable (as expected due to exposure
correlation) results from the non-Bayesian multipollutant
model (Web Tables 3 and 4). Parameter estimates were much
more variable without (versus with) BMA (Web Table 5).

Simulation

In our simulated example, patterns of precision were sim-
ilar to our data example, where BMA resulted in much lower
standard errors than maximum likelihood or other Bayesian
approaches (Table 3). The BMA approach yielded lower
mean squared error for the target parameter than all other
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Figure 3. Posterior mean difference (points) and 95% credible intervals (bars) for contrasts between population interventions in which all
individuals have arsenic, beryllium, chromium, mercury, nickel, and selenium exposures simultaneously set to a percentile of their observed
values, where the referent intervention is to set all exposures to the population median values (medians are given in Table 1). A) Results from
the primary model with Bayesian model averaging (model A in Table 3); B) results from the hierarchical Bayesian model with no selection (model
J in Table 3). Scatter plot smoothing lines (gray) are shown for visual reference.

approaches while incurring some bias relative to the maxi-
mum likelihood approach.

DISCUSSION

Using Bayesian g-computation, we estimated a 68-g (95%
Crl: 25, 135) increase in birth weight following a hypo-
thetical intervention to decommission 3 coal plants, and
hence reduce exposure to 6 airborne metals, in Milwaukee
County. We demonstrated the utility of this approach for
using observational data to directly evaluate policy choices
and contrast possible public health actions (including inac-
tion) when appropriate data are available. While we found
the magnitude of the association to be sensitive to some
modeling assumptions, we demonstrated a useful framework
and identified the data and modeling needs for estimating
effects of interventions in environmental data, where many
correlated exposures may influence health and many effects
of public health interest necessarily extend to exposure levels
outside the range of the data.

As in most statistical approaches to mixtures, we included
exposures simultaneously to account for confounding of the
effect of one metal by another. The potential of such copollu-
tant confounding is a classical problem of exposure mixtures
and gives rise to the need for multipollutant models. Coef-
ficients from such models are cumbersome or even illogical
to interpret: a unit change in birth weight associated with a
unit change in exposure, holding constant other exposures,
many of which arise from the same source (31). Interpreta-
tion of individual coefficients is further complicated when
product terms are included. For example, model selection
may indicate that a product term should be kept while a main
term from that product is removed from the model, which
is anathema to direct interpretation of coefficients (32). In
our approach, model parameters need not be interpretable.
Bayesian g-computation requires an underlying multipollu-
tant model, similar to other approaches to estimating joint
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effects within a mixture, such as quantile g-computation
(33) and Bayesian kernel machine regression (34). Bayesian
g-computation extends these approaches to a myriad of
statistical models and allows effect estimation for realistic
interventions in which exposures will be affected to different
extents.

Our findings are consistent with the expected toxicity
of the metals we explored, though the independent, metal-
specific findings were imprecise (a fundamental problem
of correlated exposures). Much of the prior epidemiologic
investigation of these airborne metals and birth outcomes has
not considered them within a mixture. Of studies that did
consider mixtures (35-38), results did not clearly indicate
whether any given metal was a particular “bad actor” after
accounting for other metals, whether certain combinations
were particularly harmful, or whether a certain pollution
source was to blame. Differences in study objectives and
methodology make it difficult to quantitatively compare our
findings with this prior literature. More relevant are natural
experiments. Our estimates are similar in magnitude to the
decrease in birth weight observed following the replacement
of nuclear power plants in the Tennessee Valley in the
1980s with increased output of local coal plants (39) and
are generally consistent with improvement in other birth
outcomes following closures of coal plants in California (17)
and New Jersey (16).

Under all models and priors assessed, we obtained point
estimates for the effect of our hypothetical intervention in
the same direction, with variable levels of precision. The
magnitude of the association was sensitive to model parsi-
mony, regardless of whether this was achieved by excluding
product terms a priori or using BMA. In simulations, the
mean squared error was orders of magnitude better for our
approach than for the standard parametric g-formula using
maximum likelihood at all sample sizes considered—this
advantage comes by trading small biases for large reductions
in variance. While bias is unknown in our coal plant exam-
ple, the simulations provide some assurance that the variance
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Table 3. Results of a Simulation Comparing Bias, Variation, and Squared Error Loss of 3 Bayesian Approaches and 1 Maximum Likelihood

Approach to g-Computation

Sample Bias x 1002 MCSD x /n" RMSE®
Model Size

(n) y(s1s)  yah  pamp YOSyt pamD YOS y()  pAMD
BMA 100  —18.1 16.6 34.8 5.84 2.3d 5.64 0.64 0.34 0.74
Full—hierarchical 100 —0.8d 262.1 262.9 5.8 43.8 445 0.6 5.1 5.2
Main terms—hierarchical 100 —-85.1 444.0 529.1 5.6 471 471 1.0 6.5 71
Full—maximum likelihood 100 -14 —744 —-6.0d 9.3 65.1 64.9 0.9 42.4 421
BMA 1,000 —10.9 —42 6.7 6.1d 5.84 7.1d 0.2 0.2d 0.2d
Full—hierarchical 1,000 -0.6 46.1 46.7 6.1 58.7 59.2 0.2 1.9 1.9
Main terms—hierarchical 1,000 —84.9 -30.0 54.8 6.0 66.6 66.7 0.9 2.1 2.2
Full—maximum likelihood 1,000 —-0.34 0.99 1.1d 8.4 60.6 60.4 0.1d 3.7 3.6
BMA 10,000 -0.6 -25 -19 10.0 15.64 14.94 0.1 0.2d 0.2d
Full—hierarchical 10,000 -0.7 6.7 74 6.8 59.0 59.1 0.1 0.6 0.6
Main terms—hierarchical 10,000 —85.1 —-79.4 5.6 6.1d 67.7 67.9 0.9 1.0 0.7
Full—maximum likelihood 10,000 0.19 1.59 1.49 8.5 60.3 60.5 0.04 0.4 0.4

Abbreviations: BMA, Bayesian model averaging; MCSD, Monte Carlo standard deviation; MD, mean difference; PA, population average;

RMSE, root mean squared error.

a Bias from true value (truth: E[Y"")] = 0.55, E[Y(15)] = 14.55, MD = E[Y(1)] — E[Y(15)] = 14.00), where E[Y(15)] = expected population

average outcome if setting x4 = xo = 15.

b Standard deviation of point estimates (Bayesian posterior mean or maximum likelihood estimate) scaled by the square root of the sample

size.

¢ Square root of the mean squared error, given by v/Bias? + MCSD?.
d Best-performing method for each statistic at a given sample size.

improvement that comes from using BMA (relative to other
approaches) is not coming at the expense of large biases from
the modeling procedure.

Aside from model specification, there are a number
of necessary assumptions for interpreting data analytical
results as causal effects. We focus on 4 of these: exchange-
ability, positivity, measurement error, and treatment varia-
tion irrelevance.

Exchangeability includes selection bias and confounding.
Results may be subject to selection bias if exposure or some
cause of exposure also results in pregnancy loss (40). Such
biases manifest similarly to loss to follow-up in a target trial,
and correction would require information on how airborne
metals and other study covariates affect fetal loss. Addition-
ally, any of our exposures of interest could be serving as
proxies for other unexplored factors that affect birth weight
(i.e., there may be residual confounding), such as airborne
lead and cadmium, which did not meet our selection criteria
based on data quality. Knowledge or data about sources of
selection bias or unmeasured confounders could be used in
Bayesian sensitivity analyses (41, 42) or to estimate alter-
native parameters such as a survivor average causal effect
(43), both of which are potentially useful extensions of our
approach.

Positivity states that there is a nonzero probability (den-
sity) that exposure can take on all values implicit under
the intervention of interest in infinite samples. Petersen et
al. (44) distinguished nonpositivity from a similar, finite-

sample condition referred to as sparsity, which ensures that
the intervention values of exposure are observed in the
analytical sample in all strata of confounders. Formally,
our analysis meets the positivity criterion because metal
exposures can (in principle) take on any nonnegative value.
However, our observed correlation matrix suggests that our
data are subject to sparsity. Historically, such correlation
has been considered only in the context of independent
effects: the effects of one exposure while holding the others
constant (e.g., the linear multipollutant model in Web Table
4). Sparsity manifests in variance inflation of independent
effects, though prior evidence suggests that highly correlated
exposures can actually improve variance for joint effects
(33). Intuitively, if exposures covary, the data will contain
more observations consistent with the interventions “high
joint exposure” or “low joint exposure”’—our approach sim-
ply mapped “low joint exposure” onto a potential real-world
intervention. These prior results suggest that even if the
underlying model is challenged by exposure correlation, the
overall joint effect estimate may not be. Thus, for pragmatic
and conceptual reasons, we focused on questions about joint
rather than independent effects.

Because parametric models can interpolate and extrapo-
late, nonsparsity is not a necessary assumption in our analy-
sis or in related approaches using the parametric g-formula,
unlike semiparametric methods such as inverse probability
weighting (45-48). Rather, this assumption is replaced by
the assumption of correct model specification. This tradeoff
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in assumptions may be beneficial in terms of making
progress in causal inference approaches in environmental
epidemiology. In the case of highly correlated exposures,
estimation of joint effects may not be strongly affected by
sparsity, and the use of inverse probability weighting or
doubly robust methods (49) can provide useful alternative
approaches that yield a triangulation of evidence due to
differing assumptions. In environmental settings that are not
subject to sparsity due to multiple pollutant sources, corre-
lation may be low enough to justify exchangeability, or g-
computation with standard mixture approaches to reducing
mean squared error may still be used at the cost of requiring
stronger modeling assumptions. Care must be taken, how-
ever, by assessing the impacts of modeling assumptions.
Our simulations demonstrate that BMA can yield biased but
low mean-squared-error estimates in spite of using a highly
flexible model to achieve model accuracy. This result was
especially pronounced when extrapolating to intervention
values of exposure outside the range of the data. Tabular
analysis and scatter plots help identify model extrapolation,
but we know of no model fit diagnostics that extend out-
side of the range of available data. By reducing overfit,
BMA seems well-suited to such analyses; but, as with other
assumptions underlying causal inference, model accuracy
outside the range of the data is untestable in the data set at
hand. Thus, one can perform, as we did, sensitivity analyses
for modeling and prior assumptions, secondary analyses
that reduce extrapolation, and simulations that mimic the
scientific question.

Environmental studies relying on area exposure estimates,
like ours, are particularly subject to exposure measurement
error. We used an air pollution model of each census tract
(NATA) to represent person-level exposure. While NATA
2011 validity is supported by favorable comparisons with air
measurements (50-53) and demonstrated model improve-
ments over subsequent years (54), there are uncertainties in
model performance across pollutants and across geographic
regions (55). Furthermore, we used NATA 2011 data to
represent exposure across 3 years. Additionally, we opera-
tionalized interventions on a coal plant using homogenous,
proportional decreases in metal exposures across space and
time. The accuracy of this operationalization affects how
well our results map onto expected effects of real-world
interventions, but not internal validity.

The treatment variation irrelevance assumption raises
issues similar to measurement error: We may be able to
estimate the effect of reducing our exposures of interest, but
that may not map directly onto the effect of decommission-
ing if there are unanticipated economic or environmental
impacts from switching energy sources that subsequently
affect birth weight. We assumed that airborne metals arose
only from local coal plants instead of more distal sources.
Coal emissions probably spread beyond the 20-mile (32-km)
length of Milwaukee (56, 57), though only 1 other coal plant
exists in the counties adjacent to Milwaukee. Approaches
for estimating impacts of interventions on mixtures could
be greatly improved by better interfaces between causal
inference and exposure sciences.

Bayesian g-computation provides a unifying framework
with which to leverage the strengths of innovative statisti-
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cal models for analyzing mixtures data, such as hierarchi-
cal modeling and BMA. Our approach allows for complex
model fit while preserving precision and yields an overall
joint impact of the mixture on health that is straightfor-
ward to communicate. Further, our results demonstrate the
immense potential of the use of causal effect estimation
approaches to supplement the evidence obtained from natu-
ral experiments. When data exist to estimate exposure values
before and after a potential intervention, this approach is a
useful addition to increase our understanding of the effects
of exposure mixtures on human health.
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