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Nonexperimental studies of preventive interventions are often biased because of the healthy-user effect and, in

frail populations, because of confounding by functional status. Bias is evident when estimating influenza vaccine

effectiveness, even after adjustment for claims-based indicators of illness. We explored bias reduction methods

while estimating vaccine effectiveness in a cohort of adult hemodialysis patients. Using the United States Renal

Data System and linked data from a commercial dialysis provider, we estimated vaccine effectiveness using a

Cox proportional hazards marginal structural model of all-cause mortality before and during 3 influenza seasons

in 2005/2006 through 2007/2008. To improve confounding control, we added frailty indicators to the model, mea-

sured time-varying confounders at different time intervals, and restricted the sample in multiple ways. Crude and

baseline-adjusted marginal structural models remained strongly biased. Restricting to a healthier population re-

moved some unmeasured confounding; however, this reduced the sample size, resulting in wide confidence inter-

vals. We estimated an influenza vaccine effectiveness of 9% (hazard ratio = 0.91, 95% confidence interval: 0.72,

1.15) when bias wasminimized through cohort restriction. In this study, the healthy-user bias could not be controlled

through statistical adjustment; however, sample restriction reduced much of the bias.

bias (epidemiology); confounding factors (epidemiology); influenza vaccines; renal dialysis

Abbreviations: ESRD, end-stage renal disease; ICD-9-CM, International Classification of Diseases, Ninth Revision, Clinical
Modification.

Nonexperimental studies attributing large benefits to pre-
ventive health-care interventions may often be subject to
the healthy-user bias (1). This bias arises when patients re-
ceiving a preventive medication or vaccination are in better
health and/or more likely to engage in healthy behaviors,
compared with patients not receiving preventive care (2–5).
These differences exaggerate the beneficial association of
the preventive intervention under study. The differences be-
tween treatment groups are often hard to characterize, espe-
cially using typical health-care claims data.

Studies of populations that include individuals in precarious
health, such as the elderly or patients with serious comorbid
conditions, may be particularly vulnerable to the healthy-user
bias (6, 7). In these populations, patients may be at risk of expe-
riencing sudden deteriorations in health status that are not cap-
tured in typical health-care data. Confounding by unobserved

frailty or functional status is thought to be a common source
of bias in studies of preventive interventions conducted in
these populations (8). “Functional status,” defined as the
level of ease with which a person can perform activities of
daily living, can be measured through various instruments
but is not easily assessed by using administrative claims data.

One setting where residual confounding has been well
documented is in studies of influenza vaccine effectiveness
in the elderly and other populations in poor health. In many
studies, estimates of influenza vaccine effectiveness have been
strongly confounded, suggesting improbably large (∼50%)
reductions in all-cause mortality (9–11). Recent studies
have found that less biased estimates of influenza vaccine ef-
fectiveness can be obtained through the use of alternate study
designs, such as case-centered designs or natural experiments
(12, 13).However, suchdesigns exploit theunique characteristics
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of the influenza virus, such as seasonality or vaccine match,
and therefore cannot be directly applied to studies of other
preventive interventions. More general approaches to con-
founding control are needed.
In the present study, we explored some alternative ap-

proaches to confounding control in a study of influenza vac-
cine effectiveness in a cohort of patients with end-stage renal
disease (ESRD). We linked commonly used administrative
claims data with rich clinical data from a large dialysis provid-
er. Because health status can decline rapidly in ESRD patients,
we hypothesized that frequently recorded measures of health
status obtained during thrice-weekly dialysis sessions might
allow for improved control of confounding. We also identified
proxies for functional status, such as skilled nursing facility
stays and claims for mobility aids (e.g., wheelchair, walker).
Using a marginal structural model, we examined how control
for these time-varying covariates affected bias in estimates of
vaccine effectiveness.We also examined how restriction of the
cohort to healthier patients affected bias. Residual confound-
ing was assessed by using the preinfluenza vaccine effective-
ness estimate as a negative control.

METHODS

Study design and population

We conducted a cohort study of patients with ESRD who
were enrolled in Medicare and belonged to a single large, na-
tional dialysis organization. The dialysis provider owns and
manages over 1,500 outpatient dialysis facilities located in
urban, rural, and suburban areas throughout the United States.
We used Medicare claims data from the United States Renal
Data System, which includes all ESRD patients in the United
States, to measure hospitalizations and outpatient care, some
medication use, immunizations, and death. We used linked
data from the dialysis provider’s clinical research database,

which captures detailed clinical, laboratory, and treatment
data on patients receiving care at all of the provider’s dialysis
units. This database provided detailed information on vitamin
D dosing, epoetin alfa use and dosing, clinical laboratory val-
ues (e.g., hemoglobin, albumin), and the number and fre-
quency of weekly dialysis sessions.
We created a yearly cohort for each of 3 influenza sea-

sons: 2005–2006, 2006–2007, and 2007–2008. Each yearly
cohort consisted of adult ESRD patients who had initiated
dialysis prior toOctober 1 of the preceding year (Figure 1). An
8-month window from January 1 to August 31, prior to the
start of follow-up, was used to identify insurance status and
comorbidities. Patients were required to be on continuous he-
modialysis for 3 months prior to the start of follow-up and to
receive at least 9 dialysis sessions from the large dialysis pro-
vider during the last month of baseline. For example, the co-
hort identified for the 2005–2006 season initiated dialysis
prior to October 1, 2004, had Medicare as a primary payer
from January 1 to August 31, 2005, and used continuous he-
modialysis from June 1 toAugust 31, 2005.Vaccination status
and time-dependent confounders were assessed beginning on
September 1 of each year. We performed an analysis of time
to death where cohort members were followed until they
died, had a kidney transplant or switch to peritoneal dialysis,
were lost to follow-up, orwere administratively censored at the
end of the influenza season, whichever came first. Inverse-
probability-of-censoring weights were not applied in the
analysis, as censoring for reasons other than end of the
study period was rare (∼12%).

Exposure and outcome definitions

Influenza vaccination was identified in both the Medicare
Part A hospital/outpatient files and the Part B physician/
supplier files, as well as from vaccination data provided by
the large dialysis provider. A patient was considered vaccinated

Dialysis
Initiation

8-Month Baseline
With Medicare
Parts A and B

Coverage

October 1

End of
Influenza
SeasonJanuary 1 June 1 August 31

Continuous
Hemodialysis

Weekly Observation of Covariates,
Exposure, and Outcome,

Until Censored

Preinfluenza
Period

Influenza
Season

Figure 1. Study design diagram of inclusion criteria and follow-up time for each yearly cohort of adult patients with end-stage renal disease, United
States, 2005–2007.
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as of the first date of influenza vaccine administration docu-
mented in either data source. We used Current Procedural
Terminology codes 90724, 90656, and 90658-60, Health-
care Common Procedure Coding System codes G0008 and
G8482, and the International Classification of Diseases, Ninth
Revision, Clinical Modification (ICD-9-CM) procedure code
99.52 to identify influenza vaccine. All-cause mortality was
identified by the Centers for Medicare and Medicaid Services’
ESRD Death Notification Form.

Time-fixed confounders

Confounders measured during the 8-month baseline peri-
od were identified a priori and placed into 3 “blocks” deter-
mined by the type of variable and the potential strength of
the confounder (refer to Web Appendix 1 available at http://
aje.oxfordjournals.org/). The base set of variables consisted
of demographic information including the number of years
since a patient was diagnosed with ESRD, the number of hos-
pital and skilled nursing days in the last month of baseline (14,
15), infection in the last month of baseline, indicators of frailty
including mobility and oxygen use (5, 14, 15), and serious co-
morbidities, identified by using inpatient and outpatient claims.
We searched for specific ICD-9-CM diagnosis codes, and
equal weight was given to all diagnosis codes for a given con-
dition (i.e., a comorbidity was determined to be present if a pa-
tient had 1 diagnosis code).We alsomeasured bodymass index

and most recent albumin level using the clinical database. The
other blocks of confounders consisted of additional comorbid-
ities (block 2) and preventive services, such as other vaccina-
tions and health screenings (block 3).

Time-dependent confounders

For the main analysis, we updated time-dependent con-
founders each week, beginning September 1. We constructed
variables that were meant to capture changes in frailty status
or to indicate severe frailty (Web Appendix 2). The compos-
ite ambulatory status and frailty variables were chosen from
variables identified as predictors of frailty in the elderly pop-
ulation (5, 14, 15). Some of the variables were not measured
every week. If a patient did not have a hemoglobin or albumin
lab value for a given week, we imputed a value using the last
observation carried forwardmethod.We believe this is a valid
method for this situation, as clinicians treating the patient
would also use it.

Statistical analysis

Yearly influenza severity was assessed on the basis of the
strains in circulation and the level of vaccine match. To esti-
mate the level of vaccine match, we obtained from Centers
for Disease Control and Prevention reports the percentage
of US virus samples in each strain—A(H1N1), A(H3N2),

Table 1. Characteristics of the Linked Study Population for Each Influenza Season, United States, 2005–2007

Variable

2005 2006 2007

Vaccinated
(n = 28,030)

Nonvaccinated
(n = 12,590)

Vaccinated
(n = 27,434)

Nonvaccinated
(n = 14,939)

Vaccinated
(n = 34,282)

Nonvaccinated
(n = 11,999)

% Mean (SD) % Mean (SD) % Mean (SD) % Mean (SD) % Mean (SD) % Mean (SD)

Total, % 69 31 65 35 74 26

Age, years 62.4 (14.4) 60.9 (15.2) 62.4 (14.3) 60.8 (14.9) 62.1 (14.2) 60.6 (15.0)

Male sex 54.3 52.6 54.9 53.3 55.0 53.5

Race

White 51.3 42.6 52.9 44.8 52.0 43.4

Black 42.0 51.7 40.5 49.6 41.6 51.4

Other 6.7 5.7 6.6 5.6 6.4 5.2

Cause of ESRD

Diabetes 45.4 43.7 45.8 44.1 45.0 41.5

Hypertension 30.0 32.3 29.6 31.6 29.7 32.1

Other 24.7 24.1 24.6 24.3 25.3 26.4

Years with ESRD

0 2.0 2.0 1.7 1.6 1.5 1.8

1–3 55.0 53.5 53.5 50.8 50.4 49.2

≥4 43.1 44.6 44.8 47.6 48.1 49.0

Albumin, g/dL 3.9 (0.4) 3.8 (0.4) 3.9 (0.4) 3.8 (0.5) 3.9 (0.4) 3.8 (0.4)

Hemoglobin, g/dLa 12.3 (1.3) 12.2 (1.3) 12.3 (1.3) 12.2 (1.4) 12.2 (1.3) 12.1 (1.4)

Body mass indexb 27.4 (7.0) 26.8 (7.1) 27.7 (7.2) 27.0 (7.2) 27.4 (6.9) 26.9 (6.8)

Abbreviations: ESRD, end-stage renal disease; SD, standard deviation.
a Sample size was slightly smaller for baseline hemoglobin, which was missing for <0.1% of the sample.
b Weight (kg)/height (m)2.
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and B—that antigenically matched the recommended vac-
cine, andwe calculated aweighted average of these percentages
according to the proportion of viruses observed to belong to
each strain (16–18). A separate model was fit for each influenza
season; patients were followed from September 1 until the end
of the influenza season. For the crude model, we used pooled
logistic models with 1 observation for each person-week to es-
timate discrete-time approximations (19) of hazard ratios (20),
comparing vaccinated with unvaccinated observations within
each year. The largest weekly incidence of mortality was 0.5%,
which satisfies the rare event requirement for the discrete-time
approximation (19). Vaccinationwasmodeled as a time-varying
treatment, with all cohort members entering the analysis on
September 1 as unvaccinated. Once vaccinated, patients re-
mained in the vaccinated category until they experienced
death, were lost to follow-up, or were censored at the end of
the influenza season.
The marginal structural model was estimated using inverse-

probability-of-treatment weights. These weights create a
“pseudo-population” where each observation is weighted
by the inverse of the probability of receiving the exposure ac-
tually received, conditional on covariates (21). In the pseudo-
population, measured confounders should be distributed
equally across vaccination groups. Vaccine effectiveness was
estimated by comparing vaccinated and unvaccinated obser-
vations within this theoretically unconfounded pseudo-
population.
Time-varying weights were estimated for each week of

follow-up from September 1 until vaccination or the end of
the influenza season, whichever came first. To estimate the de-
nominator for eachweight, we used the unvaccinated and newly
vaccinated person-week observations to fit a pooled logistic
model estimating the probability of vaccination. To ensure cor-
rect ordering of covariate and exposure data, we used covariate
information up through the previous week to predict the current
week’s vaccination status (22). Time-varying confounders,
measured in the previous week, were included along with base-
line confounders. Theweights were stabilized by using a pooled
logistic model to estimate the probability of being vaccinated,
conditioning only on baseline covariates. We used robust vari-
ance estimates, equivalent to generalized estimating equations
with an independent working covariance matrix (23).
We conducted several sensitivity analyses to reduce bias.

First, we included an expanded set of baseline confounders.
Second, we varied the length of the time window associated
with each observation (4-day and 10-day windows instead of
weeks). Third, we made the cohort more homogeneous and
healthier by requiring survival into the follow-up period, plac-
ing 2 sets of restrictions on baseline covariates, and placing
restrictions on time-dependent covariates. The survival restric-
tions required survival for thefirst several (6, 8, 10, or 12)weeks
of follow-up; for example, when we required survival for
6 weeks, follow-up began in week 7. The limited set of base-
line restrictions required no hospitalization and ≥95 sessions
of hemodialysis during the baseline period. The expanded
set of baseline restrictions included the limited baseline restric-
tions plus no skilled nursing facility care, no infections, and
last baseline albumin value >3.3. The time-dependent restric-
tions amounted to excluding any person who was hospitali-
zed during the required survival period or had fewer than 2

hemodialysis sessions in any week of the required survival
period.

Use of the preinfluenza season as a negative control

Because there is no biologically plausible mechanism for
the vaccine to prevent illness or death before the influenza
virus starts circulating, estimates of vaccine effectiveness
during the preinfluenza period should show no association
in the absence of confounding. Therefore, preinfluenza-period
estimates have been used as a negative control (i.e., an out-
come that is known to be causally unrelated to the exposure)
to detect residual bias in model estimates (24) and to calibrate
vaccine effectiveness models (24–26). To quantify bias in our
crude andmarginal structural model estimates, we ran the same
models during the preinfluenza period (September 1 through
the day before the influenza season started). We estimated
the start of each influenza season using national influenza sur-
veillance data from the Centers for Disease Control and Preven-
tion. We defined the start of the season as the midpoint of the
first week inwhichmore than 10%of submitted respiratory iso-
lates were positive for influenza (16–18). Analyses were con-
ducted with SAS software, version 9.3 (SAS Institute, Inc.,
Cary, North Carolina). This study was approved by the Institu-
tional Review Board at the University of North Carolina.

RESULTS

The size of the yearly cohorts ranged from 40,620 in 2005
to 46,281 in 2007. Vaccination coverage ranged from 65% to
74%. In general, vaccinated patients were slightly older and
more likely to have white race, as well as fewer years of he-
modialysis (Table 1). The 2005 and 2006 influenza seasons
were slightly less severe than the 2007 season, as multiple
strains of influenza (including less severe A(H1N1) and B)
were commonly circulating in the community (Table 2).
Crude estimates of vaccine effectiveness in preventing all-
cause death were similar over all 3 influenza seasons and
were biased, as evidenced by a large protective association
during the preinfluenza period (Table 3).
The marginal structural models for all years had similar

distributions for the stabilized weights; that is, all years had
a median of 1.00, and none of the weights was considered ex-
treme (Web Table 1). The weights balanced observations of
vaccinated and unvaccinated persons on baseline and time-
dependent covariates (Web Tables 2 and 3). Because esti-
mates from all 3 influenza seasons were similar, we focus our
reporting on results for 2005.Adding baseline covariates, includ-
ing preventive services and an expanded set of comorbidities,

Table 2. Characteristics of Specific Influenza Seasons, United

States, 2005–2007

Year
Predominant

Strain
Vaccine
Match, %

Season
Start Date

Season
End Date

2005 A(H3N2), B 63 12/21/2005 4/19/2006

2006 A(H1N1), A(H3N2) 62 12/20/2006 4/25/2007

2007 A(H3N2) 25 1/9/2008 4/16/2008
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did not change the estimate. Similarly, changing the length of
the time window associated with each observation did not
change results (Table 3).

Restricting covariate values alone had little effect on re-
sults (not shown), but progressively applying survival and
covariate restrictions reduced bias. Requiring patients to sur-
vive at least 12 weeks into the follow-up period moved the
preinfluenza estimate from 0.43 to 0.66 (Figure 2). The

addition of subsequent baseline and time-dependent restric-
tions moved the estimate closer to the null. However, this
also reduced the sample size, resulting in wider confidence
intervals. Additionally, models would not converge when
we required 12 weeks of survival and implemented time-
dependent variable restrictions.

Table 4 illustrates the results of the progressive sample re-
strictions on baseline sample characteristics. As restrictions

Table 3. Estimates of Vaccine Effectiveness for Preventing Death Under Different Modeling Specifications, United States, 2005–2007

2005 2006 2007

Preinfluenza Influenza Preinfluenza Influenza Preinfluenza Influenza

HR 95% CI HR 95% CI HR 95% CI HR 95% CI HR 95% CI HR 95% CI

Crude 0.39 0.35, 0.43 0.82 0.76, 0.88 0.32 0.28, 0.36 0.74 0.69, 0.80 0.46 0.43, 0.50 0.83 0.77, 0.90

Basic marginal structural modela 0.43 0.39, 0.47 0.84 0.77, 0.91 0.36 0.32, 0.41 0.79 0.73, 0.85 0.53 0.48, 0.57 0.83 0.77, 0.91

Adding baseline covariates

Block 2 0.43 0.39, 0.47 0.83 0.77, 0.90 0.36 0.32, 0.41 0.79 0.73, 0.85 0.52 0.48, 0.57 0.83 0.76, 0.90

Blocks 2 and 3 0.43 0.39, 0.47 0.84 0.78, 0.92 0.36 0.32, 0.41 0.80 0.74, 0.86 0.53 0.49, 0.57 0.83 0.77, 0.91

Varying time window for
time-dependent covariates

4 days 0.45 0.41, 0.51 0.79 0.71, 0.88 0.40 0.35, 0.45 0.79 0.73, 0.85 0.55 0.51, 0.60 0.83 0.76, 0.90

10 days 0.45 0.41, 0.49 0.84 0.78, 0.91 0.41 0.36, 0.46 0.79 0.73, 0.85 0.56 0.51, 0.60 0.84 0.77, 0.91

Abbreviations: CI, confidence interval; HR, hazard ratio.
a Adjusted for block 1 baseline covariates and time-dependent covariates measured in a 7-day window.

Restriction HR (95% CI)

Survival only

6 weeks 0.45 (0.35, 0.58)

8 weeks 0.54 (0.42, 0.71)

10 weeks 0.61 (0.45, 0.83)

12 weeks 0.66 (0.46, 0.95)

Survival and baseline restrictions

8 weeks, full baseline set 0.50 (0.35, 0.73)

10 weeks, full baseline set 0.66 (0.44, 0.99)

12 weeks, full baseline set 0.76 (0.47, 1.21)

Survival and time-dependent restrictions

8 weeks, time-dependent set 0.72 (0.52, 1.00)

10 weeks, time-dependent set 0.88 (0.59, 1.30)

Survival, baseline, and time-dependent restrictions

8 weeks, limited baseline set, time-dependent set 0.75 (0.54, 1.06)

10 weeks, limited baseline set, time-dependent set 0.96 (0.64, 1.44)

HR

0.25 0.50 1.00 2.00

Figure 2. Forest plot for estimates of vaccine effectiveness in preventing death in the preinfluenza period under varying levels of cohort restriction,
United States, 2005. The full set of baseline restrictions includes no hospitalization, no skilled nursing facility care, no infections, 95 ormore sessions
of hemodialysis, and last baseline albumin test >3.3. The time-dependent restrictions include no hospitalization and 2 or more hemodialysis ses-
sions in the prior week. The limited set of baseline restrictions includes no hospitalization and 95 ormore sessions of hemodialysis. HR, hazard ratio;
bars, 95% confidence interval (CI).
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Table 4. Effects of Selected Sample Restrictions on Baseline Sample Characteristics, United States, 2005

Variable

Original Sample
(n = 40,620)

6-Week Survival
(n = 39,761)

8-Week Survival
(n = 39,424)

10-Week Survival
(n = 38,995)

12-Week Survival
(n = 38,600)

8-Week
Survival + Full
Baseline Set
(n = 26,063)

8-Week
Survival + Time-
Dependent Set
(n = 29,416)

8-Week
Survival + Limited

Baseline,
Time-Dependent Set

(n = 24,935)

% Mean (SD) % Mean (SD) % Mean (SD) % Mean (SD) % Mean (SD) % Mean (SD) % Mean (SD) % Mean (SD)

Vaccinated 69.0 70.3 70.8 71.2 71.4 73.7 73.3 74.5

Age, years 62.0 (14.6) 61.9 (14.6) 61.9 (14.6) 61.8 (14.6) 61.8 (14.6) 62.1 (14.6) 62.0 (14.6) 62.2 (14.5)

Male sex 53.8 53.8 53.8 53.8 53.8 54.8 54.3 54.4

Race

White 49.4 49.2 49.1 49.0 48.9 49.4 49.6 50.0

Black 44.1 44.3 44.4 44.5 44.6 43.8 43.7 43.2

Other 6.5 6.5 6.5 6.5 6.5 6.9 6.7 6.8

Cause of ESRD

Diabetes 44.8 44.8 44.7 44.7 44.6 43.5 44.1 44.2

Hypertension 30.7 30.8 30.8 30.8 30.8 31.9 31.0 31.0

Other 24.5 24.5 24.5 24.5 24.5 24.5 24.9 24.9

Years with ESRD

0 2.0 2.0 2.0 2.0 2.0 1.8 1.9 1.9

1–3 54.5 54.6 54.6 54.6 54.6 53.4 54.7 53.8

≥4 43.5 43.5 43.5 43.5 43.5 44.8 43.4 44.3

Albumin, g/dL 3.9 (0.4) 3.9 (0.4) 3.9 (0.4) 3.9 (0.4) 3.9 (0.4) 4.0 (0.3) 3.9 (0.4) 3.9 (0.4)

Hemoglobin, g/dLa 12.2 (1.3) 12.2 (1.3) 12.2 (1.3) 12.2 (1.3) 12.3 (1.3) 12.4 (1.2) 12.3 (1.2) 12.4 (1.2)

Body mass indexb 27.2 (7.1) 27.2 (7.1) 27.3 (7.1) 27.3 (7.1) 27.3 (7.1) 27.5 (7.0) 27.4 (7.1) 27.4 (7.1)

Abbreviations: ESRD, end-stage renal disease; SD, standard deviation.
a Sample size was slightly smaller for baseline hemoglobin, which was missing for <0.1% of the sample.
b Weight (kg)/height (m)2.
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decreased the sample size, the measured sample characteris-
tics varied little. However, the percentage of the sample that
was vaccinated increased from 69% to 75%, suggesting that
the more restricted samples were healthier in ways that were
not reflected by baseline variables.

When we restricted the cohort to 8 weeks of survival,
applied a limited set of baseline covariate restrictions, and
applied the time-dependent covariate restrictions, vaccine ef-
fectiveness during the influenza season was 9% (hazard ratio =
0.91, 95% confidence interval: 0.72, 1.15) (Web Figure 1).
We chose to report the estimate from the sensitivity analysis
that had the smallest variance (Web Figure 1), among those
with confidence intervals crossing the null in the preinfluenza
period (Figure 2). Plots of corresponding results for 2006 and
2007 are shown in Web Figures 2–5.

DISCUSSION

We attempted to control the healthy-user bias by using
clinically rich data on time-dependent confounders and also
throughcohort restriction.Resultswerebiasedwhenweused a
basic marginal structural model and remained biased when
we incorporated an expanded set of baseline covariates and
varied the length of the time window associated with each
observation. The most effective bias reduction strategy was
restricting the cohort to the healthiest people. When we re-
quired survival into the preinfluenza period, the estimate of
preinfluenza vaccine effectiveness, which should be a hazard
ratio of 1.00, moved from 0.43 to 0.66. Further restrictions
moved the preinfluenza estimate closer to the null, indicating
that the treatment groups were becoming more similar. We
estimated vaccine effectiveness during the influenza season
at 9% (95% confidence interval: −15, 28) when we applied
survival requirements and restricted baseline and time-
dependent variables.

Studies that have estimated influenza vaccine effectiveness
in preventing death by using alternate study designs have re-
ported similar estimates. One study that used the case-centered
design estimated vaccine effectiveness to be 5% (95% confi-
dence interval: 1, 8) among seniors (12). Another study using
a natural experiment to compare years with different levels of
vaccine match found no benefit of the vaccine in preventing
death among patients on hemodialysis (13). It has been esti-
mated that fewer than 10% of wintertime deaths can be attrib-
uted to influenza (27); therefore, a vaccine effectiveness
estimate of 10% or greater is implausible. Vaccine effective-
ness for patients on chronic hemodialysis is likely to be even
lower than in the general population because of an overall de-
crease in immune function (28, 29) and lower immune re-
sponse to vaccination (30). These facts support our finding
of a very small benefit of the vaccine.

The fact that results remained biased when we added base-
line covariates and changed the length of the time window
associated with each time-dependent observation is unsur-
prising. It is likely that ICD-9-CM codes cannot be used to
identify frailty accurately and are not strongly associated
with vaccination (31). Additional studies have suggested that
ICD-9-CM codes from administrative data may have insuffi-
cient sensitivity for identifying comorbidities, which can re-
sult in substantial residual confounding (32, 33).

Covariate adjustment failed to remove bias completely even
though our set of covariates included utilization variables re-
lated to frailty, such as use of skilled nursing facilities, use of
mobility aids, and oxygen use. This finding suggests that addi-
tional frailty indicators are necessary. Alternatively, the adult
hemodialysis population may be frail enough that this type of
measure was insufficiently sensitive to distinguish between
hemodialysis patients likely to receive vaccination and those
unlikely to receive vaccination because of extreme frailty.

We did find that restricting our cohort to increasingly
healthy people reduced the amount of residual bias. Similar
results were found in a study of statins and mortality, where
restricting the analysis to patients who lacked contraindica-
tions and were adherent resulted in an estimate closer to esti-
mates from randomized controlled trials (34). It is likely that
eliminating the sicker patients reduced bias through both
measured and unmeasured indicators of health status.

In our study, applying survival requirements seemed to re-
duce bias more, compared with restrictions based on covari-
ate values. Unfortunately, survival requirements cannot be
applied a priori to distinguish healthier patients from sicker
patients. One possibility would be to develop a risk score that
could be used in future studies as a covariate or to restrict the
analysis sample. However, such a risk score may not be able
to capture frailty or rapidly changing health status. Another
option is to estimate a propensity score using pretreatment
variables and to conduct sensitivity analyses by 1) checking
for variation in the treatment association across propensity
score strata and 2) applying increasing amounts of restriction
based on the propensity score as recommended by Glynn
et al. (35). These procedures can help to detect potential un-
measured confounding, indicated by unexpected treatment
associations among people treated contrary to prediction and
sensitivity of estimates to the exclusion of observations in the
tails of the propensity score distribution.

Restricting the sample does limit interpretation of results and
the ability to subsequently generalize results to a wider popu-
lation. Restriction likely produces an estimate that is closer to
what would be seen in a randomized controlled trial of healthy
patients. However, because the restrictions we applied were
complex and included survival requirements, it would be diffi-
cult to find a simple, meaningful description for the population
towhom our best estimate of vaccine effectiveness applies. Ad-
ditionally, applying restrictions involves a trade-off between
reducing bias (due to increased homogeneity) and reducing
precision (due to decreased sample size).We found that restrict-
ing time-dependent variables drastically reduced our sample
size, and in some scenarios the reduced sample size prevented
us from fitting the final model of preinfluenza vaccine effective-
ness. In all the restriction scenarios we explored, precision was
limited. It is likely, however, that reducing the strong residual
confounding would yield a more valid estimate even in the pre-
sence of wide confidence intervals. A detailed statistical discus-
sion of this trade-off is provided byHanley andDendukuri (36).

In the assessment of methods to reduce the healthy-user
bias, one major advantage of using an influenza vaccine ef-
fectiveness study is the availability of the preinfluenza period
as a negative control. It has been shown that this period is
a reasonable negative control to assess the potential for resid-
ual confounding (37). Although other preventive health
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interventions may not have such a well-defined negative con-
trol, it is important in any nonexperimental research setting to
assess the possibility of residual bias. Lipsitch et al. (38) dis-
cuss how to identify and use other kinds of negative controls
in observational studies. Other studies have successfully used
a negative control outcome that is causally unrelated to the
exposure (24, 39–41).
One limitation of this study is that we may have missed

some influenza vaccinations and, therefore, our results could
be affected by exposure misclassification. This would likely
bias our vaccine effectiveness estimates toward the null
because relatively healthy vaccinated individuals would be
classified as unvaccinated. Although there is little informa-
tion about the completeness of influenza vaccine reporting
in claims and dialysis clinic data, we have 3 reasons to believe
that this occurred infrequently. First, we used vaccination
data from 2 sources (Medicare claims and information from
the dialysis provider). Second, Medicare covers the cost of in-
fluenza vaccine and administration. Therefore, it is unlikely
that patients would need to pay out-of-pocket. Third, patients
on dialysis have 2–3 opportunities per week to be vaccinated
in the dialysis clinic, thus minimizing the need to obtain vac-
cine from a nontraditional provider that may require payment
out-of-pocket.
Using a linked data set with clinical covariates and ac-

counting for time-dependent confounding achieved little re-
duction in confounding due to the healthy-user bias. It is
unlikely that more detailed data would be available to capture
functional status in this population and, therefore, restriction
may be a more powerful tool to overcome the healthy-user
bias. Investigators should consider this strategy in other stud-
ies of preventive health interventions.
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