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Detailed metabolic profiling in large-scale epidemiologic studies has uncovered novel biomarkers for cardiome-
tabolic diseases and clarified the molecular associations of established risk factors. A quantitative metabolomics
platform based on nuclear magnetic resonance spectroscopy has found widespread use, already profiling over
400,000 blood samples. Over 200 metabolic measures are quantified per sample; in addition to many biomarkers
routinely used in epidemiology, the method simultaneously provides fine-grained lipoprotein subclass profiling and
quantification of circulating fatty acids, amino acids, gluconeogenesis-related metabolites, and many other mole-
cules from multiple metabolic pathways. Here we focus on applications of magnetic resonance metabolomics for
quantifying circulating biomarkers in large-scale epidemiology. We highlight the molecular characterization of risk
factors, use of Mendelian randomization, and the key issues of study design and analyses of metabolic profiling for
epidemiology. We also detail how integration of metabolic profiling data with genetics can enhance drug develop-
ment. We discuss why quantitative metabolic profiling is becoming widespread in epidemiology and biobanking.
Although large-scale applications of metabolic profiling are still novel, it seems likely that comprehensive biomarker
data will contribute to etiologic understanding of various diseases and abilities to predict disease risks, with the
potential to translate into multiple clinical settings.

amino acids; biomarkers; drug development; fatty acids; Mendelian randomization; metabolomics; nuclear
magnetic resonance; serum

Abbreviations: BMI, body mass index; CVD, cardiovascular disease; HMGCR, 3-hydroxy-3-methylglutaryl-coenzyme A reductase;
LDL, low-density lipoprotein; MS,mass spectrometry; NMR, nuclear magnetic resonance.

Omics profiling—genomics, epigenetics, proteomics, and
metabolomics—is becoming increasingly widespread in the
worldwide efforts to prevent noncommunicable diseases. This
is driven by the quest for better etiologic understanding but
also importantly by technical developments that allow quanti-
tative high-throughput methodologies for several -omics, notably
genome-wide single nucleotide polymorphisms (1, 2), genome-
wide DNA methylation (3, 4), and detailed metabolic profiling
(5–14). Advancements in the experimental throughput ofmetabo-
lomics have paved the way for applications in large-scale epide-
miologic studies, and the utility of metabolic profiling to advance
our understanding of disease etiologies and to improve risk

predictions is becoming apparent (5, 15–18). The simultaneous
quantification of circulating biomarkers acrossmultiple pathways
gives a fine-grained snapshot of a person’s metabolic state and
offers molecular insights on health and disease. Recent advance-
ments in experimental throughput have paved the way for wide-
spread applications of metabolic profiling in population cohorts,
with an initial focus on the etiology and biomarkers of cardiome-
tabolic diseases (5–7, 19–24).

General aspects of design and analysis of metabolomics
studies in epidemiologic research has recently been reviewed
in this journal (20). In this review, we focus on large-scale
epidemiologic applications of nuclear magnetic resonance
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(NMR) metabolomics for quantifying circulating biomarkers.
The emphasis is on a specific platform for quantitative high-
throughput serum metabolomics, because this is the first, and
currently the only, NMR-based metabolomics platform broadly
applied in large-scale epidemiologic studies (5). We start out by
covering the overall characteristics of this platform. We also
detail how integration of metabolic profiling data with genetics
can enhance drug development, and we provide some reflec-
tions on study design and statistical analyses based on lessons
learned from various applications of metabolic profiling in large
cohort studies.

FROMLIPOPROTEINQUANTIFICATION TO
COMPREHENSIVEMETABOLIC PROFILING

A high-throughput NMR platform for epidemiologic
applications

NMR-based lipoprotein quantification has a long history
(22, 25, 26). During the past decade, our research team has
focused on the development of a quantitative NMR metabo-
lomics platform for high-throughput profiling of serum (and
plasma) samples, in which the lipoprotein quantification has
been taken to subclass level, and the metabolic quantifications
extended broadly beyond lipoproteins (5, 23). The development
has been made from the initial phase with applications in epide-
miology and clinical settings in mind. This focus has directed
experimental optimization for absolute quantification, maximal
throughput, and cost-effectiveness.

In addition to analyses of lipoprotein measures, recently
extensively reviewed by Mallol et al. (25), NMR spectroscopy
can also be used as a general method to quantifymultiple molec-
ular constituents in serum and other biofluids (27–29). However,
with the exception of studies using the NMRmetabolomics plat-
form described in this review, very few applications of NMR for
quantifying a broad spectrum of circulating metabolites have
been published in epidemiologic contexts (5, 29, 30). Thus, the
situation in the field is currently such that the large-scale applica-
tions of serum NMR metabolomics (summarized in Table 1)
include only studies based on the platform in question.

An overview of the metabolic biomarkers quantified by the
high-throughput serum NMR platform is shown in Web Fig-
ure 1 (available at https://academic.oup.com/aje). A multitude
of metabolic measures is quantified directly from serum in a
single experiment. The profiling covers both standard lipid
measures and a wealth of other metabolic biomarkers. In con-
trast to other NMR methodologies of advanced lipoprotein
profiling (25, 31–33), this platform also provides quantification
of many fatty-acid measures, some abundant proteins, and a
broad range of low-molecular-weight metabolites together
with very detailed lipoprotein subclass profiling (5). The panel
of biomarkers has not been preselected based on anticipated
biological relevance, but the metabolic measures are included
because it is feasible to quantify these measures robustly in a
single experiment (23). Circulating metabolites at concentra-
tions down to ≈10 μmol/L are quantified, but the exact limit
depends on the molecular identity. The biomarker output pro-
vided contains the majority of the metabolic information reli-
ably quantifiable by NMR spectroscopy of serum (5, 23).
Even with a substantial increase in the measurement time

(at the expense of cost-effectiveness), only a fewmeasures could
be added to the biomarker panel. The experimental capacity is
linearly scalable, dependent only on the number of spectro-
meters. The pricing for the entire biomarker panel is compa-
rable to that of the more restricted lipid testing by routine
clinical chemistry methods (5).

In the case of the NMR metabolomics platform discussed
here, over 200 biochemically and metabolically distinct mea-
sures are given as the standard output (Web Figure 1). This
number includes around 150 primary concentrations as well as
selected ratios. For instance, individual fatty-acid concentrations
relative to total fatty acids are included because they better
reflect the biology of individual fatty acids than do the absolute
concentrations (34), and the ratios are commonly the onlymetric
captured by complementary analytic methods (35). The lipid
composition measures of lipoprotein subclass particles are also
included in the overall number of metabolic measures because
they define a biologically separate entity of measures (36).

Sample preparation

The blood samples routinely collected in epidemiologic co-
horts and biobanks can be directly used for metabolic profiling.
In general, any collection of blood samples amenable for lipid
testing by standardmethods can be used for the NMR platform.
This means that samples stored long-term must have been kept
at a temperature of −70°C or colder to retain the composition
of lipoprotein particles, and the integrity of other metabolic
measures. Both fasting and nonfasting samples can be analyzed
(5, 37). The spectral characteristics of serum samples reflect vari-
ous aspects of sample quality, and quality-control procedures
can detect irregularities due to potential sample degradation.
A sample volume of either 100 μL or 350 μL is used for the
analysis, with both volumes yielding the same set of metabolic
measures; analyses with the larger volume are more cost-effective
due to shorter measurement time in the NMR spectrometer.
One of the primary advantages of NMR is the minimal sample
preparation required. Automated liquid handlers simply mix a
buffer with the serum and move the material to 96-format racks
of NMR tubes. The racks are subsequently inserted into the
robotic sample changer, cooled to refrigerator temperature.
The sample changer holds 480 samples simultaneously, yielding
over 24 hours of automated measurements before the need to
reload more samples. Automated shimming, accurate temperature
control, and stable electronics in modern off-the-shelf NMR spec-
trometers have been a prerequisite for the high throughput. Details
of the present platform have been described previously (5, 23).
The original methodology was based on 3 molecular windows,
of which 2 were acquired from the original serum samples, and 1
from the serum lipid extracts (23, 38, 39).More recently, a faster
method has been developed in which the computational analysis
circumvents the need for experimental lipid extractions.

In NMR spectroscopy, absolute quantification of metabolic
measures in absolute units, rather than relative to another mea-
sure, can currently be achieved without external standards added
to the blood specimen (40). In the NMRmetabolomics platform
that is the focus of this review, advanced proprietary software
with integrated quality control is used to convert the spectral
information to absolute concentrations of the metabolic mea-
sures. The basis for the metabolite quantification is Bayesian
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Table 1. Metabolic Profiling Studies That Had>5,000 Participants and That UsedQuantitative SerumNuclear Magnetic Resonance
Metabolomics

Focus Study Populations and Description Reference(s)

Biomarkers for Disease Events and Risk Prediction

Cardiovascular disease Biomarker discovery for risk of first incident cardiovascular event (n = 13,441 Finns and
Britons from 3 population-based studies with 12–23 years of follow-up). Phenylalanine
andMUFAswere found to be predictive of higher CVD event risk, whereas omega-6
fatty acids and docosahexaenoic acid levels were inversely associated with CVD
event risk, after adjustment for routine lipid levels and other risk factors. These 4
biomarkers in combination improved risk reclassification above established risk
factors in 2 validation cohorts. Analytic and biological comparison of biomarkers
quantified by the NMR platform and 2MS platforms (n > 2,000 Americans and n >
2,000 Finns in the analytic and biological comparison between NMR andMS
biomarker associations).

7

All-causemortality Discovery and replication of biomarkers for 5-year risk of death. Glycoprotein
acetylation, albumin, VLDL particle size, and citrate were found to be strongly
predictive of the short-term risk of all-causemortality, and a biomarker score was
shown to improve risk prediction and illustrate a potential clinical application for patient
prioritization (n = 17,345 Estonians and Finns from 2 population-based studies).

37

Inflammation Molecular etiology of glycoprotein acetylation, the strongest biomarker for all-cause
mortality identified in Fischer et al. (37), investigated by cytokine panels and whole
blood gene expression networks. Glycoprotein acetylation was found to be amarker of
chronic inflammation related to increased neutrophil activity and strongly predictive of
the long-term risk for sepsis and respiratory infections (n ≈ 10,000 Finns from 3
population-based cohorts).

16

Type 2 diabetesmellitus Cross-sectional associations of 8 amino acids with glycemia (n ≈ 9,400 Finnishmen)
and risk for onset of type 2 diabetes (n = 526). Branched-chained and aromatic amino
acids, as well as alanine and glutamine, were predictive of diabetes risk, partly
explained by insulin resistance.

34, 36, 42, 43, 90

Cross-sectional and prospective associations of the ketones acetoacetate and β-
hydroxybutyrate (n ≈ 9,400 Finnish men/n ≈ 4,300 in prospective analyses), showing
positive association with future glucose tolerance and, in the case of acetoacetate,
higher risk for diabetes onset. The results were attributed to insulin sensitivity rather
than insulin resistance.

56

Associations of fatty acids with 5-year glucose tolerance and type 2 diabetes risk (n ≈
9,400 Finnishmen/n ≈ 4,300 in prospective analyses), showing that glycerol,
triglycerides, andMUFAs are positively associated with diabetes risk, and omega-6
fatty acids are inversely associated.

34

Prospective associations of lipids and lipoprotein subclassmeasures with glycemia and
type 2 diabetes risk (n ≈ 6,607 Finnishmen), showing stronger predictive associations
of lipoprotein and apolipoprotein ratios than routine lipid measures.

78

Metabolic Risk-Factor Characterization

Adiposity Mendelian randomization analyses of bodymass index as a causal risk factor for
systemicmetabolism: causal effects of adiposity on numerousmetabolicmeasures,
including branched-chain and aromatic amino acids, omega-6 fatty acids, and
glycoprotein acetylation aswell asmultiple lipoprotein lipid subclasses and particle size
measures (n = 12,664 young adults from4 population-based cohorts in Finland).Weight
changeswere paralleled by extensivemetabolic changes, with a similar metabolic
signature as observed cross-sectionally and genetically (n ≈ 1,500with 3 time points).

8

Insulin resistance Cross-sectional associations of metabolites with insulin resistance index (n = 7,098
young Finnish adults from 2 population-based cohorts in Finland). Results showed
numerous strongmetabolite associations with insulin resistance, independent of
components of the metabolic syndrome, and uncoveredmultiple sex-specific
associations and adiposity interactions.

21

Cross-sectional associations of lipoprotein subclassmeasures with different indices for
insulin resistance, showingmore prominent associations with liver insulin resistance
than with whole-body insulin sensitivity (n = 8,750 Finnish men).

91

Cross-sectional associations of lipoprotein subclass profiles with glucose tolerance
categories and insulin resistance index, showing prominent associations of insulin
sensitivity with VLDL and HDL subclasses, including heterogenic associations for
small HDL (n = 9,400 Finnishmen).

36

Sex hormone–binding globulin Mendelian randomization analysis indicating that sex hormone–binding globulin is
strongly associated with numerous circulatingmetabolites but not a causal risk factor
for the systemicmetabolic effects (n ≈ 16,000 from 4 Finnish cohorts for either cross-
sectional or causality analyses).

74

Birth weight Associations of lower birth weight with themetabolic profile in adolescents and adults.
Themetabolic associations found were of modest magnitude and displayed a similar
overall metabolic signature as themetabolite association pattern with higher adiposity
(n = 18,288 from 7 population-based cohorts from Finland and the United Kingdom).

73

Table continues
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Table 1. Continued

Focus Study Populations and Description Reference(s)

Menopause and aging Associations of age, sex, andmenopause with the systemicmetabolic profile, assessed
cross-sectionally (n ≈ 23,000 people from 8 cohorts in Finland and Estonia).
Menopause status was associated with glutamine, tyrosine, and isoleucine, along with
atherogenic lipoprotein measures.

92

Alcohol consumption Cross-sectional associations of alcohol consumption with the systemicmetabolic profile
(n = 9,778 young Finnish adults from 3 population-based cohorts). Results showed
robust biomarkers for alcohol intake beyond routine lipids, including adverse
associations with omega-6 fatty acids, MUFAs, glutamine, and citrate. Longitudinal
analyses showed that the metabolic signature of alcohol intake track with changes in
alcohol intake (n ≈ 1,450 with 3 time points).

93

Vitamin D Cross-sectional associations of serum25-hydroxyvitamin D concentrationswith the
systemicmetabolic profile (n = 1,726 in a discovery cohort and n = 6,759 in a replication
cohort). Results showed 30 replicatedmetabolic associations, including constituents of
large VLDL and small LDL subclasses and relatedmeasures such serum triglycerides, as
well as fatty acids andmeasures reflecting the degree of fatty acid saturation.

54

Metabolic Effects of Drug Interventions

Statin therapy Effects of statins on the systemicmetabolic profile, assessed for 4 longitudinal cohorts
(n = 5,590 with 2 time points). Statins were shown to lower small VLDL particles and
remnant cholesterol, in addition to the LDL-lowering effects. Minimal or no side effects
on nonlipid metabolites were observed. The observational results were validated by
Mendelian randomization analyses in 8 population-based cohorts (n = 27,914), with
associations in theHMGCR gene perfectly matching the longitudinal associations.

13

Hormonal contraceptives Effects of hormonal contraception on the systemicmetabolic profile assessed in cross-
sectional and longitudinal settings (n = 5,841women from 3 Finnish cohorts; n = 869
with 2 time points). Combined oral contraceptive pills were shown to have very
prominent metabolic effects, including changes in many fatty acids and amino acids,
and predominantly related to higher cardiometabolic risk. Themetabolic aberrations
were reversed upon discontinuation. Progestin-only contraceptives had little effect on
systemicmetabolism.

75

Genome-Wide Association Studies

Genetic determinants of
circulating biomarkers

GWAS of 115metabolic measures and 99 derivedmeasures from the NMR platform.
The study identifiedmetabolic associations at 31 loci, including 11 novel loci (n =
8,330 individuals from 5 population-based cohorts in Finland), and provided heritability
estimates from twin pairs (n = 561 pairs; 221monozygotic and 340 dizygotic pairs).

85

GWAS of 123metabolic measures fromNMRmetabolomics (up to n = 24,925
individuals from 14 European cohorts). The study identified associations at 62 loci,
including 8 novel loci for amino acids and other metabolites. The results further
elucidated the effects of lipoprotein(a) on lipid metabolism.

30

GWAS of 11metabolic networks, identifying 34 genomic loci, of which 7 were novel. The
results illustrate howmultivariate analysis of correlatedmetabolic measures can boost
power for gene discovery (n = 6,608 from 2 Finnish cohorts).

94

Functional Genetics

Lipid genes Metabolic profiling and genetic fine-mapping of 95 lipid loci, showing refined lipid
associationswith numerous loci and illustrating howmost lipid genes affect a broad span
of lipidmeasures (n = 8,330 individuals from5 population-based cohorts in Finland).

83

Lipid genes/pleiotropy Assessment of pleiotropy in 6 cholesterol- and triglyceride-related genes. The broad lipid
association patterns indicated that the lipid loci cannot be attributed to a single routine
lipid measure, and the implications for Mendelian randomization studies are discussed
(n = 10,547 individuals from 3 population-based cohorts in Finland).

51

Type 2 diabetes genes Lipoprotein subclass profiling of 34 risk loci for type 2 diabetes. The results suggest that
only a small number of diabetes loci affect lipoprotein lipid measures (n = 6,580
individuals from a population-based cohort of Finnishmen).

95

Liver function genes Metabolic profiling of 42 genetic loci associated with concentrations of liver enzymes in
plasma, highlighting multimetabolic effects of several loci (n = 6,516 individuals from 2
population-based cohorts from Finland and the United Kingdom).

96

Blood-pressure genes Metabolic profiling of 29 blood pressure genes, indicating weak (if any) effects of blood
pressure on the circulatingmetabolic measures (n = 7,032 individuals from 3
population-based cohorts in Finland).

97

Interleukin-1 inhibition gene Lipoprotein subclass profiling of genes encoding IL-1 receptor antagonist, detailing the
proatherogenic lipid effects of IL-1 inhibition, with implications for treatment of
cardiometabolic disease by IL-1 inhibitors (n = 8,330 individuals from 5 population-
based cohorts in Finland).

76

Triglyceridemetabolism gene Metabolic profiling of a rare variant in APOC3, detailing the VLDL effects ofAPOC3 and
showing partly independent effects compared with the LPL gene (n = 13,285 from 2
population-based cohorts in the United Kingdom).

67

Table continues
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modeling, as described previously (5, 23, 41). The output data
for each sample comprise a list of concentrations for the meta-
bolic measures summarized inWeb Figure 1. In comparisonwith
clinical chemistry assays, theNMRmetabolomics platform essen-
tially just provides more biomarkers in a single experiment. The
accuracy of biomarker quantification by the platform is compara-
ble to what is commonly achieved by assays routinely used in
clinical chemistry (see the caption for Web Figure 1) (30). The
consistent biomarker quantification is due to the inherently repro-
ducible nature of NMR spectroscopy; the samples never come
into contact with the radiofrequency detector in the NMR spec-
trometer. This makes NMR metabolomics essentially free of
batch effects that commonly hamper applications of mass spec-
trometry (MS) to large-scale epidemiologic studies. Biomarker
quantification directly from serum, without any sample extrac-
tion procedures, further contributes to the high reproducibility.
The NMR metabolomics platform featured here employs a tar-
geted approach, meaning that an a priori defined set of metabo-
lites is quantified from the experimentation. The platform is
therefore not designed for novel biomarker discovery as such, in
contrast to untargeted metabolomics approaches. Nonetheless,
epidemiologic analyses based on the NMRplatform have identi-
fied multiple novel and emerging biomarkers for cardiometa-
bolic diseases (5, 7, 34, 42–44), because many of the quantified
metabolic measures have not previously been studied in large
cohorts. The pros and cons of targeted versus untargeted meta-
bolomics approaches have been reviewed elsewhere (20, 45).

NMR, MS, and clinical chemistry: analytic and biological
consistency

Figure 1 shows that biomarker concentrations quantified by
the NMR metabolomics platform were highly consistent with

the concentrations obtained from routine clinical chemistry.
Figures 2 and 3 show that quantification of emerging biomar-
kers, such as fatty acids and ketone bodies, by NMR is also
coherent with results from other analytic methods. With quan-
titative biomarker data, it does not make a fundamental differ-
ence whether a metabolic measure is quantified by NMR or by
alternative analytics—if each method identifies a particular
molecular measure, only the accuracy and precision of the con-
centration measurement may differ (i.e., we do not have an
NMR-molecule, an MS-molecule, or a clinical chemistry mole-
cule but only a molecule). For applications of metabolomics in
epidemiology, consistency of metabolic biomarker associations
with disease events across different platforms is important,
maybe more so than exact analytic correspondence in absolute
concentrations. Figure 4 shows that emerging biomarkers quan-
tified by both NMR spectroscopy and 2 widely used MS plat-
forms have similar associations with disease incidence. These
results suggest that associations of amino acids and gluconeo-
genesis metabolites with cardiovascular disease (CVD) risk
are broadly consistent in their association with CVD, regard-
less of whether the biomarkers are quantified by NMR or MS.
Accordingly, associations of amino acids with the risk for type
2 diabetes mellitus have also been consistent across NMR and
MS platforms (46).

The advantages and disadvantages of NMR andMS—2 key
technologies for metabolic profiling—have recently been exten-
sively covered inmultiple reviews (12, 45, 47–49). These analytic
techniques offer mainly complementary insights, partly due to
their different biomarker coverage. The higher sensitivity of MS
allows for quantification of low-concentration metabolites and
thusmore in-depth characterization of pathophysiologicalmech-
anisms (9, 50). In contrast, the cost-effectivemetabolite quantifi-
cation by NMR favors large-scale epidemiologic studies, such

Table 1. Continued

Focus Study Populations and Description Reference(s)

HDLmetabolism gene Lipoprotein subclass profiling and genetic fine-mapping ofGALNT2, a locus associated
with HDL cholesterol. Results showed themost prominent associations ofGALNT2
with cholesterol in medium-sized HDL particles (n ≈ 10,000 Finnishmen).

98

Bioinformatics Applications

Multivariate meta-analysis of
genome-wide studies

Multivariate associations of lipoprotein subclassmeasures (and genotypes), similar to
the approach used in Inouye et al. (94), but allowing analysis based on summary
statistics-based of single or multiple cohorts (n = 10,753 from 3 Finnish population-
based cohorts).

99

Multivariate gene-metabolome
associations

Bayesian reduced-rank regression to assess the impact of multiple single nucleotide
polymorphisms on a high-dimensional phenotype, demonstrated for the case of
lipoprotein subclass measures. Two novel lipid genes were identified by the
multivariate GWAS approach (n ≈ 10,000 from Finnish 3 population-based cohorts).

100

Multiple output regression with
latent noise

Study illustrating how structured noise can, and should, be taken advantage of when
assessing the associations between covariates and target variables, usingmulti-
omics data and variousmetabolic measures (n = 5,211 from 2 Finnish population-
based cohorts).

101

Network analysis integrating
genome andmetabolome

Methodology to assess differences in molecular associations and underlying genetic
variants, illustrated in the context of obesity (n = 7,255 from 2 Finnish population-
based cohorts).

102

Abbreviations: APOC3, apolipoprotein C3 gene; CVD, cardiovascular disease;GALNT2, UDP-N-acetyl-alpha-D-galactosamine: polypeptide N-
acetylgalactosaminyltransferase 2 gene; GWAS, genome-wide association study; HDL, high-density lipoprotein;HMGCR, 3-hydroxy-3-methylglu-
taryl-coenzyme A reductase gene; LDL, low-density lipoprotein; LPL, lipoprotein lipase gene; MS, mass spectrometry; MUFA, monounsaturated
fatty acid; NMR, nuclear magnetic resonance; VLDL, very low-density lipoprotein.
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as profiling of entire cohorts and clinical trials (5, 7). For exam-
ple, applications of Mendelian randomization for inferring
causal relationships with genetic instruments are demanding in
terms of sample-size requirements, and therefore they benefit
from the high throughput and robust quantification offered by
NMR (5, 13, 30, 51). The possibility with NMR to quantify
biomarkers directly from serum, including standard cholesterol
and triglyceride measures, further makes the platform more
reminiscent of clinical chemistry than a technology competing
with MS. However, we consider that both metabolomics tech-
nologies have great potential in epidemiologic studies and will,
in many circumstances, complement each other. We anticipate
more applications combining NMR and MS in the near future,
particularly as cost-efficiency inMSmethodologies and imple-
mentations is improved (52–54).

Although the featured NMR platform is currently the only
one applied for serum metabolomics in large-scale epidemiol-
ogy, alternative high-throughput NMR setups exist for detailed

lipid analyses (25, 33, 55). In particular, the method for quan-
tifying lipoprotein particle numbers offered by LabCorp (Ra-
leigh, North Carolina) has been widely used in epidemiologic
studies as well as in clinical settings (56, 57). This approach has
recently been extended to cover quantification of the inflamma-
tory biomarker glycoprotein acetylation (58, 59). This indicates
a step towards combining lipoprotein profiling with quantifi-
cation of nonlipid biomarkers, a feature otherwise unique to
the NMR platform reviewed here. Other large-scale applica-
tions of NMR metabolomics have pertained to urine analyses
(60–62) and combination of urinary and circulating metabolite
data in genomic studies (63, 64), as reviewed previously (20).

METABOLIC PROFILING IN EPIDEMIOLOGY

Comprehensive metabolic profiling has recently started to
fulfill the promise of benefits for epidemiologic research (5,
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Figure 1. Comparison of lipoprotein lipid and glucose quantification in an epidemiologic setting, using nuclear magnetic resonance (NMR) (2013)
and routine clinical chemistry assays (y-axis) (n = 2,749 from the Avon Longitudinal Study of Children and Parents (ALSPAC) Mothers Cohort)
(103). The correlation coefficients are 0.95 (A), 0.94 (B), 0.93 (C), 0.91 (D), and 0.96 (E). The lower concentration of low-density lipoprotein (LDL)
cholesterol quantified by NMR than by the Friedewald approximation stems from the latter also containing intermediate-density lipoprotein choles-
terol (104). The NMR-based LDL cholesterol refers specifically to cholesterol in the LDL particles with the sizes as defined inWeb Figure 1. The cor-
respondence of these measures varies slightly from cohort to cohort, but the correspondence is generally excellent between the clinical chemistry
and the NMR for these measures. It is important to note that the comparisons illustrated here do not show strict analytic comparisons with samples
undergoing identical processing and storage time, but rather indicate analytic consistency demonstrated in epidemiologic settings. No quantitative
assessment of analytic correspondences is therefore made here. When it comes to potential clinical applications of metabolic profiling, more ana-
lytic and clinical testing is required, particularly with those metabolic measures that are intended to be used as part of diagnostic protocols. It is also
to be expected that official accreditations of analytic and laboratory procedures will be a prerequisite for widespread clinical applications. HDL,
high-density lipoprotein.

Am J Epidemiol. 2017;186(9):1084–1096

Quantitative SerumNMRMetabolomics 1089

D
ow

nloaded from
 https://academ

ic.oup.com
/aje/article/186/9/1084/3813118 by guest on 23 April 2024



11, 19). Although many metabolic measures are quantified
simultaneously, the same statistical methods can be used as for
other clinical chemistry assays. For instance, linear regression
modeling can be applied to each metabolic measure individu-
ally. This is useful for the initial biomarker assessment and rep-
lication, because it facilitates the biological interpretability and
enables adjustment for relevant confounders. The multivariate
statistical analyses often applied in metabolomics studies make
it difficult to integrate analyses with other risk factors and relate
results to more established measures. However, analyzing the
quantitative biomarker data using standard medical statistics
makes it straightforward to combine analyses of the metabolic
biomarker panel with conventional risk factors. This can help
to put the association magnitudes of novel biomarkers into
context, and it further allows investigators to extend the analy-
ses to cover more measures than are obtained by a single meta-
bolomics platform. Nevertheless, straightforward applications
of linear regression analyses by no means preclude multivariate
or nonlinear analyses—on the contrary, quantitative molecular
data facilitate many different statistical approaches (5, 6, 65).

The NMR platform produces the full set of biomarkers for
every sample. However, once the data are obtained, investiga-

tors can report results from individual biomarkers (e.g., omega-3
fatty acids (66)), single metabolic pathways (e.g., fatty-acid bal-
ance (34)), or all the metabolic measures from the platform (67).
There are many scientific advantages in assessing the compre-
hensive biomarker data across multiple metabolic pathways. In
addition to biomarker discovery, this approach has proven to be
a powerful way to study risk factors and disease processes that
have a systemic impact on the metabolic profile. For instance,
adiposity broadly affects systemic metabolism, and comprehen-
sive metabolic profiling therefore provides a more realistic view
on the overall molecular associations, many of which would be
missed by focusing on established risk factors or single path-
ways (8). In the case of risk prediction, it is also an asset to have
an extensive set of metabolic biomarkers at a fixed cost—the
simultaneous quantification of the routine lipid panel, glucose,
and inflammation along with many other emerging biomarkers
may eventually prove to be pivotal for cost-effective clinical ap-
plications (7, 13, 68).

Quantitative metabolomics data allow for hypothesis-driven
and hypothesis-free research approaches both. In the case of
biomarkers not previously investigated in large cohorts, the
hypothesis-free approach feeds hypothesis generation—if there
are no prior data on a particular biomarker, an informed hypothe-
sis is unlikely. Regardless of the analytic approach, demonstrating
replication in independent samples is important. By replication
we do not mean that separate discovery and replication cohorts
(as in Fischer et al. (37)) would be necessary. Rather, as recom-
mended for genome-wide association studies (69), joint analyses
ofmultiple independent cohorts and demonstration of consistency
(as exemplified in Würtz et al. (13)) is becoming the most com-
mon approach. Regarding statistical significance, it is important to
account for multiple testing whenever a high number of metabo-
lites are tested. A significance threshold that accounts for multiple
testing of correlated measures can be derived by Bonferroni cor-
rection for the number of principal components explaining 95%–

99%of the variation in themetabolic data (70). For theNMRplat-
form featured in this review, this number is typically 30–50 for
each cohort, resulting in a significance threshold of P ≈ 0.001.
However, we always advocate replication to judge the robustness
of metabolic associations rather than relying on cutpoints for sta-
tistical significance.
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OVERVIEWOF LARGE-SCALEMETABOLIC PROFILING
STUDIES BYNMR

Bymid-2016, over 400,000 blood samples from some 150 epi-
demiologic and clinical studies had been profiled using this NMR
platform. These include the INTERVAL study, a randomized trial
of blood donors with more than 46,000 individuals (71); the Lon-
don Life Sciences Prospective Population (LOLIPOP) study with
around 30,000 individuals (72); multiple birth cohorts and other
population-based studies with several thousand participants each;
and twin studies, as well as drug trials and other intervention stud-
ies (5).Many of the individual studies are working collaboratively
to support replication and, where appropriate, pooling of results to
obtain precise estimates and sufficient power for genetic analyses.
Table 1 lists the publications to date, in which metabolic profiling
data on more than 5,000 people per study have been analyzed;
most of the studies includemultiple cohorts and some formof rep-
lication. In more than half the studies, the number of people with
metabolic profiling data is approximately 10,000 or more. The

largest study published features around 35,000 samples analyzed
(13). In the following section, we highlight two of these studies in
more detail: 1) an evaluation of the causal effects of adiposity on
systemic metabolism; and 2) an assessment of the metabolic ef-
fects of statin treatment beyond their known effects on low-
density lipoprotein (LDL) cholesterol.

Molecular characterization of adiposity

Many risk factors plausibly affect multiple molecular path-
ways, but the extent of this is largely unknown because of the
inability to study comprehensive influences on systemic metabol-
ism until recently. Determining the metabolic association patterns
across multiple pathways can also help to pinpoint similarities in
the molecular signatures of different risk factors, as in the case of
bodymass index (BMI) and birthweight (8, 73).

Our study on metabolic signatures of adiposity in 12,644
adolescents and young adults illustrates the metabolically diverse
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effects of BMI (8). BMI was robustly associated cross-sectionally
with numerous metabolic biomarkers, as illustrated for selected
measures inWeb Figure 2. In addition to cross-sectional associa-
tions,Mendelian randomization (use of genetic instrumental vari-
ables), suggested that BMI had causal effects on multiple
metabolic pathways, including atherogenic lipoproteins and
lipids, fatty acids, and amino acids (Web Figure 2). The effect of
adiposity on systolic blood pressure illustrates the possibility
of combining the metabolic data with traditional risk markers.
Having adequate power to conduct Mendelian randomization
is a benefit of quantitative metabolic profiling in large cohorts
(5, 74).

The overall patterns of metabolic associations were similar
for cross-sectional and causal estimates. To summarize the
causal influences of adiposity across the comprehensive meta-
bolic profile, we charted all causal effect estimates against the
corresponding cross-sectional associations (Web Figure 2).
The close resemblance indicated that the associations between
BMI and circulating biomarkers are likely to reflect the molec-
ular effects of adiposity rather than arising from confounding
or reverse causality. Although the effects of adiposity on each
individual biomarker are modest, the overall metabolic aberra-
tions may have considerable effects on cardiometabolic risk.
Thus, the importance of excess adiposity likely arises from
multiple metabolic pathways rather than pertaining to individ-
ual risk markers. The linear character of the metabolic associa-
tions and the Mendelian randomization analyses further suggest
that there is no BMI threshold at which its adverse metabolic
effects notably increase. However, analyses ofmetabolic changes
during 6-year follow-up, in a subset of 1,466 young adults,
demonstrated that the metabolic profile is highly responsive to
changes in BMI with changes congruent with expectation from
the results from cross-sectional and Mendelian randomization
analyses (8).

Combiningmetabolic profiling and genetic data for
exploring drug effects

Metabolic profiling of clinical trial samples can be an im-
portant resource to assess risk prediction in specific patient
groups as well as to provide improved understanding of the
molecular effects of interventions. By exploiting various epi-
demiologic study designs, it may be possible to estimate the
metabolic effects of certain drugs even when randomized evi-
dence is not available. For instance, this can be done by examin-
ing the metabolic changes associated with starting and stopping
the pharmacological treatment in longitudinal studies of obser-
vational cohorts, as we have recently demonstrated with statins
(13) and hormonal contraception (75). The detailed metabolic
effects can in some circumstances be assessed already at the
preclinical stage based on genetic variants mimicking the
pharmacological action of the drug targets (i.e., usingMendelian
randomization) (30, 51, 76). This approach circumvents con-
founding by indication and other biases inherent in observational
studies, although it may be biased by violation of the assumptions
of instrumental variables (77–79). In a proof-of-concept study,
we combined these 2 approaches to demonstrate how metabolic
profiling in observational cohorts can be used to characterize com-
prehensive metabolic effects of statin therapy (13). The character-
istics of the approach are shown inWeb Figure 3.

Statins reduce LDL cholesterol concentration by inhibiting 3-
hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR),
leading to a proportionate reduction in CVD risk. Statins have
been ascribedmyriads of pleiotropic properties beyond lowering
LDL cholesterol, yet the effects on many lipids and other bio-
markers have not been assessed in large studies, primarily due to
lack of affordable means. Because no randomized trial data on
themetabolic biomarkers were available in our proof-of-concept
study (13), the detailed metabolic effects of statins were ana-
lyzed from serially collected blood samples, in which a subset of
individuals started statin therapy during follow-up. These longi-
tudinal analyses were replicated across 4 cohorts, with consistent
results despite differences in demographics and follow-up dura-
tion. Starting statin therapy was associated with changes in
numerous lipid measures in addition to the anticipated lower-
ing of LDL. Of particular interest was a discordance between
the modest lowering of total triglycerides and an efficacious
lowering of cholesterol in the very-low-density lipoprotein and
intermediate-density lipoprotein particles (i.e., the so-called rem-
nant cholesterol that has been identified as a potential causal cul-
prit in the development of ischemic heart disease) (80, 81). The
detailed metabolic profiling suggested that statins are more effec-
tive in reducing remnant cholesterol than previously appreciated;
this indicates potential cardioprotective benefits of statins beyond
LDL-cholesterol lowering. Statin use was not robustly associated
with changes in any of the nonlipid metabolites assayed by the
platform. These results suggest no substantial side effects of
statins on, for example, circulating amino acids. However, larger
studies or randomized trials are required to demonstrate potential
minor effects on the nonlipid biomarkers, such as glycemic
effects of statins (82).

To verify that the observed metabolic changes were
actually due to the effects of statins, the analyses were cor-
roborated via Mendelian randomization by using a genetic
variant in the HMGCR gene as an unconfounded proxy for
the pharmacological action of statins. Specifically, we exam-
ined the metabolic effects of genetically induced HMGCR
inhibition—mimicking a very small statin dose—and com-
pared the metabolic association pattern with HMGCR geno-
types to the metabolic changes observed longitudinally. We
found striking concordance between the observational effects
of statins on the metabolic profile and the corresponding asso-
ciations with the genetic variant inHMGCR.

The combination of metabolomics data with genetic data in a
large number of individuals readily extends beyond studying
statin effects. This type of Mendelian-randomization study
design can be seen as a “natural” clinical trial (14). Due to
the prohibitively high costs of randomized trials, it is of great
interest to assess the detailed metabolic effects of novel tar-
gets already in preclinical stages of drug development. Many
known and novel drug targets have established genetic prox-
ies mimicking their pharmacological actions, which enables
examination of the detailed metabolic association patterns of
these targets. We have previously published the metabolic
associations of genetic variants in the proprotein convertase
subtilisin/kexin type 9 and other lipid genes (5, 51, 83). With
the genome-wide association summary statistics publicly avail-
able for 123 metabolic measures (30), the fine-grained met-
abolic signature related to numerous genetic targets can easily be
assessed. As extensive metabolomics and genetic data become
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increasingly available, we expect that comprehensive metabolic
profiles of drug targets will augment drug development in preclin-
ical stages to elucidatemolecularmechanisms and clarify pleiotro-
pic effects. It may be particularly helpful to use this type of
approach to predict whether it would be worth moving forward to
large-scale trials.

FUTURE PROSPECTS

The studies summarized in Table 1 show some of the poten-
tial value of having quantitative metabolomics data in large
epidemiologic studies. In the future, we anticipate further inte-
gration of metabolic profiling with genetics and other -omics
data in large epidemiologic studies. Genome-wide studies on
metabolic traits have so far primarily clarified the genetic basis
of systemic metabolism (11, 30, 84, 85). The increasing collec-
tions of large-scale metabolic profiling with genetics will, via
Mendelian randomization, further help to establish causality of
the biomarkers as molecular intermediates between lifestyle
exposures and diseases (86, 87). Detailed lipoprotein subclass
profiling in combination with genetics and clinical trials are
likely to be important for uncovering the mechanisms under-
pinning how triglyceride-rich lipoproteins relate to CVD risk
(80, 88) and clarifying the elusive role of high-density lipopro-
tein in CVD (80, 89).With the linkage of metabolomics data to
health-care records, under appropriate ethical and governance
frameworks, the potential value of these new quantitative bio-
markers could be explored in real-time public health applica-
tions. In the near future, alongside continued improvements in
throughput and cost-effectiveness, we also look forward to en-
deavors of multi-omics studies on population cohorts and bio-
banks with over a million individuals.
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91. Vangipurapu J, Stančáková A, Kuulasmaa T, et al.
Association between liver insulin resistance and
cardiovascular risk factors. J Intern Med. 2012;272(4):
402–408.

92. Auro K, Joensuu A, Fischer K, et al. A metabolic view on
menopause and ageing.Nat Commun. 2014;5:4708.

93. Würtz P, Cook S, Wang Q, et al. Metabolic profiling of
alcohol consumption in 9778 young adults. Int J Epidemiol.
2016;45(5):1493–1506.

94. InouyeM, Ripatti S, Kettunen J, et al. Novel loci for
metabolic networks and multi-tissue expression studies reveal
genes for atherosclerosis. PLoS Genet. 2012;8(8):e1002907.

95. Stančáková A, Paananen J, Soininen P, et al. Effects of 34 risk
loci for type 2 diabetes or hyperglycemia on lipoprotein
subclasses and their composition in 6,580 nondiabetic Finnish
men.Diabetes. 2011;60(5):1608–1616.

96. Chambers JC, ZhangW, Sehmi J, et al. Genome-wide
association study identifies loci influencing concentrations of
liver enzymes in plasma. Nat Genet. 2011;43(11):1131–1138.

97. International Consortium for Blood Pressure Genome-Wide
Association Studies, Ehret GB, Munroe PB, et al. Genetic
variants in novel pathways influence blood pressure and
cardiovascular disease risk. Nature. 2011;478(7367):
103–109.

98. Roman TS, Marvelle AF, FogartyMP, et al. Multiple hepatic
regulatory variants at theGALNT2GWAS locus associated
with high-density lipoprotein cholesterol. Am J HumGenet.
2015;97(6):801–815.

99. Cichonska A, Rousu J, Marttinen P, et al. metaCCA:
summary statistics-based multivariate meta-analysis of
genome-wide association studies using canonical correlation
analysis. Bioinformatics. 2016;32(13):1981–1989.

100. Marttinen P, PirinenM, Sarin AP, et al. Assessing
multivariate gene-metabolome associations with rare variants
using Bayesian reduced rank regression. Bioinformatics.
2014;30(14):2026–2034.

101. Gillberg J, Marttinen P, Pirinen M, et al. Multiple output
regression with latent noise. J Mach Learn Res. 2016;17:
1–35.

102. Valcárcel B, Ebbels TM, Kangas AJ, et al. Genome
metabolome integrated network analysis to uncover
connections between genetic variants and complex traits: an
application to obesity. J R Soc Interface. 2014;11(94):
20130908.

103. Fraser A, Macdonald-Wallis C, Tilling K, et al. Cohort
profile: the Avon Longitudinal Study of Parents and Children:
ALSPACmothers cohort. Int J Epidemiol. 2013;42(1):
97–110.

104. Niemi J, Mäkinen VP, Heikkonen J, et al. Estimation of
VLDL, IDL, LDL, HDL2, apoA-I, and apoB from the
Friedewald inputs—apoB and IDL, but not LDL, are
associated with mortality in type 1 diabetes. Ann Med. 2009;
41(6):451–461.

105. Männistö VT, SimonenM, Hyysalo J, et al. Ketone body
production is differentially altered in steatosis and non-
alcoholic steatohepatitis in obese humans. Liver Int. 2015;
35(7):1853–1861.

Am J Epidemiol. 2017;186(9):1084–1096

1096 Würtz et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/aje/article/186/9/1084/3813118 by guest on 23 April 2024


	Quantitative Serum Nuclear Magnetic Resonance Metabolomics in Large-Scale Epidemiology: A Primer on -Omic Technologies
	FROM LIPOPROTEIN QUANTIFICATION TO COMPREHENSIVE METABOLIC PROFILING
	A high-throughput NMR platform for epidemiologic applications
	Sample preparation
	NMR, MS, and clinical chemistry: analytic and biological consistency

	METABOLIC PROFILING IN EPIDEMIOLOGY
	OVERVIEW OF LARGE-SCALE METABOLIC PROFILING STUDIES BY NMR
	Molecular characterization of adiposity
	Combining metabolic profiling and genetic data for exploring drug effects

	FUTURE PROSPECTS
	ACKNOWLEDGMENTS
	REFERENCES


