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The seasonalities of influenza-like illnesses (ILIs) and invasive pneumococcal diseases (IPDs) remain incompletely
understood. Experimental evidence indicates that influenza-virus infection predisposes to pneumococcal disease, so
that a correspondence in the seasonal patterns of ILIs and IPDs might exist at the population level. We developed a
method to characterize seasonality by means of easily interpretable summary statistics of seasonal shape—or sea-
sonal waveforms. Nonlinear mixed-effects models were used to estimate those waveforms based on weekly case re-
ports of ILIs and IPDs in 5 regions spanning continental France from July 2000 to June 2014. We found high variability
of ILI seasonality, with marked fluctuations of peak amplitudes and peak times, but a more conserved epidemic dura-
tion. In contrast, IPD seasonality was best modeled by a markedly regular seasonal baseline, punctuated by 2 winter
peaks in late December to early January and January to February. Comparing ILI and IPD seasonal waveforms, we
found indication of a small, positive correlation. Direct models regressing IPDs on ILIs provided comparable results,
even though they estimated moderately larger associations. The method proposed is broadly applicable to diseases
with unambiguous seasonality and is well-suited to analyze spatially or temporally grouped data, which are common in
epidemiology.

infectious disease seasonality; influenza; influenza-like illnesses; invasive pneumococcal diseases; mixed-effects
models; pneumococcus; seasonal waveforms

Abbreviations: BIC, Bayesian information criterion; ILI, influenza-like illness; IPD, invasive pneumococcal disease; SD, standard
deviation.

Seasonality is a striking feature of many infectious diseases
in humans (1–3). These include infections caused by influenza
viruses, a major cause of morbidity and mortality worldwide
(4), and by Streptococcus pneumoniae (the pneumococcus), a
commensal bacterium of the nasopharynx responsible for a
wide spectrum of conditions ranging from mild upper respira-
tory tract infections to severe invasive pneumococcal diseases
(IPDs) (5, 6). IPDs exhibit remarkably consistent seasonal fluc-
tuations across climatically diverse locations, with a gradual
increase of cases from autumn to a winter peak, followed by a
decline to a summer nadir (7–15). Influenza activity—usually
quantified via syndromic surveillance of influenza-like ill-
nesses (ILIs)—displays even more pronounced seasonality in
temperate regions, with epidemics peaking during winter and

lasting 10–15 weeks (14, 16–18). Previous work has explored
the potential causes of such patterns (e.g., seasonal changes in
host disease susceptibility (7, 19), host behavior (19, 20), or
pathogen survival outside the host (21, 22)). However, the rel-
ative contributions of these mechanisms (or others) have not
yet been fully elucidated (23, 24).

S. pneumoniae interaction with cocirculating pathogens
may also contribute to the seasonality of IPDs. Indeed, it has
long been posited that influenza infection facilitates pneumo-
coccal disease (25), a hypothesis supported by recent experi-
mental evidence in animal models (26, 27). In contrast, the
evidence garnered from population-level studies has been less
consistent (8, 10, 11, 14, 28–31), perhaps because of heteroge-
neity of methods or data collection in different studies. With
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application of common statistical techniques across diverse set-
tings, large-scale comparative studies are essential to document
and generate hypotheses about the seasonality of ILIs and IPDs.
Yet such studies remain scarce (14), and further investigations
are warranted.

We examined highly resolved ILI and IPD incidence data in
France, spanning 14 years and 5 geographical regions. We
developed a novel method to estimate summary statistics of
seasonal shape via nonlinear mixed-effects models. We have
shown this method to be a useful and practical quantitative tool
to characterize and compare ILI and IPD seasonalities.

METHODS

Data

ILI data. ILI incidence data were available from the French
Sentinelles network, a nationwide surveillance system described
elsewhere (32, 33). Briefly, a sample of general practitioners
across France report weekly numbers of ILI cases, defined clini-
cally as sudden onset of fever (≥39°C), associated with myalgia
and respiratory symptoms (e.g., cough and sore throat). Weekly
ILI incidences were estimated by multiplying the mean number
of reported cases per participating general practitioner by the
total number of general practitioners in the area (34). These data
have been used extensively to investigate the spatiotemporal
dynamics of influenza in France (20, 34–36). During the study
period, broad information on influenza types and subtypes
circulating in France was available, but type-specific weekly
time series could not be constructed (seeWeb Appendix 1 and
Web Table 1, available at https://academic.oup.com/aje). For this
analysis, we aggregated the data into 5 geographical regions
spanning continental France: Île-de-France (including Paris),
Northwest, Northeast, Southeast, and Southwest. For each
region, we constructed weekly time series of ILIs during epi-
demiologic years 2000/2001–2013/2014 (14 seasons and 730
weeks overall (Figure 1 andWeb Figure 1 inWebAppendix 1)),
where an epidemiologic year n/n + 1 consisted of all weeks
between week 27 (the first week of July) of calendar year n
and week 26 of calendar year n + 1.

IPD data. IPD incidence data were available from the Epi-
bac network, a nationwide, hospital-based surveillance system
that has tracked trends of IPDs (37, 38) for over 2 decades. The
participating hospital laboratories are distributed homogeneously
throughout France and cover >70% of the French population.
An IPD case was defined as the isolation of S. pneumoniae or the
detection of pneumococcal DNA in cerebrospinal fluid (men-
ingitis) or blood (nonmeningitis bacteremia). As we did for the
ILI data, we constructed weekly time series of cases during
2000/2001–2013/2014 for the 5 geographical regions of France
(Figure 2 andWeb Figure 2).

Demographic data. Yearly estimates of population sizes in
every region were available from the French National Institute
of Statistics and Economic Studies (39). Summary demographic
characteristics for every region are presented inWeb Table 2.

Empirical models of ILI and IPD seasonalities

ILI model. As shown in Figure 1 and Web Figure 1, ILI
dynamics were markedly epidemic, with a definite peak and

most cases concentrated around that peak every year. To ana-
lyze ILI seasonality, we fitted an empirical model approximat-
ing the epidemic curve of the susceptible-infected-recovered
model for diseases with a low basic reproduction number (see
Web Appendix 2, Keeling and Rohani (40), and Kermack and
McKendrick (41)):
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where xt represents the weekly number of ILIs during week t
and Nt is the population size at week t. The week number t
was defined according to the International Organization for
Standardization (ISO) 8601 format: weeks started on Mon-
days, and the week containing January 1 was considered
week 1 if it had ≥4 days in the new year (and the last week of
the previous year (week 52 or 53) otherwise). To avoid dis-
continuities, we centered the week number on the last week
of calendar year n for each epidemiologic year n/n + 1.
Therefore, week 0 is the last week of calendar year n and
week 1 the first week of calendar year n + 1, and t = −25, . . .,
0, 1, . . ., 26 for epidemiologic years counting 52 weeks. In the
formula, A represents the peak amplitude (measured, via the
scaling factor 10–2Nt, in cases per week per 100 population),
ϕ the peak week, and σ the peak width (in weeks). Because
they shape ILI seasonality, those parameters are referred
to as seasonal waveforms (10). In Web Appendix 2, we demon-
strate that the total annual number of cases (or attack rate) is
given by 2Aσ and that approximately 95% of cases occur
during a time period of 3.7σweeks, which we define as the epi-
demic duration. The estimates of these 2 parameters are reported
below, in addition to the other parameters.

IPD model. As shown in Figure 2 and Web Figure 2, IPD
seasonality was almost constant, with regular variations during
most of the year, interspersed by a marked peak at the end of
each calendar year (week 0), another peak at the beginning of
the year (weeks 1–10), and smaller peaks in autumn and in
spring. Based on those observations, we represented IPD sea-
sonality as the sum of a seasonal baseline modeled by a sine
wave, and peaks modeled by the function used for the ILI data
(WebAppendix 3):
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where t is the week number, xt is the number of IPDs during
week t, Nt is the population size at week t, nw ∈ {52, 53} is
the number of weeks in the epidemiologic year associated
with week t, and np is the number of peaks. Here, the first
term of the sum represents the seasonal baseline, with μ
being the average number of cases (measured, via the scaling

Am J Epidemiol. 2018;187(5):1029–1039

1030 Domenech de Cellès et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/aje/article/187/5/1029/4557908 by guest on 23 April 2024

https://academic.oup.com/aje


factor 10–5Nt, in cases per week per 100,000 population), A0

the semi-amplitude (relative to the average μ), and ϕ
0
the

peak week. By analogy with the ILI model, the np IPD peaks
are summarized by the waveforms Ap (peak amplitude, cases
per week per 100,000 population), ϕp (peak week), and σp
(peak width, in weeks). We also define nwμ as the baseline
annual cases (per 100,000 population), 2Apσp as the excess

of annual cases (per 100,000 population) due to peak p, and
2Apσp/(nwμ) as the relative (to the seasonal baseline) excess
of annual cases due to peak p. In keeping with our central
goal of comparing ILI and IPD seasonalities, we only tested
models with np ≤ 2 peaks, constrained to occur during the
period of ILI activity (t ∈ [–5,15], see Figure 1 and Web
Figure 1).
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Figure 1. Influenza-like illness (ILI) incidence data in France, 2000–2014. Time series of ILI incidence (weekly cases per 100 population) in 5 re-
gions spanning continental France. A) Île-de-France region; B) Northwest region; C) Northeast region; D) Southeast region; E) Southwest region.
The x-axis ticks, placed at week 27 for years 2000–2013 and at week 26 for year 2014, delimit each epidemiologic year.
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Models estimation

To take into account the grouped (by region and by year)
structure of ILI and IPD data, we fitted variants of the nonlinear
models that incorporated both fixed effects and random ef-
fects—that is, nonlinear mixed-effects models (42). Let xit
represent the number of ILIs or IPDs during week t in

region-year i and f(t;θ) the nonlinear function modeling ILI
or IPD dynamics, where θ is the vector of model parameters.
We fitted models of the form:

ϵθ
θ β
= ( ) +

= + b
x f t;
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Figure 2. Invasive pneumococcal disease (IPD) incidence data in France, 2000–2014. Time series of IPD incidence (weekly cases per 100,000
population) in 5 regions spanning continental France. A) Île-de-France region; B) Northwest region; C) Northeast region; D) Southeast region; E)
Southwest region. The x-axis ticks, placed at week 27 for years 2000–2013 and at week 26 for year 2014, delimit each epidemiologic year.
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where β is the vector of fixed effects, bi ~ N(0,Ψ) the vector
of random effects in region-year i, and εit ~ N(0,σ2) is the
within-group error. The estimation was completed in several
steps according to the model building method presented in
Pinheiro and Bates (42), from individual nonlinear least-squares
estimations in each region-year to the estimation of the final non-
linear mixed-effects model. The parsimony of competing models
was quantified using the Bayesian information criterion (BIC).
Complete details of the estimation procedure are presented in
Web Appendices 2 and 3. All estimations were performed
using the nlme package (43), operating in R (R Foundation for
Statistical Computing, Vienna, Austria) (44). Data and
codes reproducing the analysis of the ILI data are provided as
a supplement.

Association between ILIs and IPDs

Comparison of ILI and IPD seasonal waveforms. To
compare ILI and IPD seasonalities, we calculated Spearman cor-
relation coefficients to quantify the association between their
estimated seasonal waveforms. The waveforms considered were
the peak week ϕ and the total annual cases (ILI model), or total
annual excess cases (IPDmodel), E = 2Aσ. For each waveform,
we calculated confidence intervals for the correlation coefficient
by using a block bootstrap (with 104 bootstrap samples), where
a blockwas defined as an epidemiologic year.

Comparison with a direct regression model with ILIs. We
sought to compare the association estimated by the seasonal
waveforms comparison with that estimated by direct regression
models, the method most commonly employed in the literature
(8, 11, 14, 29, 31) (but see also other methods, such as cross-
correlation on pre-whitened data (28) or detection and compari-
son of outbreak periods (30)). To do so, we fitted a mixed-effects
model that incorporated a seasonal baseline (sine wave) and ILIs
directly as a covariate. For each region-year, we also calculated
the relative (to the seasonal baseline) excess of IPD cases associ-
ated with ILIs (WebAppendix 4).

RESULTS

ILI seasonality

A total of 41,580,638 ILI cases were extrapolated from Senti-
nelles reports during the study period (Île-de-France, 6,481,491;
Northwest, 6,879,606; Northeast, 10,057,549; Southeast,
11,920,277; Southwest, 6,241,715). During the 14 epidemic
seasons, the dominant types or subtypes of influenza were
A(H3N2) (n = 6 seasons, Web Table 1), B (n = 3), A(H1N1)
pdm09 (n = 3), andA(H1N1) (n = 2); 5 epidemics were codom-
inated by another type or subtype (2 with B and 1 each with A
(H3N2), A(H1N1), or A(H1N1)pdm09). The region-year esti-
mates of the seasonal waveforms β̂ + b̂i (β̂, the vector of esti-
mated fixed-effects; b̂i, the vector of estimated random-effects
in region-year i) are shown in Figure 3. To further quantify the
random-effects variability across groups, we also report the
random-effects standard deviation (SD, extracted from the diag-
onal entries in the variance-covariance matrixΨ) and the varia-
tion ratio (random-effects SD/fixed-effect) when discussing the
seasonal waveforms below. The peak amplitude A displayed
substantial variability across years and regions (fixed-effects

estimate 0.65, random-effects SD 0.29 weekly cases per 100;
variation ratio 0.44), with a 7.6 factor variation in individual
group estimates. The peak timeϕ also varied across years (fixed
effects ranging from week –4.9 to week 8.2); except for 2 years
with early epidemics (2003/2004 and 2009/2010), the peak
occurred during weeks 0–10. By contrast, the peak time varied
little from one region to another every year: After the first peak
had occurred in a given region, the peaks in the other regions
followed within an average of 2.0 weeks (ranging from 0.7
weeks during year 2012/2013 to 4.1 weeks during year 2000/
2001), with no obvious spatial pattern of ILI spread. Compared
with the peak amplitude and peak time, the peak width σ was
more regular, averaging 3.4weeks (random-effects SD0.9weeks;
variation ratio 0.26), corresponding to an average 12.5-week
epidemic duration (random-effects SD 3.3 weeks), with individ-
ual estimates ranging from 6.5 weeks (Northeast–2000/2001) to
21.4 weeks (Southeast–2000/2001). The total number of annual
cases, or attack rate, averaged 4.4%, with marked year-to-year
and region-to-region fluctuations (range, 1.5% in Île-de-France
in 2013/2014 to 6.8% in the Southwest in 2004/2005). The
inclusion of fixed differences between regions did not improve
model parsimony for anywaveform (Web Table 3).

Visual examination of the model fit showed good agreement
with the ILI data, even though the model could not reproduce
double peaks that occurred in a few region-years (e.g., Île-de-
France in 2005/2006, Île-de-France in 2009/2010, Northwest
in 2000/2001, and Southeast in 2000/2001) (Web Figure 3).

IPD seasonality

A total of 64,542 IPD cases occurred during the study period
(Île-de-France, 11,377; Northwest, 13,661; Northeast, 15,963;
Southeast, 15,065; Southwest, 8,476). Comparing the parsi-
mony of models with 0, 1, or 2 winter peaks (Web Table 4),
the 1-peak model outperformed the model with no winter peak
(ΔBIC ≈ −748); the 2-peak model provided a more parsimoni-
ous fit than the 1-peak model, although the difference was smal-
ler (ΔBIC ≈ −54).We discuss the estimates of the 2-peakmodel
below, and we also present those of the 1-peak model in Web
Appendix 3 (Web Figures 4–6). The 2-peak model estimates for
every region-year are shown in Figure 4. The final model did not
include fixed differences between regions or between years for
any waveform (Web Tables 5–6). The baseline average weekly
cases (fixed-effect μ = 0.13, random-effects SD 0.02 cases per
week per 100,000 population; variation ratio 0.15) and the total
baseline annual cases (fixed-effect nwμ = 7.0, random-effects
SD 1.1 cases per year per 100,000) exhibited little variability
between regions but higher variability between years. These
year-to-year variations mirrored previously reported trends of
pneumococcal meningitis in France (45, 46), marked by an
initial increase after the introduction of the 7-valent pneumo-
coccal conjugate vaccine in 2003, followed by a decline after
the introduction of the 13-valent conjugate vaccine in 2010.
In contrast, the relative amplitude (fixed-effect A

0
= 0.49; no

random effects) and the peak week (fixed-effect ϕ
0
= 6.2,

random-effects SD 1.4 weeks) of the seasonal baseline were
very stable across years and regions.

According to the final 2-peak model, a first peak was located
near the last week of every calendar year (fixed-effect ϕ1 =
0.5, random-effects SD 0.4 weeks), with substantial variations
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of amplitude (fixed-effect A
1
= 0.16, random-effects SD 0.08

cases per week per 100,000; variation ratio 0.50) but not of
width (fixed-effect σ

1
= 1.0 week, no random-effects). The re-

sulting relative excess of annual cases compared with baseline
was 4.8% and ranged from 1.4% (Île-de-France in 2009/2010)
to 9.8% (Northwest in 2008/2009).

Compared with peak 1, winter peak 2 had greater time vari-
ability (fixed-effect ϕ

2
= 6.4, random-effects SD 1.4 weeks).

Overall, that peak presence was less stable and less marked than
the first peak, causing an average relative excess of annual cases
of 2.2% (range, 1.4% in Île-de-France in 2007/2008 to 5.4% in
the Southeast in 2004/2005). Therefore, peak 2 was marked
only in a few region-years but negligible in most others.

Visual inspection of the model fit showed adequate agree-
ment with the IPD data, even though the model slightly overes-
timated the summer IPD troughs (Web Figures 7 and 8).

ILI-IPD association

Estimated correlations between ILI and IPD seasonal wave-
forms are given in Table 1. As expected from the tightly

constrained time of IPD peak 1 and the more variable peak time
of ILIs, we found no peak 1–ILI association. Considering the
whole study period (including years 2003/2004 and 2009/2010
with early ILI peaks; see Figure 3), an associationwas suggested
with IPD peak 2. This association was more pronounced when
restricting analysis to years with ILI peak time during the typical
period of ILI activity (weeks 0–10), with evidence of a small,
positive correlation between peak times and between total
excess cases. With this restriction, the results also indicated a
short, approximately 1-week lag between the IPD peak 2 and
the ILI peak times.

The results of the direct regression model (Web Table 7 and
Web Figure 9) indicated a short-term (0–1 week difference
between IPD and ILI peaks), variable but overall small (median
relative excess cases, 4.9%; median absolute deviation, 2.4%)
association between ILIs and IPDs, except in a few region-years
(relative excess cases exceeding 10% in Île-de-France in 2003/
2004, Île-de-France in 2009/2010, and the Southeast in 2004/
2005). Furthermore, the excess cases associated with ILIs in that
model and with IPD peak 2 in the 2-peak model were markedly
correlated (Spearman correlation coefficient 0.63 (95%CI: 0.48,
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Figure 3. Influenza-like illness (ILI) seasonal waveforms, France, 2000–2014. The parameter estimates are presented every year (x-axis) in
every region (symbol). The y-axis values differ for each panel. A) Peak amplitude (A, cases per week per 100); B) peak width (σ, weeks)/epidemic
duration (3.7σ, weeks); C) peak time (ϕ, week); D) annual incidence (2Aσ, cases per year per 100). Abbreviations: IdF, Île-de-France; NW, North-
west; NE, Northeast; SE, Southeast; SW, Southwest.

Am J Epidemiol. 2018;187(5):1029–1039

1034 Domenech de Cellès et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/aje/article/187/5/1029/4557908 by guest on 23 April 2024



0.00

0.05

0.10

0.15

0.20

2000/2001 2004/2005 2008/2009 2013/2014

Year

In
ci

de
nc

e
0.0

0.1

0.2

0.3

0.4

0.5

2000/2001 2004/2005 2008/2009 2013/2014

Year

A
m

pl
itu

de

0.0

0.1

0.2

0.3

0.4

0.5

2000/2001 2004/2005 2008/2009 2013/2014

Year

A
m

pl
itu

de

−5

0

5

10

2000/2001 2004/2005 2008/2009 2013/2014

Year

T
im

e

IdF
NW
NE
SE
SW −5

0

5

10

2000/2001 2004/2005 2008/2009 2013/2014

Year

T
im

e

−5

0

5

10

2000/2001 2004/2005 2008/2009 2013/2014

Year

T
im

e

0.00

0.25

0.50

0.75

1.00

2000/2001 2004/2005 2008/2009 2013/2014

Year

S
em

i−
A

m
pl

itu
de

0.0

0.5

1.0

1.5

2000/2001 2004/2005 2008/2009 2013/2014

Year

W
id

th

0.0

0.5

1.0

1.5

2000/2001 2004/2005 2008/2009 2013/2014

Year

W
id

th

0.0

2.5

5.0

7.5

10.0

2000/2001 2004/2005 2008/2009 2013/2014

Year

In
ci

de
nc

e

0.0

2.5

5.0

7.5

10.0

2000/2001 2004/2005 2008/2009 2013/2014

Year

R
el

at
iv

e 
E

xc
es

s

0.0

2.5

5.0

7.5

10.0

2000/2001 2004/2005 2008/2009 2013/2014

Year

R
el

at
iv

e 
E

xc
es

s

A) B) C)

D) E) F)

G) H) I)

J) K) L)

Figure 4. Invasive pneumococcal disease (IPD) seasonal waveforms, France, 2000–2014. The parameter estimates are presented every year (x-axis) in every region (symbol). The y-axis
values differ for each panel. Left-hand column (A, D, G, J): seasonal baseline waveforms. A) Average incidence (μ, cases per week per 100,000); D) time (ϕ0, week); G) relative semi-amplitude
(A0, dimensionless); J) annual average incidence (nwμ, cases per year per 100,000). Middle column (B, E, H, K): peak 1 waveforms. B) Amplitude (A1, per week per 100,000); E) time (ϕ1,
week); H) width (σ1, weeks); K) relative excess of cases (2A1σ1/(nwμ), %). Right-hand column (C, F, I, L): peak 2 waveforms. C) Amplitude (A2, per week per 100,000); F) time (ϕ2, week); I) width
(σ2, weeks); L) relative excess of cases (2A2σ2/(nwμ), %). Abbreviations: IdF, Île-de-France; NW, Northwest; NE, Northeast; SE, Southeast; SW, Southwest.
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0.75) in 60 region-years with ILI peak during week 0–10).
Therefore, the direct model and the seasonal waveforms com-
parison provided broadly comparable results, even though the
associations estimated by the latter methodwere smaller.

DISCUSSION

We examined the seasonalities of ILIs and IPDs based on
highly resolved incidence data in France. To do so, we devel-
oped a new method to estimate summary statistics of seasonal
shape (or seasonal waveforms) via nonlinear mixed-effects
models. The method is well-suited to the analysis of spatially
or temporally grouped data, which are common in epidemiol-
ogy. It is also easily applicable, if an adequate functional form
exists to model the disease considered. Using this method, we
found high ILI-seasonality variability, with marked fluctua-
tions of peak amplitude and peak time. In contrast, IPD season-
ality was best modeled by a markedly regular, almost periodic
seasonal baseline, punctuated by 2 winter peaks. Comparing
the seasonal waveforms of ILI and IPD peaks, we found indi-
cation of a small, positive correlation.

As previously noted in epidemiologic studies (10, 14, 16–
18, 47), our results support the observation that the amplitude
and time of ILI epidemics vary substantially over time. Although
the mechanisms causing ILI seasonality remain incompletely
understood (23), this variability could reflect between-season
influenza-virus antigenic changes (48), variations of weather
conditions, or chance events caused by the random introduc-
tion of infected individuals into the population every year. In
contrast, the epidemic duration was more conserved than peak
times and amplitudes in our data; our average estimate of 12.5
weeks agrees with previous European and American studies,
which relied on definitions of epidemic thresholds (14, 17, 47).
Our results also indicate high synchrony of peak times across
regions (calculated as the maximal difference of peaks times
between regions each year): On average, ILI took 2.0 (range,
0.7–4.1) weeks to spread across continental France (roughly
5 × 105 km2). In light of that relatively small area, this finding
was expected and agrees with the spatial correlation structure
inferred for influenza (49).

In accordance with earlier studies (10, 14, 15, 19), we found a
remarkably stable IPD seasonal baseline, with large-amplitude

(approximately 50% relative to the annual average) oscillations
peaking around week 6 (early February) or, equivalently, reach-
ing a nadir during week 32 (early August). It should be kept in
mind that these results are contingent on the choice of a sine
wave to model IPD seasonal baseline, an ad hoc but common
functional form used in numerous studies (8, 10, 14, 15, 31).
Despite repeated observations of this seasonal pattern, its causes
remain poorly understood (24). Experimental evidence shows
that temperature and humidity affect influenza virus trans-
mission and survival (21, 22), but, to our knowledge, such
evidence is lacking for pneumococcus. The roles of these
two climatic variables in shaping IPD seasonality have been
assessed in several ecological studies, with discordant results
(10, 11, 29, 50). Alternatively, it has been proposed that IPD
seasonality is driven by variations of host susceptibility to
infection caused by seasonal photoperiod changes (7, 19), a
hypothesis supported by a few experimental (51–53) and eco-
logical studies (10, 11, 15). Although beyond the scope of this
study, the IPD-climate association could be studied by apply-
ing our method to calculate the seasonal waveforms of candi-
date weather parameters.

In addition to the seasonal baseline, we detected a first IPD
winter peak constantly occurring at the end of every calendar
year, of very regular duration but more variable amplitude. That
peak was also observed previously (8, 11, 14, 31, 54), including
an American study whose authors advanced that it represented a
calendar effect, attributable to family gatherings during Christ-
mas holidays (19). Notably, that peak concerned only adults
aged ≥18 years, while an earlier rise of juvenile cases was seen
in autumn (19). Because we found no definite spatial structure in
the region-level data, we examined the age-specific IPD season-
ality using country-level incidence data (Web Figure 10). In
keeping with previous studies (19, 55, 56), we observed a
distinct autumn peak in children <5 years. Another peak also
occurred at the end of the year for that age group, but was less
pronounced and arose earlier than that of older individuals, par-
ticularly those ≥60 years. This lag suggests transmission from
young children to older persons, consistent with a calendar
effect during Christmas holidays (57). Alternatively, this peak
might be associated with the respiratory syncytial virus (RSV),
which peaks earlier and less variably than influenza (58, 59).
Transmission models integrating seasonal contact-rate changes
will be useful to dissect these different hypotheses.

Table 1. Estimated Correlations Between Seasonal Waveforms for Influenza-Like Illness and Invasive
Pneumococcal Disease, France, 2000–2014

Peak
Comparison

Region-Years Correlationa in Total
Cases E

Correlationa in Peak
Time, ϕ

Difference of Peak
Times IPD–ILI, weeks

Description No. Value 95%CIb Value 95%CIb Value 95%CI

ILI–IPD peak 1 All included 70 0.14 –0.23, 0.44 –0.09 –0.53, 0.35 –3.8 –5.5, –1.7

ILI–IPD peak 2 All included 70 0.20 –0.05, 0.46 0.32 0.01, 0.55 2.7 1.0, 4.7

ILI–IPD peak 2 Years 2003/2004 and
2009/2010 excluded

60 0.31 0.03, 0.56 0.42 0.04, 0.66 1.3 0.6, 2.0

Abbreviations: CI, confidence interval; ILI, influenza-like illness; IPD, invasive pneumococcal disease.
a Spearman correlation coefficients.
b 95%CI calculated using a block bootstrap, as described in the Methods section.
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Compared with IPD winter peak 1, peak 2 had a more vari-
able time and had less impact, except for a few region-years.
Because peak 2 overlapped with the period of ILI circulation,
we postulated that it might be associated with ILIs, but we
found only a small association. Notably, in keeping with previ-
ous evidence that the 2009A(H1N1) pandemic had low impact
in most age groups in France (36), that association remained
small during 2009/2010 (Web Figure 9). Although this small
correspondence indicates little association at the population
level, it may still be consistent with a strong interaction at the
individual level. Indeed, strong experimental evidence from
animal models indicates that influenza-virus infection facili-
tates pneumococcal acquisition, transmission, and disease (26,
27). Recent results from population-based mechanistic models
can help explain this discrepancy (60, 61). Specifically,
Shrestha et al. demonstrated that, despite strong interaction at
the individual level, large variations of ILI-peak amplitude re-
sulted in much lower variations of pneumococcal pneumonia
peaks at the population level (61). That said, the associations
estimated by the seasonal waveforms comparison were small,
a finding also borne out by the direct regression models. Con-
sequently, our results imply only a modest population-level
impact of ILIs on IPDs (11, 14).

With few exceptions (28, 30), the ILI–pneumococcal infec-
tion association was estimated using standard regression models
for count data (8, 11, 14, 29, 31). In comparison, our method
also aims at characterizing seasonality, but several limitations
are worth noting with regard to quantifying that association.
First, ourmethod requires an appropriate empirical model to rep-
resent the dynamics of the cocirculating pathogens, therefore
limiting its applicability to those with unambiguous seasonality.
Furthermore, it effectively compresses the whole body of data
into a few summary statistics, a procedure that may cause some
signal of association to be lost. Indeed, we found that, while our
method and direct regression provided broadly comparable re-
sults, the associations estimated by the latter were moderately
larger. Acknowledging the potential shortcomings of any statis-
tical technique in ecological studies (62), we recommend using
and comparing a variety of methods to examine the association
between ILIs and pneumococcus.

Our study has several limitations. First, the ILI incidence
data were not laboratory-confirmed and therefore might not
be specific to influenza, which other respiratory viruses can
be confused with clinically (59). Nevertheless, we think that
concern should be limited because of the very specific ILI
case definition; indeed, ILI clinical data correlated well with
laboratory-confirmed influenza in previous studies in France
(36, 63). In Web Figure 11 and Web Table 8, we provide fur-
ther evidence of this marked correlation by comparing the sea-
sonal waveforms of ILI and flu-specific time series calculated
during 2014/2015 and 2015/2016, the first 2 seasons of viro-
logical data collection in the Sentinelles network. Second, we
only considered 2 IPD peaks during winter, although other
peaks were evident in our data. Therefore, our model could be
extended to assess the association of additional IPD peaks with
other respiratory viruses. Third, the IPD analysis was not
stratified by age, although previous studies indicated a possible
age-specific association between pneumococcal diseases and
respiratory viruses (11, 29, 31, 64, 65). However, we repeated
our estimations in age groups 5–60 years and ≥60 years, and

found our main results to be robust (Web Table 9). Fourth, the
IPD data were not stratified by serotype, even though one study
found evidence that influenza affects pneumococcal pneumonia
in a serotype-specific manner (66). Another study’s results
showed, however, that IPD seasonality did not change after the
introduction of the pneumococcal conjugate vaccine, despite
substantial serotype replacement (14)—a finding confirmed by
our results.

In conclusion, we provided a comprehensive picture of ILI
and IPD seasonalities based on detailed incidence data. Our
findings add knowledge to the epidemiology of these two dis-
eases and may help generate new hypotheses about their sea-
sonal dynamics. Such comparative studies are essential to
better understand the still enigmatic seasonal patterns of ILIs
and IPDs.
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