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Abstract

Actigraphy, a method for inferring sleep/wake patterns based on movement data gathered using 
actigraphs, is increasingly used in population-based epidemiologic studies because of its ability to 
monitor activity in natural settings. Using special software, actigraphic data are analyzed to estimate 
a range of sleep parameters. To date, despite extensive application of actigraphs in sleep research, 
published literature specifically detailing the methodology for derivation of sleep parameters is 
lacking; such information is critical for the appropriate analysis and interpretation of actigraphy data. 
Reporting of sleep parameters has also been inconsistent across studies, likely reflecting the lack of 
consensus regarding the definition of sleep onset and offset. In addition, actigraphy data are gen-
erally underutilized, with only a fraction of the sleep parameters generated through actigraphy rou-
tinely used in current sleep research. The objectives of this paper are to review existing algorithms 
used to estimate sleep/wake cycles from movement data, demonstrate the rules/methods used for 
estimating sleep parameters, provide clear technical definitions of the parameters, and suggest po-
tential new measures that reflect intraindividual variability. Utilizing original data collected using 
Motionlogger Sleep Watch (Ambulatory Monitoring Inc., Ardsley, NY), we detail the methodology 
and derivation of 29 nocturnal sleep parameters, including those both widely and rarely utilized in 
research. By improving understanding of the actigraphy process, the information provided in this 
paper may help: ensure appropriate use and interpretation of sleep parameters in future studies; en-
able the recalibration of sleep parameters to address specific goals; inform the development of new 
measures; and increase the breadth of sleep parameters used.
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Introduction

Actigraphy, a method for inferring sleep/wake cycles 
based on magnitude of wrist movement collected using 
digital devices called actigraphs, has been used for over 
two decades in studies of sleep and circadian rhythms 
(Cole et al., 1992; Ancoli Israel et al., 2003; Van de 
Water et al., 2011). Although polysomnography (PSG) 
is considered the gold standard for assessment of sleep 
(Van de Water et al., 2011), the procedure is costly, in-
vasive, and disruptive to participants’ normal sleep rou-
tines (Blackwell et al., 2008; Van de Water et al., 2011), 
making it impractical for application in population-
based epidemiologic studies. In contrast, actigraphy has 
properties that render it useful for collecting objective 
sleep data in large-scale investigations (Ancoli Israel 
et al., 2003; Littner et al., 2003; Blackwell et al., 2008; 
Martin and Hakim, 2011). Notably, actigraphy is more 
convenient, less invasive, and lower cost than PSG, and 
the device can be worn continuously, 24 h a day, for ex-
tended period of time (days, weeks, or even longer). In 
addition, collection of actigraphic data over multiple 
nights in the participant’s natural environment can pro-
vide more reliable estimates of sleep compared to PSG, 
which is typically performed for only one or two nights 
in a sleep laboratory (Berger et al., 2007; Blackwell et al., 
2008; Rupp and Balkin, 2011). Importantly, actigraphy 
has been validated (against PSG) in multiple populations 
(Cole et al., 1992; Sadeh et al., 1994; Jean-Louis et al., 
1997a,b; 2001; de Souza et al., 2003; Lichstein et al., 
2006; Blackwell et al., 2008; Tonetti et al., 2008; Martin 
and Hakim, 2011; Rupp and Balkin, 2011; Van de Water 
et al., 2011; Meltzer et al., 2012a,b). In a comprehensive 
review of the role of actigraphy in studies of sleep and 
circadian rhythms, Ancoli Israel et al. (2003) reported 
that, in adult populations, the estimated agreement be-
tween PSG and actigraphy ranged from 91 to 93%.

Actigraphs are small watch-shaped devices that are 
generally placed on the non-dominant wrist and contain 
motion detectors (accelerometers) to monitor and record 
movements (Ancoli Israel et al., 2003). Although there 
are variety of commercially available actigraphs (Sadeh, 
2011), the Motionlogger Sleep Watch manufactured 
by Ambulatory Monitoring Inc. (AMI, Ardsley, NY) 
is among the commonly used devices in epidemiologic 
and laboratory studies (Meltzer et al., 2012a,b; Bellone 
et al., 2016). Generally, actigraphs are worn for several 
days, during which time the device records movement 
data multiple times per second and stores the informa-
tion for each minute of a day, resulting in 1440 obser-
vations (wrist movement data points) per 24-h period. 
The data are then downloaded to a computer where 

specialized software (Action-W, AMI, Ardsley, New 
York) is used to automatically assess sleep/wake cycles 
based on an algorithm and then estimate sleep param-
eters separately for each day or a 24-h period (Martin 
and Hakim, 2011). The sleep estimates are then aver-
aged across days to derive a more stable measure for the 
participant. Although the software generates about two 
dozen sleep parameters, very few are typically utilized in 
most sleep research (Ancoli Israel et al., 2003), namely, 
total sleep time, sleep efficiency (SE), sleep latency, wake 
after sleep onset (WASO), and number of awakenings 
(de Souza et al., 2003; Berger et al., 2005; Berger et al., 
2007; Blackwell et al., 2008; Natale et al., 2009; Tranah 
et al., 2010; Natale et al., 2014).

While there is abundant evidence on application 
of actigraphy in both research and clinical settings 
(Ancoli Israel et al., 2003; Natale et al., 2009; Meltzer 
et al., 2012a,b; Fawkes et al., 2015), specific literature 
demonstrating the methodology involved in deriving the 
various sleep parameters from the digital counts stored 
by actigraphs, is limited. In addition, there is lack of 
consensus in definition of sleep onset and offset, which 
then leads to inconsistent reporting of sleep parameters 
across studies (Berger et al., 2005; Smith et al., 2018). 
Understanding the methods used for deriving the sleep 
parameters from wrist movement data is essential for 
making informed decisions regarding the interpret-
ation of the parameters and their appropriate use. Due 
to the absence of literature detailing how sleep param-
eters are derived, the process often remains essentially 
a black box, especially to those not directly involved in 
this line of research. Enhancing the understanding of the 
methodology involved in the generation of sleep meas-
ures from actigraphy may (i) improve the interpretation 
of the derived parameters and hence, their appropriate 
application in future studies, (ii) enable researchers to 
revise the definition of some sleep parameters to better 
address a specific objective [e.g. what constitutes a long 
wake or sleep episode (SEP), what constitutes latency to 
persistent sleep (LPS), etc.], (iii) broaden the use of sleep 
parameters that have often been ignored [e.g. sleep frag-
mentation index (SFX), brief wake ratio (BWR), short 
burst inactivity index (SBIX), intraindividual variability 
in sleep parameters], and (iv) lead to development of 
new sleep measures. Therefore, the objectives of this 
study were to (i) review and illustrate existing algorithms 
used to estimate sleep/wake cycles from movement data, 
(ii) demonstrate the rules/methods used for estimating 
sleep parameters from wrist movement data, (iii) pro-
vide clear technical definitions of the derived sleep 
parameters, and (iv) suggest potential new measures that 
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reflect intraindividual variability. We attempt to clarify 
how the input (movement data recorded by actigraph) 
is translated into output (sleep measures estimated by 
actigraphic software) such that readers/users have a 
more comprehensive understanding of the process in-
volved. Although this paper is primarily intended for 
users of actigraphy who have little to no experience in 
the methodology involved, we believe it will serve as a 
useful resource for intermediate to advanced users as 
well. Although the methodology discussed is based on 
the Motionlogger Sleep Watch (AMI, NY) and the as-
sociated analytic software (Action-W), the information 
presented will be useful for understanding sleep meas-
ures derived using other commonly used actigraphs such 
as the Mini-Mitter actigraphs (now owned by Phillips-
Respironics, Bend, Oregon) and Cambridge Actiwatch 
actigraphs (Cambridge, UK).

In this paper, we first detail the methodology in 
actigraphy including (i) actigraphic data modalities or 
types of raw data (often referred to as ‘activity counts’) 
generated by the Motionlogger actigraph, (ii) data 
preprocessing, (iii) sleep scoring algorithms, (iv) iden-
tification of time in bed (TIB) and sleep period (SLP) 
with emphasis on technical definitions that mark the 
end points of these two intervals, and (v) technical defin-
itions of sleep parameters derived from actigraphic data 
along with our suggestion of potential new measures. 
We then present a demonstration of actigraphy method-
ology using supplemental actigraphic data.

Methodology in actigraphy

Actigraphic data modalities
The actigraph, which contains an accelerometer for de-
tection of movement, produces a continuous electrical 
signal (voltage) when a participant wearing the device 
is in motion. After motion is transduced into an analog 
electrical form, samples are collected from this con-
tinuous signal at the rate of 10 hertz (10 Hz)—that is, 
10 samples per second. The voltage signals sampled are 
processed in three different ways: Zero Crossing Mode 
(ZCM), Time Above Threshold (TAT), and Proportional 
Integration Mode (PIM), to provide information on 
movement frequency, duration, and intensity, respect-
ively. The extracted information is then digitized (stored) 
as data points at 1-min recording intervals (Jean-Louis 
et al., 2001; Ancoli Israel et al., 2003; Hersen, 2006; 
Blackwell et al., 2008; Tranah et al., 2010; Rupp and 
Balkin, 2011); the user can specify the recording interval 
anywhere from 1 s to 10 min, but a length of 1 min is 
the standard for most applications. A visual heuristic of 
the three modes of operation is illustrated in Fig. 1 and 

an excellent discussion of these data types can be found 
elsewhere (Hersen, 2006). The ZCM (Fig. 1A) yields a 
count of the number of times per minute the transducer 
signal (i.e. voltage) crosses a reference voltage (a preset 
threshold) which usually is a value set close to zero 
(Ancoli Israel et al., 2003; Hersen, 2006). In Fig. 1A, 
the value of ‘activity count’ that would be stored in the 
memory of the actigraph for that minute would be 6. In 
TAT Mode (Fig. 1B), the amount of time, in tenths of a 
second, spent above the sensitivity threshold is accumu-
lated during a minute. TAT is a measure of time spent in 
motion or duty cycle (Hersen, 2006). The Proportional 
Integrating Measure Mode is a high-resolution measure-
ment of area under the transducer signal (Fig. 1C). It in-
volves sampling the output signal at a high rate and then 
calculating the area under the curve for each minute 
(Ancoli Israel et al., 2003). The PIM is a measure of ac-
tivity level or vigor of motion (Ancoli Israel et al., 2003; 
Hersen, 2006). The type of movement data (mode) used 
for estimation of sleep parameters depends on a number 
of factors including age, gender, underlying disease of 
the study population, and the research question (Ancoli 
Israel et al., 2003; Hersen, 2006; Blackwell et al., 2008; 
Tranah et al., 2010). Generally, ZCM is chosen as the 
mode of operation, especially in sleep research, because 
of its ability to estimate sleep with a high degree of 
accuracy.

Data preprocessing
Although not the subject  of  this  s tudy, data 
preprocessing (data editing) is an important step in the 
analysis of actigraphy data (Tranah et al., 2010; Natale 
et al., 2014). Data editing includes (i) trimming of non-
data from the beginning and end of a file, which keeps 
or marks the section of data one wants to use for ana-
lysis, (ii) identifying and marking ‘off-wrist’ segments 
(i.e. non-wear periods) to exclude these intervals from 
analyses, and (iii) marking of TIB. Some actigraphic de-
vices have features that enable one to identify ‘off-wrist’ 
segments (e.g. a life channel that records positive ac-
tivity count for each minute when the device is worn and 
zero activity score when the device is off wrist). Most 
actigraphic devices have an ‘event marker’ that partici-
pants push to mark time in and out of bed (Martin and 
Hakim, 2011) and which allow correct identification of 
TIB. Light intensity measured by the actigraph and the 
magnitude of the activity recorded could also aide in ac-
curate identification of TIB.

Sleep diaries, when used concurrently with an 
actigraph, are also a useful resource for augmenting 
actigraphy data. For example, sleep scores can be manu-
ally edited after they are generated by the software when 
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the analyst has additional information on the subject’s 
sleep behavior from the sleep diary (User’s Guide to 
Action4, Version 1.1, 2010; Action-W User’s Guide, 
2011). As a result, sleep diary data could potentially 
improve the estimation of sleep onset latency (SOL) by 
differentiating awake but motionless from true sleep 
(Martin and Hakim, 2011). In addition, understanding 
of the characteristics of the population being studied 
(e.g. occupation type, work schedule, etc.) can also in-
form the editing process. For example, shift workers 
may be bimodal sleepers with two separate bedtimes in 
a 24-h period. Overall, data editing is a time consuming 
but crucial step that must be completed prior to deriving 
actigraphy-based sleep parameters. Sleep diary data are 
particularly important in determining ‘lights off’ (which 
signals start of the SLP), information critical for accurate 
assessment of sleep latency and SE (Smith et al., 2018). 
A review by Sadeh (2011) presents several examples of 
studies that indicate strong positive correlations between 
actigraphic and sleep diary estimates of sleep schedule 
measures (sleep onset time and sleep offset time). While 
actigraphy typically identifies numerous isolated brief 
awakenings which may be common even in normal 
sleep, awakenings identified via sleep diary likely re-
flect a distinct construct related to consolidated frank 
awakenings (Smith et al., 2018); hence, data from sleep 
logs can play an important role in validating awaken-
ings identified by the sleep algorithms. Overall, a sleep 
diary record provides additional useful information 

about sleep patterns and has been shown to be an im-
portant adjunct to actigraphy for editing data (espe-
cially identification of TIB) and for removing artifacts. 
Furthermore, sleep diary data would enable investiga-
tors to compare participant perceptions of sleep (self-
report) with objective sleep estimates from actigraphy. It 
is recommended that sleep logs be collected concurrently 
with actigraphy. However, in actigraphy studies that do 
not involve collection of sleep diary data, investigators 
should consider providing detailed instruction to partici-
pants, including that regarding the event-marker feature 
in the actigraph and the times participants need to use 
the event marker to identify important events (when first 
lying in bed, when lights are off, and when getting up); 
the importance of properly marking these events/points 
to the study objective should be emphasized to the study 
participants.

Sleep scoring

Sleep scoring algorithms
How do we estimate sleep/wake cycles from activity 
data? Sleep estimation algorithms (also known as sleep 
scoring functions) are mathematical expressions that 
utilize the activity data (wrist movement values) as input 
and determine whether the subject wearing the device 
was awake (coded as 0) or asleep (coded as 1) during 
each minute where activity data were collected. The al-
gorithm basically transforms the wrist movement data 

Figure 1. Diagrammatic representation of the three modes in which wrist movement data is digitized and stored by the 
Motionlogger Sleep Watch actigraph (i.e. the three types of activity counts or movement data generated by the device). Panel A, 
the ZCM represents the number of times per epoch the voltage signal (represented by the solid curved line) crosses a threshold 
(dashed horizontal line). Panel B, the TAT mode is the amount of time (in tenths of a second) the voltage signal is above a 
threshold. Panel C, the Proportional Integrating Measure (PIM) mode represents the area under the curve for each epoch. The 
figure is adapted from Jean-Louis et al. (2001).
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(often called ‘activity counts’) into a series of 0’s and 1’s 
(often referred to as ‘sleep scores’ or ‘sleep/wake scores’). 
There are various validated algorithms for estimating 
sleep/wakefulness based on wrist movement data col-
lected using the actigraphs from AMI (Cole et al., 1992; 
Sadeh et al., 1994; Jean-Louis et al., 2001). Generally, 
the algorithm employed for scoring sleep depends on (i) 
the device used for monitoring movement; (ii) the mode 
of operation (data type); (iii) epoch length; and (iv) age 
of the study population. The Cole–Kripke algorithm 
(Cole et al., 1992) and the University of California, 
San Diego (UCSD) scoring algorithm (Jean-Louis et al., 
2001) are the most widely used sleep scoring functions. 
In adult populations, the Cole–Kripke and UCSD algo-
rithms can be used to assess sleep/wake cycles for data 
collected in the ZCM mode, while the UCSD scoring al-
gorithm is the only available algorithm for data collected 
in the PIM and TAT modes. To score sleep during a spe-
cific 1 min, these sleep scoring functions use the activity 
scores for the 4 min preceding the minute of activity 
under consideration, the actual minute being scored, and 
the 2 succeeding minutes (Cole et al., 1992; Jean-Louis 
et al., 2001). The algorithm then weighs the activity data 
from each of these seven time points using predetermined 
coefficients (also called weighting coefficients) and com-
putes the sum of the weighted values. The entire sum is 
multiplied by the constant P (scaling factor). The current 
minute is scored as sleep if the resulting value is lower 
than 1, and as awake if the value is ≥1. This process can 
be stated using the following mathematical expression: 
S = P× [(wa−4 × A−4) + (wa−3 × A−3) + (wa−2 × A−2)
+(wa−1 × A−1) + (wa−0 × A0) + (wa+1 × A+1) + (wa+2

×A+2)]

, where A−4 to A−1 are the activity scores for the 4 min 
preceding the minute of activity under consideration, 
A0 is the activity score for current minute (the minute 
being scored), A+1 to A+2 are the activity scores for the 
two succeeding minutes, wa−4 to wa+2 are the weights (co-
efficients) applied to each activity minute, and P is the 
scaling factor. The sleep score for the current minute 
is assigned a value of 1 (if S < 1) or zero (if S ≥ 1). In 
short, these sleep scoring algorithms calculate a moving 
average, which takes into account the activity levels im-
mediately prior to and after the current minute to de-
termine if each time point should be coded as sleep or 
awake. The equation for scoring sleep, using the Cole–
Kripke or UCSD algorithms, based on activity data 
collected via the Zero Crossing Mode (ZCM) is as fol-
lows:  S = 0.0033 × (1.06. × A−4 + 0.54 × A−3 + 0.58 × 
A−2 + 0.76 × A−1 + 2.30 × A−0 + 0.74 × A+1 + 0.67 × A+2. 
If S < 1 then the subject is coded asleep (score of 1) at 
the particular minute, awake (score of 0) otherwise. In 

a validation study of healthy subjects (de Souza et al., 
2003), the Cole–Kripke algorithm was shown to cor-
rectly distinguish sleep from wakefulness with a high de-
gree of accuracy (91%) and high sensitivity (99%).

Alternatively, the Sadeh algorithm (Sadeh et al., 
1994) scores sleep using a different mathematical func-
tion as follows: PS = 7.601 − (0.065. × MA5) − (1.08 × 
NAT) − (0.056 × SDA6) − (0.073 × In ( A0 + 1)), where 
PS is probability of sleep, MA5 is the mean activity score 
during the scored minute, the five preceding minutes, 
and the five following minutes (11-min window), NAT 
is the number of minutes with activity score ≥50 and 
<100 in the same 11-min window, SDA6 is the standard 
deviation of the activity score during the scored minute 
and the 5 min preceding it (6-min window), ln(A0 + 1) is 
the natural logarithm of the activity score for the minute 
being scored plus 1. If PS ≥0, then the subject is coded 
asleep at the particular minute, awake otherwise. The 
Sadeh algorithm has also been shown to have high ac-
curacy (91%) and high sensitivity (97%) compared to 
PSG (de Souza et al., 2003).

It is worth noting that the Mini-Mitter actigraph em-
ploys a similar approach for sleep scoring (Respironics, 
2018). For activity data collected at 1-min interval, the 
Actiware software (Respironics, Inc.) scores each minute 
as sleep or wake using a validated algorithm that utilizes 
the activity score of the minute being scored as well as 
those immediately surrounding it (the 2-min preceding 
and following the current minute). The total activity 
count (T) during the 5-min window is calculated as fol-
lows: T = (wa−2 × A−2) + wa−1 × A−1) + wa−0 × A−0) + wa+1 
× A+1) + wa+2 × A+2), where A−2 and A−1 are the activity 
scores for the 2 min preceding the minute of activity 
under consideration, A0 is the activity score for current 
minute (the minute being scored), A+1 to A+2 are the ac-
tivity scores for the two succeeding minutes, wa−2 to wa+2 
are the coefficients applied to each activity minute. The 
total activity count (T) is compared to a threshold value 
set by the researcher and the minute is scored awake 
if the total activity count exceeds the threshold; Sleep 
score for the current minute is assigned a value of 1 (if 
T > threshold) or zero (if T ≤ threshold). The researcher 
can choose one of three commonly used wake threshold 
values: low (20), medium (40), or high (80).

Sleep rescoring
The original sleep scores generated by the algorithm are 
rescored in certain scenarios. The algorithm incorrectly 
scores actual wake as sleep more often than it incorrectly 
scores sleep as wake (Cole et al., 1992), in part due to the 
fact that subjects falling asleep stop moving for few min-
utes before onset of actual sleep. Therefore, to correct for 
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this misclassification, colleagues (Webster et al., 1982) 
developed the following five sleep rescoring rules that can 
be applied to the original sleep scores generated by the 
algorithm: (i) rescore the first minute of a string of sleep 
scores to a wake score if preceded by 4 or more minutes 
of wake. Meaning, rescore 1 min of sleep to wake if the 
preceding 4 or more minutes were wake (e.g. sleep scores 
of [0 0 0 0 1] will be changed to [0 0 0 0 0]); (ii) rescore 
3 min of sleep as wake if the preceding 10 min were wake 
(e.g. sleep scores of [0 0 0 0 0 0 0 0 0 0 1 1 1] will be 
changed to [0 0 0 0 0 0 0 0 0 0 0 0 0]); (iii) rescore 4 min 
of sleep as wake if the preceding 15 min were wake (e.g. 
sleep scores of [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1] will 
be changed to [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]); (iv) 
if a period of 6 min or less that is scored as sleep is sur-
rounded (i.e. in both sides) by at least 15 min scored as 
wake, then rescore to wake (e.g. sleep scores of [0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0] will be changed to [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]); and (v) if a period 
of 10 min or less that is scored as sleep is surrounded (i.e. 
in both sides) by at least 20 min scored as wake, then re-
score to wake (e.g. sleep scores of [0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0] will be changed to [0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0]). Note that users can turn off the sleep 
rescoring option when analyzing actigrpahic data using 
the Action-W software.

Identification of TIB and SLP
TIB, also referred to as the major sleep period (Martin 
and Hakim, 2011), DOWN interval, REST interval, or 
assumed sleep interval, is the time when subjects are at-
tempting to sleep. TIB is simply the interval from the 
time the subject went to bed (bedtime) to the time the 
subject arose (rise time) (Martin and Hakim, 2011). 
However, the absolute value of TIB is dependent upon 
user-defined settings for when the subject went to bed 
(in bed time) and got out of bed (get up time). The end 
points of TIB (in bed time and get up time) are often 
ascertained using data from (i) the event marker of the 
actigraph or (ii) sleep diary, (iii) the ambient light sensor 
of the actigraph, or (iv) combination of these. It is im-
portant to emphasize that studies should clearly state 
the instructions given to study participants for marking 
the end points of TIB. In other words, when should TIB 
begin? Possible choices include: (i) when the participant 
first lie down in bed but may still read a book or watch 
TV; (ii) when the participant is in bed and turns the 
lights off, but may still watch TV; or (iii) when the par-
ticipant is in bed, turns the lights off, and does nothing 

except attempting to sleep. Similarly, specifications for 
‘get up time’ should be clearly stated and the choices 
could include (i) the final awakening time but still in bed 
or (ii) when lights are turned on or (iii) when the sub-
ject physically gets out of bed. We recommend that TIB 
should begin when the subject first lies down in bed and 
end when the subject physically gets out of bed; this al-
lows derivation of TIB as an independent sleep measure 
that estimates the amount of time a subject spends in 
bed regardless of sleep. For proper estimation of sleep 
latency and efficiency, we also suggest that participants 
mark when lights are turned off and they do nothing ex-
cept attempting to sleep.

Sleep period, also referred to as the true sleep period, 
is defined as the interval (within TIB) from sleep onset to 
sleep offset (Sadeh, 2011). This interval, also called the 
sleep onset–offset interval (‘O–O’ interval), represents 
the period from sleep ONSET (i.e. start of first SEP after 
getting into bed) to OFFSET (end of the last SEP before 
getting out of bed). The length of true sleep period is de-
pendent up on the criteria or algorithm used for defining 
sleep ONSET and sleep OFFSET. The Action-W software 
(Action-W User’s Guide, 2011) defines Sleep ONSET in 
three different ways including (i) the time point of the 
first minute the subject was scored asleep after getting 
into bed, or (ii) the time point of the first continuous 
block of at least 10 min of sleep (with no more than 
1 min of wake somewhere during the 10 min block), 
or (iii) the time point of the first continuous block of at 
least 20 min of sleep (with no more than 1 min of inter-
ruption in the 20 min block). Sleep OFFSET on the other 
hand is defined as the time point of the last minute the 
subject was scored asleep before getting out of bed.

It is worth noting that sleep parameters can be de-
rived using data from the major sleep period (TIB) or the 
true sleep period. The Action-W software generates two 
separate estimates of the sleep parameters, one based on 
data from TIB and the other using data from the SLP. 
The interval used for derivation of the values of these 
sleep parameters should be explicitly stated in all studies.

At this point it is relevant to briefly point out how 
the major and true sleep periods are defined by the other 
two commonly used commercial actigraphs, the Mini-
Mitter actigraph, (Respironics, 2018) and MotionWatch 
actigraph (CamNtech, 2018). The Mini-Mitter actigraph 
and the associated sleep analysis software (Actiware) 
utilize two approaches for defining sleep interval (i.e. for 
defining sleep onset and sleep offset/sleep end). The first 
approach uses the minute-by-minute activity scores to 
define sleep interval. In this approach, the activity scores 
at each minute are first classified as immobile (if the ac-
tivity count recorded at that minute is <4) or mobile 
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(if activity count ≥4). Sleep onset is then defined as the 
time point of the start of the first 10 consecutive minutes 
of immobility, after getting to bed, with no more than 
1 min of mobility in that interval. Sleep offset is defined 
as the time point of the last minute of the last 10 con-
secutive minutes of immobility, before getting out of bed, 
with no more than 1 min of mobility in that interval. 
The second approach utilizes the sleep/wake scores (0’s 
and 1’s) to define sleep interval. Using this approach, 
sleep onset is the time point of the start of the first 10 
consecutive minutes of sleep after getting to bed while 
sleep offset is the time point of the last minute of the last 
10 consecutive minutes of sleep before getting out of bed 
(Respironics, 2018).

The MotionWatch actigraph and the associated pro-
prietary software (MotionWare) identify the following 
five time points of interest: ‘in bed time’, ‘lights out time’, 
‘fell asleep time’, ‘woke up time’, and ‘got up time’. These 
time points were defined as follows: ‘In bed time’ was de-
fined as the time point when the subject first lie down in 
bed, ‘Lights out time’ when the lights are turned off, ‘fell 
asleep time’ when the subject first fell asleep, ‘woke up 
time’ when the subject finally awoke before getting out 
of bed, and ‘got up time’ when the subject finally arose 
or got out of bed. The interval from ‘lights out time’ to 
‘got up time’ is considered the major sleep period (TIB) 
while the interval from ‘fell asleep time’ to ‘woke up 
time’ is considered the SLP (sleep region). The software 
(MotionWare) then derives numerous sleep parameters 
based on data from sleep region/SLP (the interval from 
‘fell asleep time’ to ‘woke up time’), not based on data 
from TIB.

Overall, both sleep onset and sleep offset are often 
calculated using specific time-based scoring rules that 
utilize either the activity counts (i.e. the raw frequency 
of wrist movement) or the sleep/wake scores (i.e. 0’s and 
1’s). The most common definition of sleep onset was 
the start of the first predetermined number of consecu-
tive minutes of decreased activity count (below a spe-
cific threshold) or the start of the first predetermined 
number of consecutive minutes of sleep; frequently used 
rules include 1, 3, 5, 10, 15, and 20 consecutive minutes 
(Meltzer et al., 2012a,b). Similarly, sleep offset was most 
commonly defined as the last minute of a predetermined 
number of minutes the subject was scored asleep prior 
to getting out of bed; frequently used rules include 1, 3, 
5, 10, and 15 consecutive minutes. Recommendation as 
to which definition to use for identifying TIB and SLP 
should be reached by a consensus from a panel of sleep 
experts; such decision would enable standardization 
of actigraphy-based sleep parameters which facilitates 
comparison of the sleep measures across studies. Finally, 

we would like to underscore the importance of pro-
viding detailing instructions to participants on the use 
of event markers with emphasis on their importance to 
study objectives.

Sleep parameters
In this section, we present technical definitions for nu-
merous sleep parameters, along with the corresponding 
methods/formulas used to estimate their values from 
actigraphic data. When available, we also present nor-
mative reference ranges of the sleep parameters for 
adults and their potential clinical significance. Each sleep 
parameter is presented in a separate paragraph with the 
name of the sleep parameter in bold font. Note that the 
superscript+ at the end of the name of a sleep parameter 
indicates that only the activity counts (the minute-by-
minute wrist movement values) were used to derive the 
parameter and hence, derivation of the parameter does 
not involve sleep scores. On other hand, the superscript¥ 
indicates that activity counts (the minute-by-minute 
wrist movement values) were first converted into sleep/
wake scores (0’s and 1’s) using sleep scoring algorithm 
prior to deriving the parameter; derivation of the par-
ameter utilizes only the sleep scores. Demonstration of 
the derivation of each sleep parameter is presented in the 
supplemental file (Supplementary Tables S5–S11, avail-
able at Annals of Work Exposures and Health online).

Time in bed: TIB refers to the duration a participant 
spent in bed and is derived by subtracting the time the 
subject went to bed (in bed time) from the time the sub-
ject arose (get up time) (Natale et al., 2014). TIB can be 
properly ascertained from sleep diary data (participants 
indicate what time they went to bed and arose) or more 
objectively by pressing the ‘event-marker’ button on the 
actigraph, when going to bed (in bed time) and getting 
out of bed (get up time), which will mark these time 
points (Martin and Hakim, 2011).

Sleep period: The duration of the interval from sleep 
onset to sleep offset (O–O interval). We defined sleep 
onset as the starting time point of the first continuous 
block of at least 20 min of sleep with no more than 
1 min of interruption and sleep offset as the last minute 
the subject was scored asleep before getting out of bed. 
The length of SLP depends on the criteria used to define 
sleep onset and offset (see the review under the heading 
‘Identification of TIB and SLP’).

Mean activity during TIB (AMEAN)+: AMEAN re-
fers to the average activity score or frequency of wrist 
movement (ZCM) per minute while the subject is in bed. 
It is derived by summing the minute-by-minute activity 
scores during TIB and dividing the sum by duration of 
TIB in minutes. A ‘good sleep’ during TIB should yield 
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small values for this parameter while ‘disturbed’ sleep 
will show higher value for this parameter. This param-
eter is also referred to as mean motor activity (Natale 
et al., 2014) and does not have a PSG equivalent. It is 
computed as follows:

AMEAN =

∑n
i=1 ZCMi

n

where n is the number of minutes during TIB, ZCMi is 
the activity score at the ith minute during TIB.

Median activity during TIB (AMED)+: AMED refers 
to the median value of activity score (ZCM) per minute 
during TIB. Often, the frequency of wrist movement per 
minute while in bed is positively skewed. Hence, the me-
dian may be a better measure of the typical activity score 
per minute than the mean activity level. Higher values 
for AMED may indicate ‘disturbed’ sleep while in bed. 
The median is computed by sorting the activity scores 
during TIB from smallest to largest and identifying the 
middle value as follows: AMED = {(n + 1) ÷ 2}th ordered 
value, where n is the number of minutes during TIB.

Activity standard deviation during TIB (ASD)+: ASD 
refers to the standard deviation of activity scores during 
TIB. It is a measure of variability in the activity score 
during TIB; large values may suggest that a subject is 
showing ‘erratic’ movement behavior while in bed and 
smaller values may suggest that the subject is consistent 
in his/her frequency of movement during TIB (consistent 
does not mean low frequency of movement). It is calcu-
lated as follows:

ASD =

 ∑n
i=1 (ZCMi − AMEAN)

2

n− 1

where n is the number of minutes during TIB, ZCMi is the 
activity score at the ith minute during TIB, and AMEAN 
is the mean activity during TIB as defined above.

Sleep minutes during TIB (SMIN)¥: SMIN refers to 
the number of minutes asleep during TIB. It is the total 
number of minutes during TIB that the subject was coded 
(by the algorithm) asleep. The recommended normal for 
adults is 7–9 h of sleep per night (Berger et al., 2005). 
It is calculated as follows: SMIN =

∑n
i=1 (sleep score)i 

where (sleep score)i represents the sleep score for the 
ith minute during TIB, and n is the number of minutes 
during TIB.

True sleep minutes (TSMIN): TSMIN refers to the 
number of minutes asleep during SLP (O–O interval). 
It is the total number of minutes during SLP) that the 
subject was coded (by the algorithm) asleep. The re-
commended normal for adults is 7–9 h of sleep per 
night (Berger et al., 2005). It is calculated as follows: 

TSMIN =
∑k

i=1 (sleep score)i where (sleep score)i repre-
sents the sleep score for the ith minute during SLP, and k is 
the number of minutes during SLP.

Sleep onset latency (SOL)¥: SOL refers to the number 
of minutes it took a subject to fall asleep. It is the 
number of minutes between lying down in bed and ac-
tually falling asleep (Berger et al., 2005). Technically, it 
is the number of minutes from the time the subject re-
ported going to bed (in bed time) to the time the sub-
ject was first scored as asleep by the algorithm. Normal 
limits of SOL for adults are <20 min (Berger et al., 
2005). Generally, sleep latency derived using actigraphy 
is less reliable (de Souza et al., 2003; Lichstein et al., 
2006; Blackwell et al., 2008; Martin and Hakim, 2011). 
Quiet wakefulness (e.g. lying down still) tends to be as-
sessed as sleep leading to a less-accurate estimate of SOL 
as well as sleep duration and wake minutes (Van De 
Water et al., 2011). A more accurate estimation of this 
parameter requires at least 14 days of monitoring (Rowe 
et al., 2008).

Latency to persistent sleep¥: LPS refers to the number 
of minutes from the time the subject went to bed to the 
start of persistent sleep. We define the start of persistent 
sleep as the time point of the first continuous block of at 
least 20 min of sleep with no more than 1 min of wake-
fulness intervening. It is worth noting that the magnitude 
of LPS depends on the criterion used for defining onset of 
persistent sleep (e.g. 5, 10, or 15 min of continuous sleep). 
Cole and colleagues (1992) report that compared to SOL, 
LPS showed the highest correlation between actigraph 
and PSG and hence more reliable than SOL.

Percent sleep (PSLP)¥: PSLP refers to the proportion 
of minutes a subject was asleep during TIB (proportion 
of the TIB spent sleeping). PSLP is derived as follows: 
PSLP = (SMIN/TIB)× 100, where SMIN is sleep dur-
ation while in bed and TIB is time spent in bed. Normal 
limit for adults is ≥80% (Berger et al., 2005).

Sleep efficiency¥: SE is a measure that is closely re-
lated to PSLP. SE is estimated in similar fashion to PSLP, 
except that it is defined using data from the SLP (‘O–O’ 
interval) rather than TIB. Therefore, SE is defined as the 
percentage of time spent asleep during the SLP (between 
onset of persistent sleep and sleep offset). SE is derived 
as follows: SE = (TSMIN/SLP)× 100, where TSMIN is 
sleep duration during SLP or O–O interval. Unlike PSLP, 
the numerator does not include periods of immobility 
(quite wakefulness) that often occurs after first getting 
into bed. The criterion used for defining the two time 
points (sleep onset and sleep offset) of the SLP affects the 
magnitude of this parameter. Normal limit for adults is 
≥80% (Berger et al., 2005).
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Sleep episodes¥: SEP refers to the episodes of con-
tinuous sleep during TIB (TIB). It is calculated as the 
total number of episodes during which the subject was 
continuously asleep (even for 1 min) while in bed. It 
is simply the count of instances when the subject was 
asleep for one or more minutes.

Mean sleep episode (MSEP)¥: MSEP is the average 
number of minutes the subject was asleep per episode of 
sleep. It is derived as follows: MSEP = SMIN/SEP.

Long sleep episodes (LSEPs)¥: LSEP refers to the epi-
sodes of long sleep during TIB. An episode of sleep is 
considered long if it lasts at least 5 min (default option 
in Action-W software). Thus, LSEP is the total number 
of instances when the subject was asleep for at least 
5 min during TIB. Depending on study objective, the 
user can choose a different criterion for defining LSEP 
(e.g. 10, 15 min, etc.).

Longest sleep episode (LGSEP)¥: LGSEP refers to 
the duration (in minutes) of the longest sleep episode 
during TIB.

Wake minutes during TIB (WMIN)¥: WMIN re-
fers to the number of minutes awake during TIB. It is 
the total number of minutes that the subject was coded 
(by the algorithm) awake during TIB. It is calculated as: 
WMIN = n−

∑n
i=1 (sleep score)i  where (sleep score)i 

represents the sleep score for the ith minute during TIB, 
and n is the number of minutes during TIB.

Wake after sleep onset¥: WASO refers to the number 
of minutes a participant was awake between sleep onset 
and sleep offset (O–O interval). This parameter is similar 
to WMIN except that it is defined for the true sleep 
period rather than the major sleep period (TIB). The cri-
terion used for defining the two time points (sleep onset 
and sleep offset) affects the estimate of this parameter. 
The value considered normal in adults is <10% of total 
sleep minutes or 42 min for a person who sleeps 7 h/
night (Berger et al., 2005).

Wake episodes (WEPs)¥: WEP refers to the episodes 
of awakenings during TIB. It is the count of instances 
when the subject woke up (for 1 or more minutes) 
during TIB. In the sleep literature, WEPs are often re-
ferred to as number of awakenings. On average, normal 
values of WEP in adults range from 2 to 6 awakenings 
per night (Berger et al., 2005). At times, this sleep par-
ameter is defined for the O–O interval, rather than for 
TIB, which will then represent the number of awaken-
ings between sleep onset and sleep offset.

Mean wake episode (MWEP)¥: MWEP refers to the 
average number of minutes the subject was awake per 
episode of awakening during TIB. It is derived as fol-
lows: MWEP = WMIN/WEP. In other words, this 

variable refers to how long, on average, it takes for sub-
ject to fall back to sleep after waking up.

Long wake episodes (LWEPs)¥: LWEP refers to the 
episodes of long awakenings during TIB. An episode of 
awakening is considered long if it lasts at least 5 min 
(default option in Action-W software). It is the count of 
instances when the subject woke up for at least 5 min 
during TIB. While the user can choose a different cri-
terion for defining LWEP (e.g. 10, 15 min, etc.), previous 
studies suggest a cut point of 5 min may have clinical 
utility. For example, a study (Natale et al., 2009) showed 
that the number of night awakenings longer than 5 min 
was one of the key variables that discriminated subjects 
with insomnia from control subjects. In a population-
based study (Tranah et al., 2010), women who currently 
use hormone therapy had fewer LWEPs (≥5 min) com-
pared to never users.

Longest wake episode (LGWEP)¥: LGWEP refers to 
the duration (in minutes) of the longest wake episode 
during TIB.

Acceleration index (ACCX)+: ACCX refers to the dis-
tribution of frequency of movement during TIB. It ranges 
from −1 to +1, with zero representing uniform distribu-
tion of movement. A negative value indicates slowing of 
activity during TIB while a positive value indicates an 
acceleration of activity (movement) during TIB (Wiggs 
and Stores, 2004). The acceleration index (AI) is calcu-
lated by the formula: AI = 2p1, where p is the propor-
tion of the interval (TIB) required for 50% of the total 
activity in the interval to be completed. This parameter 
does not have a clear meaning (Wiggs and Stores, 2004).

Activity index (ACTX)+: ACTX refers to the propor-
tion of minutes during TIB where the activity score was 
greater than zero. The numerator is count of minutes 
during TIB where the movement score was greater than 
zero and the denominator is the total number of min-
utes during TIB. A very good sleep (no movement at all) 
yields a zero activity score for each minute and hence a 
high percentage for this parameter implies a ‘not so good 
sleep’ (subject showed movement during the majority of 
TIB regardless of sleep/wake state). A high activity index 
is indicative of restlessness.

Sleep fragmentation index¥: SFX refers to the ratio 
of the number of awakenings to the total sleep time in 
minutes, during TIB. The numerator is the total number 
of awakenings during TIB (WEP) while the denominator 
is the total minutes asleep during TIB (SMIN). SFI is an 
indicator of restlessness or nocturnal movement (Natale 
et al., 2014). It is computed as SFX = WEP/SMIN.

Brief wake ratio¥: BWR refers to the ratio of the 
number of awakenings lasting only 1 min to the total 
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number of awakenings during TIB. It is the proportion 
of awakenings that lasted only 1 min. The numerator is 
count of awakenings during TIB that lasted only 1 min 
and the denominator is count of all awakenings during 
TIB. A BWR of zero means there are no awakenings 
lasting only 1 min (i.e. all awakenings were of >1-min 
duration) whereas a BWR of 1 means that all awaken-
ings were for just 1 min.

Short burst inactivity index+: SBIX refers to the ratio 
of the count of zero activity (ZCM = 0) episodes during 
TIB lasting only 1 min to the count of zero activity epi-
sodes during TIB lasting 1 or more minutes. The numer-
ator is the count of minutes during TIB where the subject 
had a zero-activity score (ZCM = 0) for that minute but 
with positive activity scores during the preceding and 
following minutes. The denominator is the count of epi-
sodes during TIB where the subject had a zero-activity 
score for 1 or more minutes. An SBIX = 0 means there 
are no episodes during TIB where activity score was 
zero for just 1 min. An SBIX = 100% means all episodes 
where activity score was zero were for just 1 min (i.e. all 
episodes of zero activity score had a duration of 1 min).

Measures of intraindividual variability: Although 
one of the advantages of actigraphy is the ability to 
collect data for extended period spanning several days 
or weeks, the focus of most sleep studies involving 
actigraphy has been on the mean values of the sleep 
parameters (i.e. average of the sleep measures across 
days) with little attention to their day-to-day fluctu-
ation (i.e. intraindividual variability or within-subject 
variability). Intraindividual variability of a sleep par-
ameter is a measure of the day-to-day variability of the 
sleep parameter and can be computed by calculating 
the standard deviation of the sleep parameter across the 
sampling days. We recommend at least 7 days (i.e. seven 
24-h periods) of actigraphy data in order to compute a 
stable measure of daily variability of a sleep parameter. 
For example, intraindividual variability in sleep duration 
can be estimated by calculating the standard deviation 
of sleep minutes (SMIN) across the sampling days as 
follows:

SD(SMIN) =

Ã
∑d

i=1

Ä
SMINi − SMIN

ä2

d− 1

where SD(SMIN) is the standard deviation of sleep min-
utes (SMIN) across sampling days, d is the number of 
sampling days (d ≥ 7), SMINi is the sleep minutes on the 
ith day, and SMIN is the average of sleep minutes (SMIN

) across the d sampling days 
Ä
SMIN =

∑d
i=1 SMINi/d

ä
. 

This parameter, SD(SMIN), could provide insight on 
consistency of sleep duration of a participant across days 

(i.e. is the sleep duration of the individual consistent 
from day to day or is sleep duration of the individual 
erratic with short sleep duration in some days and long 
sleep duration on other days). The same procedure (for-
mula) can be used to compute measure of intraindividual 
variability for all the other sleep parameters and this new 
measure could serve either as predictor or outcome vari-
able in sleep research. For example, a study by Mezick 
et al. (2009) used within-subject variability in sleep dur-
ation and sleep fragmentation as outcome measures and 
identified psychosocial and physiological stress as poten-
tial risk factors for increased nightly variability in these 
sleep parameters.

Sleep measures that combine mean and variability: 
Researchers can create new measures by combining the 
two components of a sleep measure (overall mean and 
day-to-day variability). For example, using mean sleep 
duration (SMIN) and the day-to-day variability associ-
ated with sleep duration (SD(SMIN)), participants could 
be classified into the following four groups: short and 
consistent sleepers, long and consistent sleepers, short 
and variable sleepers, and long and variable sleepers. 
This can be done for each sleep parameter.

Chronotype: Actigraphic data can also be useful 
for assessing chronotype, an individual’s preferred 
time for sleeping (Adan et al., 2012) and classify in-
dividuals as early risers versus night owls (Natale 
et al., 2014). Chronotype is an important sleep par-
ameter to consider as it has been linked to various 
aspects of health including mental (Taylor and Hasler, 
2018) and cardiometabolic outcomes. For example, late 
chronotypes prefer to wake up later in the morning and 
go to sleep later in the evening while early chronotypes 
prefer to wake up early in the morning and go to sleep 
earlier in the evening. Chronotype is often quantified by 
calculating the midpoint between the start and end of 
SLP (Simpkin et al., 2014; de Souza and Hidalgo, 2015; 
Santisteban et al., 2018; Refinetti, 2019) or midpoint of 
TIB (Urbanek et al., 2018). The midpoint of SLP or TIB 
will serve as an estimate of chronotype when examining 
association of chronotype with psychological or physical 
well-being (e.g. are individuals with later midpoints at 
higher risk of poor health outcomes?).

Demonstration of the methodology in 
actigraphy

In this section, we present demonstration of the meth-
odology involved in actigraphy including: (i) detailed 
description of the sample actigraphic data with graph-
ical visualization of sleep/wake patterns, (ii) applica-
tion of the Cole–Kripke algorithm for sleep scoring, (iii) 
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application of sleep rescoring rules, (iv) illustration of 
TIB versus SLP, and (v) demonstration of the methods 
for derivation of the sleep parameters.

In order to describe/demonstrate the methodolo-
gies involved in derivation of sleep parameters from 
actigraphic data, we obtained wrist movement data col-
lected using the Motionlogger Sleep Watch and analyzed 
the data using the Action-W software (AMI, Ardsley, 
New York). The software automatically scores sleep/
wake cycles and then estimates sleep parameters for each 
24-h period (i.e. a day), as well as the overall average 
and standard deviation of each parameter based on all 
days. We then imported the raw wrist movement data 
into a standard EXCEL spreadsheet where we manu-
ally reproduced the sleep parameters estimated by the 
software; this process aided us in detailing the rules 
and methods used to derive each sleep measure, and 
in providing clearer technical definitions of the sleep 
parameters. The list and type/classification of the sleep 
parameters that were derived from the actigraphic data 
is shown in Fig. 2.

Prior to derivation of the various sleep parameters, 
we defined the beginning of TIB (in bed time) as the 
time point when lying down in bed the first time and 
the end of the major sleep period (get up time) as the 
time point when getting out of bed at the end of a SLP. 

To mark the end points of the true sleep period, we de-
fined sleep onset as the starting time point of the first 
continuous block of at least 20 min of sleep with no 
more than 1 min of interruption and sleep offset as the 
last minute the subject was scored asleep before getting 
out of bed. The sleep parameters were derived using data 
from the major sleep period (TIB). The same procedures 
(methods) apply to derive the parameters for the true 
sleep period (O–O interval); all one has to do is restrict 
the actigraphic data to this subinterval.

The data were from a participant who was enrolled 
in the Buffalo Cardio-Metabolic Occupational Police 
Stress (BCOPS) study (Violanti et al., 2006). In the 
BCOPS study, participants were instructed to wear the 
actigraph on their non-dominant wrist for 15 days and 
the device was set to record movement data at 1-min 
intervals. Participants were instructed to press the event-
marker button on the actigraph to digitally mark times 
they went to bed (‘in bed time’—when lying down in 
bed the first time) and times they got out of bed (‘get 
up time’—when getting out of bed at the end of a SLP). 
Participants also kept a sleep diary for each day where 
they recorded ‘in bed times’, ‘get up times’, and the times 
the actigraph was removed from the wrist (i.e. non-wear 
periods or off-wrist periods). The study was approved 
by the Internal Review Board of the State University 

Figure 2. The list and classification of sleep parameters derived from wrist-worn actigraphic data.
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of New York at Buffalo, and the National Institute for 
Occupational Safety and Health (NIOSH) Institutional 
Review Board (IRB).

The sample actigraphic data comprise wrist move-
ment data collected in ZCM from one middle-aged 
participant enrolled in the BCOPS study; data were col-
lected over a 14-day period starting on 11/11/2011 at 12 
PM and ending on 11/25/2011 at 11:59 AM. Graphical 
display of the data for each 24-h period (i.e. from noon 
to noon on consecutive days) is shown in Fig. 3. The 
plot displays the minute-by-minute frequency of wrist 
movement for each day (24-h period); the x-axis repre-
sents time of the day in military time (24-h clock) and 
the y-axis represents the frequency of wrist movement 
(ZCM). For participants who work on day shift, dis-
play of movement data from noon of 1 day to noon of 
next day (also called the ‘midnight centered view’) is an 
approach that is recommended for capturing nocturnal 
sleep behavior and for determining the participant’s 
habitual bed and waking times (Khawaja et al., 2013). 
Displaying the data from each day stacked one above the 
other in one figure (as shown in Fig. 3) also enables the 
user to visually inspect the sleep/wake patterns simultan-
eously across multiple days (Martin and Hakim, 2011). 
From Fig. 3, it appears that there are movement data for 
14 days (i.e. 14 24-h periods); however, the participant’s 
sleep diary indicated that the subject did not wear the 
actigraph during the night of day #7 (i.e. the device was 
off wrist from 7:15 PM to 4 AM), as evidenced by the 
series of zeros (flat line) representing wrist movement 
values during this period (Fig. 3). Hence, the data from 
day #7 were excluded, leaving 13 days with movement 
data for further analysis. The data were analyzed using 
the Action-W software; the output generated by the soft-
ware listing the estimated sleep parameters is shown in 
Supplementary Table S1 (available at Annals of Work 
Exposures and Health online).

Generally, for a participant with multiple days of 
actigraphic data, the value of each sleep parameter is cal-
culated separately for each 24-h period (i.e. 1 day) and 
then the estimates across the multiple days are averaged 
to get a more stable/representative measure that min-
imize interdaily variability (Acebo et al., 1999; Tranah 
et al., 2010). For our demonstration, we present the 
actual wrist movement data for the first day (first 24-h 
period) and utilize this data to illustrate derivation 
of 29 sleep parameters for that particular day. Similar 
techniques are then applied to estimate the sleep param-
eters for the remaining 12 days. The raw data for the 
first day (from 12 PM on 11/11/2011 to 11:59 AM on 
11/12/2011) is shown in Supplementary Table S2 (avail-
able at Annals of Work Exposures and Health online). 

On this particular day, based on time stamps from the 
event marker, the participant went to bed (in bed time) 
at 21:00 (9 PM) on 11/11/2011 and got out of bed (get 
up time) at 4:10 AM on 11/12/2011.

Application of the Cole–Kripke algorithm for as-
sessing sleep/wake cycles (sleep scores) is demonstrated 
in Supplementary Table S3 (available at Annals of Work 
Exposures and Health online). Sleep rescoring is demon-
strated in Supplementary Table S4 (available at Annals 
of Work Exposures and Health online). Fig. 4 displays 
the transformation of the raw wrist movement data 
(for the first 24-h period) to sleep/wake scores using 
the Cole–Kripke algorithm. Illustration of the major 
and true sleep period is shown in Fig. 5. Demonstration 
of the derivation of sleep parameters for the first 24-h 
period is shown in Supplementary Tables S5–S11 (avail-
able at Annals of Work Exposures and Health online). 
These illustrations enable readers to have a functional 
understanding of how the values of each sleep parameter 
are estimated. Although the demonstration of how to 
estimate the values of each sleep parameter is provided 
only for the first 24-h period (first day), the same pro-
cedure is then applied to derive the parameters for the 
remaining 12 days.

Discussion

Actigraphic measured wrist activity is considered the 
most reliable method for objective assessment of sleep in 
epidemiologic studies and has been validated in a broad 
range of clinical and non-clinical adult populations (Cole 
et al., 1992; Lichstein et al., 2006; Blackwell et al., 2008; 
Tonetti et al., 2008; Rupp and Balkin, 2011; Sadeh, 
2011; Van de Water et al., 2011). Despite the wide use 
of actigraphy in both epidemiologic studies and labora-
tory settings, publications detailing methods for deriving 
sleep parameters is sparse. In addition, reporting (i.e. 
definition and technical details) of actigraphy-based 
sleep measures (Berger et al., 2005) has been incon-
sistent across studies (Smith et al., 2018). Discrepancies 
in how sleep measures are defined could in part reflect 
differences in both hardware (e.g. sensitivity and speci-
fications of the accelerometer) and software (i.e. sleep 
parameter criteria) across actigraphic devices (Rupp 
and Balkin, 2011). In our study, we utilized wrist move-
ment data collected using the Motionlogger actigraph 
to demonstrate the methodology for estimating sleep 
parameters. We illustrate how to apply sleep scoring 
algorithms to translate wrist movement data into sleep 
scores (sleep/wake cycles) and describe the subsequent 
steps for deriving common sleep parameters, including: 
total sleep time, SE, latency, number of awakenings, 
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WASO, and SFX. Emphasis was placed on technical def-
initions and practical interpretations of the parameters.

Inconsistency in actigraphy-based sleep 
measures
The most notable inconsistency across studies relates 
to the algorithms and methods used for identifica-
tion of sleep onset (i.e. start of sleep) and sleep offset 
(i.e. end of the last SEP), which mark the SLP or sleep 
region (see Fig. 5). Some algorithms rely solely on the 

raw wrist movement values (Sitnick et al., 2008; Natale 
et al., 2014), while others utilize the sleep/wake scores 
(de Souza et al., 2003; Tranah et al., 2010) to identify 
these crucial two time points of the SLP. How these two 
time points (i.e. sleep onset and sleep offset) are defined 
ultimately affects the estimates of sleep latency and other 
sleep measures. For example, sleep latency (the amount 
of time it takes to fall asleep) has been defined in various 
ways. These include (i) the interval from bedtime to first 
occurrence of 10 min block with at least 9 min of no 

Figure 3. Actigraphic data of a single participant showing minute-by-minute wrist movement values (activity counts) across 
14 days; from 12 PM on 11/11/2011 to 11:59 AM on 11/25/2011. The x-axis represents hours of the day and the y-axis represents the 
wrist movement values. Each row displays wrist movement for a 24-h period from noon of 1 day to noon of the following day. 
Downward arrows show ‘in bed times’ and ‘get up times’ for each day ascertained based on information from the event marker 
and sleep diary. The raw data from the first day is shown in supplemental file (Supplementary Table S2, available at Annals of 
Work Exposures and Health online) which is used for demonstration of derivation of sleep parameters.
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movement (Natale et al., 2014), (ii) the time elapsed 
from lights out to occurrence of five consecutive sleep 
minutes (de Souza et al., 2003), (iii) the interval from 
bedtime to the first occurrence of at least 3 consecu-
tive minutes with activity count of zero (Sitnick et al., 
2008), and (iv) the interval from bedtime to start of the 
first 20-min block with greater than 19 min of sleep 
(Corkum et al., 2001; Tranah et al., 2010), equivalent to 
the definition of LPS in this paper. In the current study, 
SOL was defined as the interval from ‘in bed time’ (when 
lying down in bed the first time) to the first minute the 
subject was scored asleep (Action-W software by AMI).

Additional inconsistency across studies relates to the 
period for which the sleep parameters were reported (i.e. 
major sleep period versus true sleep period). Some studies 
(Corkum et al., 2001; Natale et al., 2014) derive sleep 
parameters (total sleep time, WASO, number of awaken-
ings, and SE) for the true sleep period (O–O interval), while 
other studies (Tranah et al., 2010) derive sleep measures 
(sleep hours, SE, WASO, and LWEPs) for the major sleep 
period (TIB). Lastly, studies often differ in naming con-
ventions for the sleep measures as well as in the formulas 
used to derive them. For example, Corkum et al. (2001) 
define restlessness during sleep as the mean frequency of 
motor movements per minute, which in the current study 
is labeled as mean activity score during TIB (AMEAN). 

The sleep measures ‘sleep period (SLP) or O–O interval’, 
‘activity index (ACTX)’, and ‘short burst inactivity index 
(SBIX)’ are named differently by the MotionWare soft-
ware for Cambridge Actiwatch actigraphs (Cambridge, 
UK) as ‘assumed sleep period’, ‘mobile time (%)’, and ‘im-
mobile bouts ≤1 min (%)’, respectively. Calculation of spe-
cific sleep parameters may also vary by actigraph software. 
For example, the Action-W software defines the SFX as 
the ratio of WEPs to total sleep time (in minutes) during 
TIB (SFX = WEP/SMIN), whereas the MotionWare soft-
ware calculates the SFX as the sum of ‘mobile time (%)’ 
and ‘immobile bouts ≤1 min (%)’, which is equivalent to 
sum of ACTX and SBIX in this study.

In contrast, reporting of TIB has been more con-
sistent, with assessment of bed time (i.e. when first lying 
down or when lights out) and final wake time (i.e. out of 
bed or get up time) appearing to be relatively uniform 
across studies. Nonetheless, the substantial variation ob-
served across studies in the definition of sleep onset and 
sleep end can render comparison of results challenging, 
as these measures influence estimates of several key sleep 
parameters. Hence, researchers need to consider not only 
the device used and population under study, but also 
how the sleep parameters of interest are derived or de-
fined, especially when comparing findings across studies 
(Jean-Louis et al., 2001).

Figure 4. Actigram showing the minute-by-minute wrist movement values (top panel) during the first 24-h period (from 12 PM 
on 11/11/2011 to 11:59 AM on 11/12/2011), totaling 1440 observations along with the sleep scores estimated using the Cole–Kripke 
algorithm (middle panel) and TIB ascertained from event marker and sleep diary (bottom panel).
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Methodology for deriving sleep measures
A step-by-step demonstration of the methodology pre-
sented in this paper provides a basic guide for under-
standing actigraphic data collection, processing, and 
interpretation in sleep research, and for the derivation 
of specific sleep parameters. Understanding how sleep 
parameters are derived may expand use of sleep meas-
ures that are less frequently employed (e.g. day-to-day 
variability, activity standard deviation, SFX, BWR, 
and SBIX). For example, depending on the specific ob-
jective of a study, one may wish to use standard devi-
ation of activity scores (ASD) during TIB as a predictor 
of specific health outcomes. Alternatively, within-subject 
day-to-day variability of the various sleep measures, a 
measure of intraindividual consistency, may likewise be 
useful as a predictor or outcome variable (Mezick et al., 
2009). In addition, researchers can create new measures 
by combining the two components of a sleep measure 
(overall mean and day-to-day variability).

Understanding actigraphy methodology also enables 
users to modify criteria used for defining certain sleep 
measures, rather than simply relying on default options 
provided by the device-specific analysis software. For ex-
ample, in defining LPS, no more than 1-min of wakeful-
ness is allowed in the first continuous block of at least 
20 min of sleep. A researcher may want to permit, for 
example, a 2- or 3-min period of wakefulness (which is 
not currently supported by the actigraphy software) and 
could develop a code to modify the estimation of this 
parameter accordingly. Similarly, WEP could be redefined 
as a period of wakefulness lasting at least 5 consecutive 
minutes rather than the default of 1-min and LWEP could 
be redefined as a period of wakefulness lasting at least 10 
consecutive minutes, rather than the default of 5 min. All 
three actigraphic devices/software have the ability to ex-
port raw actigraphic data into an excel spreadsheet if the 
user/researcher wishes to redefine sleep parameters using 
criteria not supported by the software.

Figure 5. Sketch showing the major sleep period (i.e. TIB) and the true sleep period (i.e. the O–O interval) based on actigraphic 
data from the first day. The major sleep period is marked by ‘in bed time’ which refers to the time point when first lying down in 
bed (point A) and ‘get up time’ which refers to the time point when getting out of bed at the end of a SLP (point D). The true sleep 
period was identified by sleep onset, which was defined as start of the first continuous block of at least 20 min of sleep after first 
lying in bed (point B), and sleep offset, which was defined as the last minute the subject was scored asleep before getting out 
of bed (point C). (See Supplementary Table S5, available at Annals of Work Exposures and Health online of supplemental file for 
further details.)
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In studies examining associations of actigraphy-based 
sleep parameters (as outcome variables) with other risk 
factors, statistical models consistent with the nature of 
the sleep measure ought to be used. Linear regression 
modeling can be used for sleep parameters that are con-
tinuous in nature (e.g. sleep duration), whereas Poisson 
regression is appropriate for sleep parameters measured 
as count data (e.g. number of awakenings). In addition, 
some sleep measures (e.g. sleep hours, efficiency, WASO, 
LWEPs, etc.) can be categorized using recommended or 
clinical cut points, which would then allow estimation 
of prevalence ratios (PR), odds ratios, or risk ratios de-
pending on the study deign (Goyal et al., 2009; Tranah 
et al., 2010).

Overall, actigraphy tends to overestimate sleep com-
pared to PSG (Van de Water et al., 2011). While rate 
of agreement between PSG and actigraphy is high in 
healthy subjects with normal sleep patterns (Sadeh, 
2011), agreement rates are lower in those with poor 
sleep quality, primarily due to the low specificity of the 
sleep/wake scoring algorithms (as immobile wakeful-
ness is often scored as sleep) (Lichstein et al., 2006). 
For example, in a 2019 meta-analysis of 96 studies in 
adults with and without chronic conditions, Conley at 
al concluded (Conley et al., 2019) that actigraphy over-
estimated total sleep time (by 11.2 min in healthy adults 
and by 22.4 min in adults with chronic conditions), and 
SE (by 1.9% in healthy adults and by 5.2% in those with 
chronic conditions) compared to PSG, although differ-
ences were statistically significant only among those with 
chronic conditions (Conley et al., 2019). In addition, 
pooled estimates suggested that actigraphy significantly 
underestimated SOL compared to PSG in both healthy 
adults (by 8.1 min) and those with chronic conditions 
(by 7.7 min); actigraphy-based measures also appeared 
to underestimate wake time after sleep onset (WASO) 
relative to PSG, although differences were not significant 
in either healthy adults or those with chronic conditions. 
A systematic review and meta-analysis commissioned by 
the American Academy of Sleep Medicine regarding the 
clinical utility of actigraphy versus sleep logs and PSG 
for evaluating a range of sleep disorders yielded findings 
broadly consistent with those of Conley et al.; specific-
ally, in their review of 81 studies, Smith et al. found sub-
stantial evidence that actigrahy underestimates SOL and 
WASO compared to PSG, and that these differences are 
clinically meaningful (Smith et al., 2018).

To reduce uncertainty associated with actigraphy it 
is recommended that actigraphs be used in concert with 
other objective and subjective methods of sleep assess-
ment when possible (Martin and Hakim, 2011; Sadeh, 
2011). It is also important to note that the accuracy of 

actigraphy versus PSG depends on a number of factors, 
including the specific sleep variable of interest, the de-
vice used, the population under study, the algorithm 
employed to determine sleep/wake cycles (Van de Water 
et al., 2011), and the length of the assessment period 
(Rowe et al., 2008). It is worth noting that defining 
sleep onset utilizing the raw movement data rather than 
the sleep scores as in Sitnick et al. (2008) and Natale 
et al. (2014) may improve accuracy of SOL estimates. 
Regarding the optimal length of the actigraphic moni-
toring period, recommendations have varied. Some 
studies have reported assessment for 5 days or longer 
to increase reliability and reduce measurement error 
(Wiggs and Stores, 2004; Sadeh, 2011), while other have 
indicated means from a 3-day period to be comparable 
to those obtained from 7 or 14 days (Rowe et al., 2008). 
However, a minimum monitoring period of 7 days is re-
commended to address concerns regarding variability of 
sleep parameters, while a 14-day period is preferable for 
estimating SOL (Rowe et al., 2008).

Conclusions and directions for future research
This paper presents a detailed demonstration and dis-
cussion of the methodology involved in estimating sleep 
parameters from wrist movement data collected using 
an actigraphic device (AMI Motionlogger Sleep Watch) 
commonly used in epidemiologic and clinical studies. 
Although the methodology presented in this paper is 
based on a specific actigraphic device and associated 
sleep/wake algorithms, the overall methodological pro-
cess is generalizable to other devices and sleep scoring 
functions. It is critical to recognize that actigraphy 
does not directly measure sleep (Sadeh, 2011) but ra-
ther measures movement, which is then used to esti-
mate sleep/wake cycles. Actigraphy, in essence, involves 
direct measurement of movement and indirect assess-
ment of sleep through the use of specific algorithms 
(de Souza et al., 2003; Natale et al., 2014). Therefore, 
actigraphy-based sleep parameters can be affected by 
movement disorders and other conditions. Additional 
limitations include the inability of current sleep scoring 
algorithms to distinguish between immobile wakefulness 
and sleep, potentially biasing estimates of certain sleep 
measures such as latency, total sleep time, and SE (de 
Souza et al., 2003; Berger et al., 2005; Lichstein et al., 
2006; Martin and Hakim, 2011). The search for new 
and/or improved methodologies and algorithms to more 
accurately estimate sleep parameters is the focus of on-
going efforts (Sadeh, 2011). Hence, future studies that 
review and demonstrate methods involved in actigraphy 
for different devices will expand researchers’ options 
best suited to their objectives and study populations. 
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Given the range of wrist-activity monitors and ana-
lysis software (i.e. scoring algorithms) available for use 
(Jean-Louis et al., 2001), there is a need to address the 
methodologic challenges and strengths of the different 
actigraphic devices used for objective sleep assessment 
in research. By enhancing overall understanding of the 
actigraphy process and methodology, the information 
presented in this paper may help inform the objective 
assessment of sleep in future research, and improve the 
decision-making process, interpretation of the derived 
sleep measures, and the application of these parameters. 
Finally, there is a need to standardize sleep measures 
derived from actigraphy in order to facilitate commu-
nication among investigators and comparisons across 
studies. A recent review by a task force of sleep experts 
(Smith et al., 2018) highlighted the current variability 
across studies in actigraphy-based sleep measures with 
respect to algorithms employed, sensitivity threshold set-
tings used, and other factors, underscoring the import-
ance of standardizing actigraphy-based sleep outcomes 
in future research.
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