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This paper provides an outline of the Advanced REACH Tool (ART) version 1.0 and a discus-
sion of how it could be further developed. ART is a higher tier exposure assessment tool that
combines mechanistically modelled inhalation exposure predictions with available exposure
data using a Bayesian approach. ART assesses exposure for scenarios across different plants
and sites. Estimates are provided for different percentiles of the exposure distribution and con-
fidence intervals around the estimate. It also produces exposure estimates in the absence of
data, but uncertainty of the estimates will decrease when results of exposure measurements
are included. The tool has been calibrated using a broad range of exposure data and provides
estimates for exposure to vapours, mists, and dusts. ART has a robust and stable conceptual
basis but will be refined in the future and should therefore be considered an evolving system.
High-priority areas for future research are identified in this paper and include the integration
of partially analogous measurement series, inclusion of company and site-specific assessments,
user decision strategies linked to ART predictions, evaluation of validity and reliability of
ART, exploring the possibilities for incorporating the dermal route and integration of ART
predictions with tools for modelling internal dose. ART is initially developed in the scope of
REACH but is equally useful for exposure assessment in other areas.

Keywords: Bayesian analysis; exposure modelling; uncertainty

INTRODUCTION

Under the European Union regulation on the Regula-
tion, Evaluation, Authorization and restriction of
Chemicals (REACH), many thousands of substances
need to be assessed for their safety in use at work over
the coming years. It is clear that the availability of re-

liable and accurate exposure models is critical as the
European occupational hygiene community will not
be able to collect sufficient number of exposure meas-
urements to obtain exposure estimates for all relevant
scenarios. A tiered approach is proposed in which
comparatively simple assessments are performed on
all substances (Tier 1 assessment), followed by more
elaborate evaluations for selected chemicals at higher
risk (higher tier assessment). The need for ongoing
scientific development of exposure modelling as a dis-
cipline is also advocated in a vision document on
toxicity testing in the 21st century (NRC, 2007).
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Indeed, it is argued that the exposure community must
step up to the challenges to develop a robust and pre-
dictive exposure science that can be used to address
the complex risk assessment problems that prevail
today (Sheldon and Cohen Hubal, 2009).

Only a few generic screening tools for assessing
occupational inhalation exposure are available in
Europe, such as COSHH essentials (Maidment,
1998), ECETOC TRA (Money et al., 2007; ECE-
TOC, 2009), Stoffenmanager (Marquart et al.,
2008), and the ‘Easy-to-use workplace control
scheme for hazardous substances (EMKG) (http://
www.reachhelpdesk.de/en/exposure/exposure.html).
Some information on the validity of these models has
been published but in general only limited information
is available (Schinkel et al., 2010). Another valuable re-
source of available exposure models is the AIHA book
with a description of various methods useful for the
exposure assessment community (Keil et al., 2009).
In general, however, exposure modelling has been a
relatively neglected area in occupational hygiene.

The urgent need for improvements in exposure
modelling, particularly incorporating a Bayesian sta-
tistical approach, has been expressed repeatedly in
the past years (e.g. Creely et al., 2005; Hewett
et al., 2006; Ramachandran, 2008). The Advanced
Reach Tool (ART) is a higher tier model that follows
a Bayesian approach, making full use of mechanically
modelled estimates of inhalation exposure and any
relevant measurements of exposure (www.advanced
reachtool.com). ART has a robust and stable concep-
tual basis but will be further refined in the future and
should therefore be considered an evolving system.
Future areas for development are identified in this pa-
per. As with the development of version 1.0, these
new initiatives will be carried out in close collabora-
tion with stakeholders such as exposure scientists and
practitioners representing industry, governments, and
occupational hygiene societies. ART is initially devel-
oped in the scope of REACH but is equally useful for
exposure assessment in other areas.

This paper briefly reflects the general outline of
ART version 1.0, including the mechanistic model,
Bayesian update process, type of exposure predic-
tions, and applicability domain. Specific elements
of the tool are elaborated on in separate papers.

BAYESIAN MODELLING OF THE EXPOSURE

DISTRIBUTION

ART is developed to model inhalation exposure
for a defined group of workers sharing operational
conditions (e.g. type of handling, product, and work
environment) and risk management measures across

different plants and locations in Europe. This per-
spective in the context of REACH can and will be
expanded in the future to also include company
and site-specific exposure estimates. In statistical
terms, it is assumed that every exposure scenario
has a distinct exposure distribution that is adequately
represented by a lognormal mixed effects model,
with mean exposure and random effects representing
between-company, between-worker, and within-
worker variability. A first estimate of the geometric
mean exposure level of a scenario is produced by
a mechanistic model as outlined in the next para-
graph and discussed in detail by Fransman et al.
(2011). Information from meta-analyses of the liter-
ature provides the initial estimates of exposure vari-
ability between-companies, between-workers, and
within-workers. Information on between- and
within-worker variability was taken from Kromhout
et al. (1993) and information on between-company
variability was derived from Symanski et al.
(2006) as outlined in a next paragraph.

In Bayesian terminology, these initial estimates of
the measure of central tendency and variability are
referred to as ‘priors’, which can then be updated us-
ing the likelihood defined by exposure data to yield
a more refined posterior exposure estimate. The prior
distribution is a representation of knowledge about
the parameter a priori before observing any (new)
data. This is mathematically combined with the like-
lihood to obtain the posterior distribution for the
parameter. The posterior will ideally provide a nar-
rower probability distribution of the parameter than
either the prior knowledge or the exposure data.
The posterior and likelihood will converge with an
increasing exposure data set. The posterior is criti-
cally dependent on the quality of the exposure data
and will be more robust when exposure data used
for the likelihood are completely analogous and rep-
resentative for the particular assessment scenario
(see also Discussion).

It is important to highlight that ART also produces
an exposure estimate in the absence of data, based on
the mechanistic model and exposure variability ob-
tained from the meta-analyses. In this respect, the
ART model follows a stepwise approach, with an
initial mechanistic model estimate and subsequent
posterior estimate.

It can be argued that occupational hygienists al-
ready intuitively apply Bayesian ideas in daily prac-
tice, as they often have to supplement and integrate
limited data with subjective judgements. However,
a formal Bayesian analysis explicitly takes into ac-
count the variability in the available exposure data as
well as uncertainty in the prior knowledge. The overall
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structure of the ART tool with different priors, expo-
sure data, and Bayesian module is depicted in Fig. 1.
A detailed description of the Bayesian model in
ART, its underlying assumptions, and testing will be
given by McNally et al. (unpublished data).

MECHANISTIC MODEL

The mechanistic model is based on a conceptual
framework following a source receptor approach
(Cherrie and Schneider, 1999; Tielemans et al.,
2008). This framework describes the stepwise trans-
port of a contaminant from the source to the receptor
(i.e. the worker) and defines nine independent princi-
pal modifying factors (MF): e.g. substance emission
potential, activity emission potential, localized con-
trol, segregation, dilution, separation, surface contam-
ination, personal behaviour, and respiratory protective
equipment. The latter two MF are not yet incorpo-
rated in the mechanistic model and may be included

in a later stage. The algorithm consists of a near field
(NF) (within 1 m from the worker’s head) and far field
(FF) component. Others have described a two-zone
approach as well and successfully used these algo-
rithms in various applications (e.g. Nicas, 1996).

MFs are structured in a multiplicative manner
within these NF and FF components. The principal
MFs are structured in a hierarchical manner with
multiple underlying determinants on a lower level
of abstraction: e.g. for powders, substance emission
potential is decomposed into the parameters ‘dusti-
ness’, ‘moisture’, and percentage active ingredient
(van Tongeren et al., 2011).

Relative weights have been assigned to each under-
lying determinant category based on analyses from
first principles (e.g. the relationship between vapour
pressure and substance emission potential), available
occupational hygiene literature [e.g. control efficacy
values collated by Fransman et al. (2008)], numerical
simulation results [e.g. for dispersion (Cherrie et al.,

Fig. 1. Schematic outline of ART structure with priors for variability, prior for geometric mean, exposure measurements
(likelihood), Bayesian module, and posterior exposure estimates.
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2011)], and expert elicitation. A description of the
mechanistic model, assignment of multipliers, and
its underlying assumptions are presented by Fransman
et al. (2011). An activity class system for structured
assessment of activity emission potential is described
by Marquart et al. (2011). This is an important ele-
ment in the ART system as it allows selecting differ-
ent underlying determinants for different types of
activities: e.g. drop height and transfer rate in bagging
operations, worker orientation (e.g. overhead work),
and spray rate for spraying, etc.

The dimensionless mechanistic model gives a rela-
tive score for the geometric mean exposure of a sce-
nario and is fitted to exposure measurements to
convert these scores to absolute exposure estimates
in milligrams per cubic metre. For this purpose, good
quality data covering multiple industries, scenarios,
and types of exposure were collated across Europe.
The calibration was done using mixed-effects regres-
sion models as described by Schinkel et al. (2011).
These statistical analyses also provided information
on the uncertainty of the mechanistic model esti-
mates, which is a prerequisite for the estimates to
serve as an informative prior for the geometric mean
in a Bayesian analysis.

REVIEW OF LITERATURE ON EXPOSURE

VARIABILITY

Exposure concentrations vary substantially in an
exposure scenario. This may be due to differences
across locations (e.g. ventilation), worker (e.g. behav-
iour), and time (e.g. time activity patterns). These
sources of variability may contribute to between-com-
pany, between-worker, and within-worker variability.
Separation of variability into its components is a pre-
requisite for the estimation of both long-term average
and shift-based exposure estimates as discussed
within the section ‘Exposure predictions: variability
versus uncertainty’.

We re-analysed the large database of Kromhout
et al. (1993) to define priors for within- and be-
tween-worker variability. These data suggest differ-
ences in the extent to which exposure generally
varies within- and between-workers, which may be
related to factors such as type of exposure (aerosols
versus vapours), environment (outdoor versus in-
door), and process (intermittent versus continuous).
A more recent systematic review of available litera-
ture, also covering occupational groups across loca-
tions (Symanski et al., 2006), was used to derive
estimates of variability between companies. Details
of the derivation of priors for components of variance
are described in McNally et al. (unpublished data).

APPLICABILITY DOMAIN

Factors affecting emission and dispersion of aero-
sols and vapours/gases are clearly distinct as aero-
sols are much larger than air molecules in which
they are suspended, and aerosols can be generated
in different sizes (Popendorf, 2006). This also affects
the way these exposures should be modelled. Sepa-
rate characterization was therefore necessary result-
ing in different determinants or weights for the MFs
substance emission potential, activity emission po-
tential, and dispersion for aerosols and vapours. In
addition, the ART mechanistic model was calibrated
separately for vapours, mists, and dusts. Three other
exposure forms (gases, fibres, and fumes) are not yet
included in the calibration and are therefore outside
the applicability domain of the current ART.

EXPOSURE PREDICTIONS: VARIABILITY

VERSUS UNCERTAINTY

Variability reflects true differences in exposure sit-
uations, whereas uncertainty reflects lack of knowl-
edge about the situation. Basically, variability is
a property of nature, whereas uncertainty may be re-
duced with additional knowledge acquired during
the risk assessment process. Variability and uncer-
tainty need to be treated separately in exposure mod-
els such as ART. The user of ART can select (i)
different percentiles of the exposure distribution (i.e.
variability) and (ii) different confidence intervals
around that percentile (i.e. uncertainty).

After an initial ART assessment, the user can
modify the results by either applying a Bayesian
update or revising the scenario. A Bayesian update
will result in a reduction of uncertainty of the esti-
mate of a particular percentile, with the extent of re-
duction depending on the sample size, the
variability in the data, the balance in the data set
(i.e. number of companies and workers sampled),
and the relative difference between model predic-
tion and data. However, the point estimates of a par-
ticular percentile of the exposure distribution can
either increase or decrease after a Bayesian update,
depending on the distribution of the measurement
data. Revision of input parameters will obviously
result in changes in percentile estimates, whereas
the uncertainty around the point estimate will re-
main unchanged (Table 1).

The extent of exposure variability is related to the av-
eraging time of the exposure assessment, with reduced
exposure variability with longer averaging periods. It
is clear therefore that this should be taken into ac-
count in a sound risk assessment. ART incorporates
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both between-worker and within-worker variability
and can therefore produce two different exposure pre-
dictions (Rappaport et al., 1995):

� Full-shift exposure: ART calculates an overall
distribution for full-shift exposures. In this case,
the 90th percentile provides the exposure level,
which has a 10% probability of being exceeded
by the exposure from a randomly selected worker
on a randomly selected day. A distinction be-
tween both components of variance is not needed
for this estimate. This is the type of exposure pre-
dictions most often applied by exposure asses-
sors (e.g. in REACH exposure assessments).

� Long-term average exposure: ART calculates the
distribution of workers’ long-term average exposure
(e.g. over a period of months). In this case, the 90th
percentile provides the long-term mean exposure
level, which has a 10% probability of being ex-
ceeded by the long-term exposure from a randomly
selected worker. This exposure prediction is pre-
ferred whendealing with substances, which can pro-
duce chronic health effects (Rappaport et al., 1995).

WORKFLOW OF ART VERSION 1.0

A simplified scheme of the workflow for ART ver-
sion 1.0 is presented in Fig. 2. The workflow starts
with questions on all determinants as included in
the mechanistic model to produce an initial exposure
estimate. Based on this initial assessment, the user
can revise the scenario by changing one or more of
the input parameters. Alternatively, the user can up-
load analogous exposure data to further refine the es-
timates. The ART version 1.0 tool has a statistical
facility to update the initial exposure estimates with
exposure measurement data collected from fully
analogous exposure scenarios. These data can be up-
loaded for Bayesian analyses using a simple spread-
sheet. However, an in-built exposure database that
users can search for analogous existing exposure
data is missing and will be implemented in version
1.5. Again, after this updated estimate, the user has
the possibility to further revise the scenario and to

conduct an alternative assessment. For both the ini-
tial assessment and the updated assessment using
measurements, the user can select different exposure
predictions as is outlined in the previous paragraph.

AWORKED EXAMPLE

This worked example is derived from one of the
scenarios of the pharmaceutical industry included
in the calibration of ART. A worker is unloading ma-
terial during a shift. For this example, we assume the
worker is only conducting one task; however, ART
can cope with multiple tasks and provides a time
weighted average of the different tasks, including
any unexposed periods.

During this task, the worker is transferring a fine dust
(dry product; 100% active ingredient), with a transfer
rate of 1–10 kg min�1 (routine transfer; drop height
.0.5 m) from a blender to a keg. Thework isperformed
indoors (room size equals 300 m3) with a high ventila-
tion rate of 30 air changes per hour. There are demon-
strable and effective housekeeping practices in place.
The activity is performed in the near field without
any secondary source in the far field. The exposure is
estimated for two distinct situations: (i) without any lo-
cal controls in place and (ii) with a low level of contain-
ment, which is not air tight. The relevant ART input
parameters are given in Table 2.

Figure 3 shows the geometric mean full-shift ex-
posure predictions for the two situations. The point
estimates of the geometric mean are clearly reduced
with the revision to low level of containment (obvi-
ously, revision to other ART options like moderate or
high level of containment would have resulted in
a stronger shift). However, the uncertainty as ex-
pressed as the inter-quartile confidence interval is
in both situations identical.

Alternatively, updating the situation without
local controls using 10 exposure measurements (geo-
metric mean 5 20 mg m�3; geometric standard
deviation5 1.6; covering three sites, repeated measure-
ments of one worker per site) resulted in a shift of the
point estimate as well as a reduction of the uncertainty
around the estimate. Although the shift of the point

Table 1. Influence of Bayesian updating and ART iterations with revised input parameters on predictions of the exposure
percentiles and its confidence intervals

Prediction Influence of Bayesian
update with measurements

Influence of iteration with revised input parameters

Percentile
(i.e. variability)

Changes in any direction
possible, depending on
measurement series

Changes in any direction possible, depending on type of scenario
revision

Confidence interval.
(i.e. uncertainty)

Smaller confidence interval No influence
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estimate was in this particular case upwards (depending
on the measurements this might also be downwards),
the upper bound of the inter-quartile confidence interval
of the updated estimate was still lower as compared to
the upper bound of the initial assessment. This reduction
in overall uncertainty of the exposure assessment clearly
shows the added value of the Bayesian module and
provides an incentive to collect additional exposure
measurement data while using ART.

CONCLUSIONS AND RESEARCH NEEDS

The ART approach to estimating inhalation expo-
sure for regulatory risk assessment has the advantage

of integrating the use of a robust mechanistic model
with available exposure data. The tool is able to char-
acterize exposure to dust, mist, and vapours in the ab-
sence of exposure data but will provide more reliable
estimates with additional measurement data. ARTwill
be useful for risk assessment under REACH and with
further development in other situations, such as under
the European Chemical Agents Directive. The basis
for the tool was, in the course of the development,
peer reviewed by independent, leading experts from
industry, research institutes, and public authorities.
This ensured that consideration of both scientific
and practical model issues was given during the
course of the development of the ART.

High-priority areas for further development in
ART are listed below:

� Currently, ART can only take into account data
that are perfectly representative of the assessment
scenario. Ideally, the tool should also be able to in-
tegrate exposure data across measurement series
with varying levels of ‘representativeness’ or
‘analogy’. First attempts have been made to define
similarity algorithms to take these factors into ac-
count in a Bayesian analyses (McNally et al., un-
published data). However, further methodological
work is needed to properly integrate partially
analogous measurement series using a weight of
evidence approach. The latter would facilitate op-
timal mining of the ART exposure database that is
currently under development and will be imple-
mented in version 1.5.

� ART integrates mechanistic model outcomes and
exposure data. This works well when both are rea-
sonably consistent. If both are inconsistent this is
an indicator that either the model is not accurate
for that situation, incorrect input parameters are
used or exposure data are not analogous. The
mechanistic model results and posterior estimates
are displayed side by side by the tool to allow
comparison. However, the ART system has no
methodology to cope with these inconsistencies.
As also indicated by Hewett et al. (2006), further
work is required to define guidelines how to make
informed decisions in situations of inconsistent
priors and likelihood distributions. Currently,
there is little in the Bayesian literature on how
to deal with these situations.

� Further alignment of ART with the REACH prac-
tice and available REACH guidance. This is pos-
sible after initial experience with the tool in 2010
and 2011 and might cover various practical
issues in the user interface and output.

Fig. 2. Workflow of ART version 1.0.

Table 2. Input parameters describing the worked example
where a worker in the pharmaceutical industry is unloading
a powder

Activity emission
potential

Transfer with rate of 1–10 kg min�1

Routine transfer
Drop height .0.5 m

Substance emission
potential

Fine dust
Dry product
100% active ingredient

Dilution Indoor in room of 300 m3

Ventilation rate of 30 air changes
per hour

Local control Without any control (Situation 1)
and low level of containment
which is not air tight (Situation 2)

Segregation No segregation

Separation No separation

Surface contamination Demonstrable and effective
housekeeping practice in place

Duration of activity Full shift (100% of the time)

Near field Yes

Far field No
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� ART is assessing the exposure distribution of
a scenario covering multiple companies or sites.
Modifications of ART so that it can also provide
company and site-specific estimates are necessary
to be useful in, for example, the Chemical Agents
Directive. This requires a restructuring of the
underlying lognormal mixed effects model.

� User decision strategies, linked to ART predic-
tions, to help identify whether collecting addi-
tional measurements (reducing uncertainty) or
implementing a control strategy (reducing expo-
sure) would be more appropriate. ART gives
formal assessment of uncertainty and thus also
provides the opportunity to estimate the value of
reducing the uncertainty before proceeding to im-
plementation of controls. Existing approaches in
other research areas like ‘value of information
analyses’ (Morgan and Henrion, 1990) are as yet
unexplored in occupational hygiene and may be
very useful in refining risk management decisions
and enhancing its cost-effectiveness. These deci-
sion strategies may be very useful in the context
of ART but are equally relevant for other exposure
models available.

� The validity and reproducibility of ART predic-
tions needs to be evaluated in order to ensure

a sound use of the model in the REACH context
and beyond. Several hundred exposure measure-
ments from various industrial sectors have been
collated after the calibration. These measurement
series form the basis for a cross-validation that is
currently being conducted. In addition, workshops
with experts are planned to explore inter-rater
agreement when applying ART. First results are
anticipated to become available in the near future
and will help identify areas for improvement of
the ART mechanistic model. Information gath-
ered in these studies will also help further devel-
oping the existing ART training material.

� Expansion of the ART methodology to include
dermal exposure is important. Dermal exposure
assessment is still in its infancy. Work on the
conceptual modelling of dermal exposure
(Schneider et al., 1999; van Wendel de Joode
et al., 2003) and the RISKOFDERM project
(van Hemmen et al., 2003) may provide a starting
point for a Dermal ART, although much more
work on mechanistic understanding of the expo-
sure process and collection of exposure data is
needed. Measurements under experimental as
well as under real world workplace conditions
using standardized methodologies are required

Fig. 3. ART point estimates of the geometric mean exposure and inter-quartile confidence interval for the transfer scenario with
and without revision with Risk Management Measures (low level containment) (a) and after Bayesian update (b).
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to built an evidence base for development of
a dermal ART.

� Integration of ART predictions of external inhala-
tion and dermal exposure with approaches for
modelling internal dose (e.g. PBPK models)
would potentially capture the entire source to out-
come continuum, which is a prerequisite for a more
informative systems approach in toxicology as
proposed by NRC (2007).

ART is considered to be an evolving system. The
approach has a conceptual basis, which is a good start-
ing point for further development. Continued research
activities are needed to move exposure assessment
science forward in REACH and beyond.
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