Abstract

Background

The soil represents a reservoir that contains at least twice as much carbon as does the atmosphere, yet (apart from ‘root crops’) mainly just the above-ground plant biomass is harvested in agriculture, and plant photosynthesis represents the effective origin of the overwhelming bulk of soil carbon. However, present estimates of the carbon sequestration potential of soils are based more on what is happening now than what might be changed by active agricultural intervention, and tend to concentrate only on the first metre of soil depth.

Scope

Breeding crop plants with deeper and bushy root ecosystems could simultaneously improve both the soil structure and its steady-state carbon, water and nutrient retention, as well as sustainable plant yields. The carbon that can be sequestered in the steady state by increasing the rooting depths of crop plants and grasses from, say, 1 m to 2 m depends significantly on its lifetime(s) in different molecular forms in the soil, but calculations (http://dbkgroup.org/carbonsequestration/rootsystem.html) suggest that this breeding strategy could have a hugely beneficial effect in stabilizing atmospheric CO2. This sets an important research agenda, and the breeding of plants with improved and deep rooting habits and architectures is a goal well worth pursuing.

INTRODUCTION

Whatever the extent and dynamics of increased levels of atmospheric CO2 [and of other greenhouse gases (GHGs), for which similar arguments apply], the greenhouse effect means that temperatures will rise monotonically with their levels. A precautionary principle seeks to stop these increases of GHGs, or even to lower them in the steady state. While this may in part be effected via lowered emissions, a major role is to be played by mechanisms that extract CO2 from the atmosphere and sequester it in the earth or oceans for a greater or lesser period. Oceans contain approx. 50 or more times the CO2 than does the atmosphere (Smith, 2004; MacKay, 2008), but increased dissolution of atmospheric CO2 in oceans (and lakes) leads to their further acidification, with many undesirable consequences (Sabine et al., 2004; Orr et al., 2005; Riebesell et al., 2007; Hall-Spencer et al., 2008; McNeil and Matear, 2008; Reid et al., 2009; Doney, 2010; Shi et al., 2010; Turley et al., 2010). Unless marine carbon storage could be effected in a recalcitrant form that sinks rapidly (Jiao et al., 2010; Stone, 2010; Jiao and Azam, 2011), this implies that CO2 should probably best be sequestered elsewhere if we are to have ecosystems in which the net ecosystem carbon budget (Chapin et al., 2006; Smith et al., 2010b) is accumulative.

Terrestrial and marine environments presently absorb about half the anthropogenic CO2 (Schimel et al., 2001), and soil contains at least twice the amount of carbon than is in the atmosphere (Batjes, 1996) (and three times that in vegetation) (Smith, 2004), with enormous if uncertain fluxes in both directions (Jackson et al., 1997; Post and Kwon, 2000; Meir et al., 2006; Reay et al., 2007; MacKay, 2008; Philippot et al., 2009; Prechtel et al., 2009; Bond-Lamberty and Thomson, 2010; Crevoisier et al., 2010; Eglin et al., 2010; Macías and Arbestain, 2010; Smith and Fang, 2010; Singh et al., 2010; Bastviken et al., 2011) (that are nevertheless quite small relative to the pools; Smith, 2004). Thus, increasing soil carbon in the steady state by just 15 % would lower atmospheric CO2 by 30 %, offering a huge environmental benefit. In addition, there are indications (Bellamy et al., 2005; Monson et al., 2006; Luo, 2007; Arnone et al., 2008; Bond-Lamberty and Thomson, 2010; Smith and Fang, 2010; Yvon-Durocher et al., 2010; Zhao and Running, 2010) of a positive feedback in which increases in global temperature lower the ability of present soils and other parts of the biosphere to absorb CO2, so clearly some kind of intervention is needed. This implies changes in agricultural practice (Robertson et al., 2000; Lal, 2004, 2008a, b, 2011; Sartori et al., 2006; Pretty, 2008; Smith et al., 2008; Burney et al., 2010; Follett and Reed, 2010; Smith and Olesen, 2010; Powlson et al., 2011), in an environment in which edible crop yields also need to increase substantially and sustainably (Beddington, 2010; Fedoroff et al., 2010; Godfray et al., 2010a, b; Lal, 2010c; Pretty et al., 2010; Tester and Langridge, 2010; Foresight, 2011), and where transport fuels and organic chemicals will need to come from modern (rather than fossil) photosynthesis (e.g. Bozell and Petersen, 2010; Somerville et al., 2010; Vispute et al., 2010; Whited et al., 2010; Demirbas, 2011). The purpose of this review, as summarized in Fig 1, is to develop the relevant arguments.

Fig 1.

A mind map (Buzan, 2002) summarizing the content of this review. To interpret this, start at the top and read clockwise.

Fig 1.

A mind map (Buzan, 2002) summarizing the content of this review. To interpret this, start at the top and read clockwise.

Certainly it is recognized that the substantial (possibly 10- or even 20-fold) decreases in atmospheric CO2 over geological time, especially during the Devonian (416·0–359·2 Ma) and more gradually since the Cretaceous (145·5–65·5 Ma), have largely been effected via the production of deep-rooted trees and the rise of angiosperms, respectively (Mora et al., 1996; Berner, 1997; Berner and Kothavala, 2001; Royer et al., 2001; Taylor et al., 2009). These facts provide an important guide to what may be possible, since the kinds of decreases being needed now are rather lower (cf. Breecker et al., 2010), and the role of plants (both roots and shoots) in effecting these decreases has historically been paramount. Note too that soil production can be much slower than its erosion without intervention (Torn et al., 1997; Montgomery, 2007; Huggins and Reganold, 2008), and that roots lower erosion considerably (Gyssels et al., 2005).

The required changes in agricultural practice, plus the existence of proof that carbon was indeed once highly sequestered in plant biomass, led to the recognition that increasing the amount of below-ground biomass en route to sequestering atmospheric CO2 is a desirable goal. The purpose of this review is to point out not only that it is desirable but that it is possible, and to highlight the areas where research activities might usefully be focused.

HOW DOES CARBON ENTER THE SOIL?

Although atmospheric CO2 can of course dissolve in soil moisture, and some carbon comes from manuring (Smith et al., 2010b), these amounts are comparatively small and the chief initial method of carbon transfer to soil is via recent photosynthesis and subsequent transfer to plant roots (Jiménez and Lal, 2006; De Deyn et al., 2008; Taylor et al., 2009; Orwin et al., 2010) and thence to soil organic matter (Kögel-Knabner, 2002). The first thing to note is the huge variation in the organic (carbon) content of soils – at least 15-fold in the UK alone (Bellamy et al., 2005; Bradley et al., 2005; Ostle et al., 2009). This immediately indicates the large scope for increasing it in many places; indeed, the root content of different soils also varies at least 10-fold (Jackson et al., 1996; Schenk and Jackson, 2002a), with a large variation in the vertical distribution of carbon (Jobbágy and Jackson, 2000). The magnitude and similarity of these factors (10- and 15-fold) might be taken to imply that variation in the amounts of roots themselves (rather than their exudates and soil biota, for instance) is likely to be the major cause of the variance, but clearly all processes relevant to both incorporation and decomposition (whose difference determines net values) can contribute to this variance. Given relevant data, inferencing methods (e.g. Pearl, 2000; Rohr et al., 2008) can determine which processes drive which.

The soil ecosystem is extremely complex (e.g. Fitter et al., 2005; Nielsen et al., 2011), but a major role in sequestration of carbon secreted from roots (‘exudate’) is played by arbuscular mycorrhiza (AM) (e.g. Staddon and Fitter, 1998; Strack et al., 2003; Zhu and Miller, 2003; Peterson et al., 2004; Rillig, 2004; Parniske, 2008; Varma, 2008; Bucher et al., 2009; Lambers et al., 2009; Leigh et al., 2009; Wilson et al., 2009) that form symbioses (Helgason and Fitter, 2009) with the roots of the majority of land plants. The mycorrhizal fungi (of the genus Glomeromycota) provide nutrients, especially phosphate (Bucher, 2007), to the plants, which in turn provide up to 20 % of the carbon that they fix to the soil-dwelling fungal partners. Mycorrhiza also secrete a protein called glomalin (Gadkar and Rillig, 2006), whose extent correlates extremely well with desirable (large aggregates in) soil structure (Bedini et al., 2009; Wilson et al., 2009). The rhizosphere, as the interface between plants and soil, is clearly crucial. Roots, mycorrhiza and soil organic carbon (SOC) can all affect each other beneficially, and the interactions are complex (Feeney et al., 2006; O'Donnell et al., 2007; Gillespie et al., 2009; Hinsinger et al., 2009; Lambers et al., 2009; Luster et al., 2009). A couple of examples include the facts that the soil biota (and roots) help increase the porosity of soil (Feeney et al., 2006) and that roots both affect the physical architecture of soils and vice versa (Hinsinger et al., 2009). However, since there is no unitary explanation of which processes dominate where, for present purposes I deem it sufficient to note the role of AM in these processes, and that the breeding strategies that this article seeks to promote should take their important activities into account. Experimental approaches may need to start by studying the covariation between root architectures and mycorrhiza, en route to performing experiments in which one is changed as an independent variable.

Several relevant areas of the literature are thus bound up with each other, albeit (as in most fields; e.g. Hull et al., 2008; Dobson and Kell, 2008; Kell, 2009) that they have developed independently (the balkanization of the literature into ‘silos’). Bringing them together indicates that the goal of breeding plants with extended root systems that can effect carbon, water and nutrient sequestration (Fig. 2) is not only desirable but attainable. Four particular scientific areas that pertain are root architecture and depth, perenniality and low- or no-till agriculture.

Fig. 2.

Cartoon illustration of the potential for the improvement of agricultural and ecological traits by breeding crop plants with large root systems. The root morphologies are to be considered as illustrative only, and all details of bidirectional fluxes to and from litter and the many soil carbon pools (and including leaching and erosion) are omitted for clarity. For a summary of the various terms used to describe the most important carbon fluxes and stocks see, for example, Chapin et al. (2006) and Smith et al. (2010b).

Fig. 2.

Cartoon illustration of the potential for the improvement of agricultural and ecological traits by breeding crop plants with large root systems. The root morphologies are to be considered as illustrative only, and all details of bidirectional fluxes to and from litter and the many soil carbon pools (and including leaching and erosion) are omitted for clarity. For a summary of the various terms used to describe the most important carbon fluxes and stocks see, for example, Chapin et al. (2006) and Smith et al. (2010b).

Root architecture

A number of papers and reviews describe the genetic control of root architecture (e.g. Zhang and Forde, 1998; Casimiro et al., 2003; Hu et al., 2003; Hochholdinger et al., 2004a, Swarup et al., 2005; Chaitra et al., 2006; de Dorlodot et al., 2007; Galinha et al., 2007; Courtois et al., 2009; Hochholdinger, 2009; Hochholdinger and Tuberosa, 2009; Péret et al., 2009; Benfey et al., 2010; Bennett and Scheres, 2010; Coudert et al., 2010; Iyer-Pascuzzi et al., 2010; Paschold et al., 2010; Yang et al., 2010; Yi et al., 2010; Zimmermann et al., 2010; Lucas et al., 2011). Thus, a number of root architecture genes are known via the effects of their mutations on traits such as primary root length, root branching, root hair formation, and so on, but our present knowledge of them all, and the mechanistic details by which they affect phenotype, is comparatively limited. Important features of the genetic control differ, for example (Gregory, 2006) between monocots (such as grasses, cereals and Brachypodium distachyon; Draper et al., 2001) and dicots (such as Arabidopsis thaliana; Hochholdinger et al., 2004a; Osmont et al., 2007; Watt et al., 2009; Zimmermann et al., 2010) [and interestingly B. distachyon, unlike A. thaliana, forms associations with mycorrhiza (Bevan et al., 2010)]. The very interesting ecological and evolutionary analyses that pertain (e.g. Fitter, 1987) are outside the scope of this summary, but can clearly provide very useful pointers to the breeding of plants with the desirable rooting traits that are highlighted herein. The chief of these is of course root depth.

As well as genetic means, root architecture is also controlled by hormonal influences from both the host plant (e.g. Tanimoto, 2005; Santner et al., 2009) and soil organisms (see above), and to some degree by the physico-chemical environment (e.g. Fitter and Stickland, 1991; Cahill et al., 2010). Our focus here, however, is on the genetic control, which seems to be dominant (Kato et al., 2006).

Maximum rooting depth

There is considerable variation between both plant types and individual plant strains (cultivars) as to the maximum depth to which they are known to produce roots, but 2 m for angiosperms (and much more for trees) is not at all uncommon (Stone and Kalisz, 1991; Canadell et al., 1996; Jackson et al., 1996; Schenk and Jackson, 2002a, b; Hu et al., 2003), implying equally that there is considerable scope for increasing the depth of roots by appropriate breeding strategies. A chief point to note is that most presently cultivated agricultural crops have root depths that indeed do not extend much beyond 1 m, albeit that a number do (Kristensen and Thorup-Kristensen, 2004; Kutschera et al., 2009), such that this implies that there is indeed exceptional scope to breed this trait. (We recognize of course that many modern grains have been bred to have short stems, and with little or no attention being directed specifically to their roots.)

Root length is also typically a function of aridity (Canadell et al., 1996; Schenk and Jackson, 2002a, 2005). Some very long-rooted plants, common in arid zones, are known as phreatophytes (Pataki et al., 2008), although this term relates more to the fact that they obtain their water from deep sources. Root water dynamics in soil seem not to be as well understood as one would wish, as many mechanisms contribute, even to its sign (Burgess and Bleby, 2006 ) (i.e. whether plants add water to the soil or extract it from it), a phenomenon known as hydraulic redistribution (Burgess et al., 1998). As well as the benefits to carbon sequestration, there is evidence supporting the role of roots in improving soil structure (Gregory et al., 2010), on improving hydrology (Macleod et al., 2007) and in showing that SOC improves agronomic productivity (Lal, 2010b). Some genes [or at least quantitative trait loci (QTLs)] improve both root architecture and plant yield (Passioura, 1983, 2006; Tuberosa et al., 2002; Steele et al., 2006, 2007; Hund et al., 2007), and there are a number of examples of crops in which the below-ground biomass does contribute significantly to SOC (sequestration), including plants such as Andropogon gayunus (Fisher et al., 1994), Miscanthus × giganteus (Clifton-Brown et al., 2007; Heaton et al., 2008; Dohleman and Long, 2009; Dondini et al., 2009a, b; Hillier et al., 2009), Panicum virgatum (switchgrass) (Ma et al., 2000, 2001; Liebig et al., 2005; Al-Kaisi and Grote, 2007; Anderson-Teixeira et al., 2009; Collins et al., 2010) and vetiver (Chrysopogon zizanoides L.) (Grimshaw, 2008; Lavania and Lavania, 2009) grasses, and even sugar cane (Otto et al., 2009; Galdos et al., 2010). At least five widely cultivated crop plants can produce roots exceeding 2 m (Kutschera et al., 2009).

Perenniality

Perenniality, the use of crops that produce edible parts such as grains (seeds) without annual sowing (and ploughing), has been championed as an especially valuable idea for consideration, and this coheres significantly with the present theme. This is not least because such perennials typically develop considerably longer roots than do modern domesticated annual crops (Cox et al., 2002, 2006; DeHaan et al., 2005; Glover et al., 2007, 2010; Dohleman and Long, 2009; DuPont et al., 2010; Van Tassel et al., 2010). Such perennials are also known to exhibit hugely decreased nitrate runoff (Randall and Mulla, 2001) and, importantly, to sequester much more carbon in soil (Robertson et al., 2000; Kardol and Wardle, 2010). The extent to which perenniality and these large root architectures can be decoupled, and whether and when this is desirable for agronomic purposes, remain uncertain, though at least some flowering time genes that contribute to perenniality seem to be conserved between monocots and dicots (Wang et al., 2009; Higgins et al., 2010), in a way that root architecture is not (see above). Consequently, it would seem that perenniality – though probably helpful – is not a necessary accompaniment to crop plants with deep roots.

No-till agriculture

Ploughing releases SOC and, in a similar vein, no-till agriculture (that may also be used with perennial crops) assists carbon sequestration and decreases soil erosion (e.g. Paustian et al., 2000; West and Post, 2002; Sainju et al., 2003; Lal et al., 2004; Bernacchi et al., 2005; Amado et al., 2006; Montgomery, 2007; Huggins and Reganold, 2008; Villamil et al., 2008; López-Bellido et al., 2010), although tillage of surface layers that do not disturb deeper roots becomes at least partially a no-till process (see also Fig. 2). This said, though, it is important to analyse the entire system of GHG production to assess the detailed benefits of a more widespread no-till strategy (Robertson et al., 2000; Six et al., 2002; Grandy et al., 2006; Steinbach and Alvarez, 2006).

CAN BREEDING REALLY DO THIS?

There are, of course, many examples (e.g. Lippman and Tanksley, 2001; Hill, 2005; Edgerton, 2009; Johansson et al., 2010) that show the huge variation in phenotype achievable in agricultural breeding populations, and this is being stimulated further by techniques such as marker-assisted selection and genome-driven breeding (e.g. Moreau et al., 2000; Meuwissen et al., 2001; Eathington et al., 2007; Collard and Mackill, 2008; Utomo and Linscombe, 2009; Kean, 2010; Meuwissen and Goddard, 2010). Nonetheless, it might be argued that the role of genetics or plant breeding in increasing root depth is likely to be negligible, and that (leaving aside soils with rock strata just below the surface, where this might be true) the depth of roots is governed entirely by the physico-chemical properties of the soil, and not at all by the genetics of the host (or soil organisms). The experimental facts are against this (Doussan et al., 2003; Kato et al., 2006), and a number of simple gene-based arguments show that this is not the case. Thus any claim that it is impossible to pursue the ‘deep roots’ agenda using plant breeding methods is without merit.

  1. Plant root depths vary greatly in the same soil for different organisms (e.g. Burch and Johns, 1978; Jackson et al., 1996; Jobbágy and Jackson, 2000).

  2. Plant root depths vary substantially in the same soils or growth media for different cultivars of the same plant (e.g. O'Toole and Bland, 1987; Lilley and Fukai, 1994; Champoux et al., 1995; Fukai and Cooper, 1995; Price et al., 1997, 2002a, b; Angadi and Entz, 2002; Bonos et al., 2004; Løes and Gahoonia, 2004; Chloupek et al., 2006; Kato et al., 2006; Devaiah et al., 2007; Hund et al., 2007, 2009, 2011; Sanguineti et al., 2007; Kamoshita et al., 2008; Karcher et al., 2008; Crush et al., 2009, 2010; Gregory et al., 2009; Hargreaves et al., 2009; Kutschera et al., 2009; Trachsel et al., 2009, 2011; Ao et al., 2010; Iyer-Pascuzzi et al., 2010; Obara et al., 2010; Tuberosa et al., 2010; Bayuelo-Jiménez et al., 2011).

  3. Plant root depths can vary substantially between different mutants (in known genes) of the same parent (e.g. Zhang and Forde, 1998; Casimiro et al., 2003; Hochholdinger et al., 2004a, b; Hochholdinger, 2009; Hochholdinger and Tuberosa, 2009; Rebouillat et al., 2009; Benfey et al., 2010; Coudert et al., 2010).

Why the optimism?

It is certainly the case that a number of experts have given a slightly less optimistic view of the potential of land use changes to improve carbon sequestration (Smith, 2004; van Kessel et al., 2006; Soussana and Luscher, 2007; Ciais et al., 2010; Smith et al., 2010a) (but see Lal, 2010a). However, this seems to be based in part on the present use of comparatively shallow-rooted plants that in some regions may indeed have approached the possible saturation of carbon sequestration. A particular issue is that most studies do not make soil measurements much below a metre (Nepstad et al., 1994; Batjes, 1996; Canadell et al., 1996; Jobbágy and Jackson, 2000; Guo and Gifford, 2002; Schenk and Jackson, 2002a; Robinson, 2004; Bradley et al., 2005; Lorenz and Lal, 2005; Mokany et al., 2006; Ichii et al., 2009; Qin and Huang, 2010; Wang et al., 2010), and the kinds of root depths we are looking at here would more than double that. This doubling of root biomass from a nominal 1 m to a nominal 2 m is really the key issue, together with the longevity of the roots and carbon they secrete and sequester below-ground (a complete turnover annually, including of stover in no-till systems, obviously gives no net steady-state sequestration).

The turnover rate or time is an especially important measure here. However, data on the longevity of soil roots and the (other) pools of carbon that are obtained therefrom in the soil (Zimmermann et al., 2007; Smith et al., 2010b) (let alone their variation with depth, soil type, vegetation type, etc.) are both uncertain and not very easy to come by (Baggs, 2006; Gregory, 2006; Kuzyakov, 2006; Koerber et al., 2010; Sanderman and Baldock, 2010), but Gill and Jackson (2000) indicate a loss of 40 % per year in temperate grasslands (i.e. a ‘linear’ lifetime of 2·5 years), with a greater decay as temperature increases, while Högberg and Read (2006) summarize some of the evidence for the increasing recognition that roots in soil are more long-lived than previously credited (see also Collins et al., 2010), and there is increasing evidence for the role of physical protection (occlusion/aggregation) in improving carbon retention (e.g. Krull et al., 2003; von Lützow et al., 2006; Jastrow et al., 2007; McCarthy et al., 2008; Virto et al., 2008, 2010; Moni et al., 2010). The residence time of more refractory forms of SOC, albeit derived originally from manure or photosynthate, may be considerably longer (Bull et al., 2000; Paustian et al., 2000), and isotopic methods (e.g. Dungait et al., 2008, 2009, 2010; Rubino et al., 2010; Smith et al., 2010b) have an important role to play in the analysis of the turnover of carbon-containing soil components and their biomarkers. Biochars (e.g. Lehmann, 2007; Atkinson et al., 2010; Sohi et al., 2010) are seen as especially recalcitrant. Clearly the rate of degradation is controlled by at least two classes of factor, the rate of biochemical alteration and the extent of physico-chemical protection (Jastrow et al., 2007), and these vary among different substances. The rate of biochemical alteration of a molecule (related to its recalcitrance), and the eventual loss of carbon as CO2, also depends on what enzymes and organisms are present that are able to degrade it under the relevant conditions (e.g. of pH, oxygen tension, etc.) (Jastrow et al., 2007). Without going into the specific chemical details, there are obvious relationships between all of these and the overall ability to sequester carbon in various forms. How to ensure that deep root carbon is more recalcitrant when we know which molecules are the most recalcitrant, or have other properties desirable for building soil structure, is another goal of the breeding process.

HOW MUCH CARBON MAY BE SEQUESTERED IN THIS WAY?

It would be desirable to give a precise, quantitative answer to this question, but it is affected by so many variables that the possible range is quite large; these variables include the baseline carbon content, photosynthetic yields, microbial and other respiratory activity, root turnover, soil biophysics and aridity, soil aggregate water stability and repellency, and so on, and so we suffice with an approximation. (No attempt is made to discriminate the many known pools of soil carbon.) The key issues are the amount that can be sequestered (whether as roots or as other forms of SOC) per year, and the lifetime of the carbon so sequestered before it is eventually re-respired to the atmosphere. Most of the estimates for the carbon sequestration potential range from about 0·3 to 0·8 tC ha−1 year−1 (Smith, 2004), but some estimates are well outside (especially above) this range. The point, though, is that what matters is not so much what is happening now as what might be achieved with suitable breeding of plants with deep (and reasonably long-lived) roots. Increasing root mass by an extra 1 m depth with a very modest carbon content of just 1 % carbon by volume of overall soil mass equates (assuming a relative density of 1) to 10 kg m−2 (100 t ha−1), or on average 5 kg m−2 (50 t ha−1) if it turns over every 2 years. Lal (2004) indicates that some cultivated soils have lost one-half to two-thirds of their original SOC pool, with a cumulative loss of 30–40 Mg C ha−1 (i.e. 30–40 t ha−1), implying that these levels are a minimum that can be sequestered (since they once were), so the 50 t ha−1 number seems both conservative and reasonable. Some analyses of existing grasslands and energy crops imply that at least 100 t ha−1 of steady-state carbon sequestration in roots is routinely attainable (Dondini et al., 2009a; Silver et al., 2010) [forests typically sequester even more (Malhi et al., 1999)], with gross global primary production exceeding 100 Pg year−1 (Beer et al., 2010).

The carbon being produced from fossil fuel burning is some 8·4 Gt year−1 (MacKay, 2008), and so to mop this up at the rate of 50 t ha−1 some 1·6 × 108 ha or 1·6 × 106 km2 would be required. This compares with some 41·4 × 106 km2 (Bot et al., 2000) of just rainfed arable land, and 130·56. 106 km2 of total land area excluding polar regions (http://www.worldmapper.org/). Thus, one thing is clear: doubling the steady-state depth of roots from approx. 1 m to 2 m can have a significantly beneficial impact on lowering the levels of atmospheric CO2. Since the calculations at this level of granularity are straightforward (without spatial analysis or details of economics, infrastructure issues, transitional arrangements, the time required to breed the appropriate crops and to bulk them up and to disseminate the necessary germplasm, and so on), we have made them available at http://dbkgroup.org/carbonsequestration/rootsystem.html. Default values include the facts that there are 2300 Mha of cropland and a similar amount of grassland (rangeland) [and note the comparatively recent loss of an additional approx. 20 % of agricultural land (Campbell et al., 2008; Somerville et al., 2010)], the carbon in the atmosphere (essentially as CO2) is some 750–821 Pg (approx. 385 ppm by volume) while that in the soil is approx. 1500 Pg, and that the relative density of soil is that of water, i.e. 1. Calculations based on this imply that an extra 2 % of carbon occupying an extra 1 m depth over these areas = 20 kg m−2 = 200 t ha−1 (or, simplistically ignoring any feedbacks, 100 t ha−1 fixed on average in the steady state if the lifetime of the average ‘carbon’ held in different molecules is 2 years).

POSSIBLE COMPLEXITIES

This short overview has concentrated on breeding plants with deep (and bushy) roots per se, but I recognize that it is necessary to take a full systems approach. For instance, I have not discussed in any detail the interactions of roots with soil micro-organisms and other invertebrates. In addition, one would wish to check details of the consequences of the biochemical turnover of the deeper roots of plants (especially if waterlogged and anaerobic), lest they produce methane or nitrous oxide (Philippot et al., 2009), GHGs far more potent than CO2 (Soussana et al., 2007). Other aspects of plant breeding for carbon sequestration may interact positively or negatively with, or may be decoupled from, agricultural outputs such as useful (i.e. agriculturally productive) yield. Thus an improved opening of stomata, that might assist CO2 uptake, may also lead to greater transpirational losses. The economics of agriculture-based carbon sequestration will also be affected significantly by any carbon credits that may be applied (Smith et al., 2008; MacLeod et al., 2010; Smith and Olesen, 2010; Lal, 2011).

CONCLUDING REMARKS

In this brief commentary, I have sought to draw attention to the potentially substantial benefits that are to be had from breeding and growing crops with very extensive root systems. The analysis differs explicitly from the more common analysis of what pertains now as it seeks to understand what might be done by explicit human breeding of the necessary crops. In addition to the simple carbon sequestration that these imply – possibly double that of common annual grain crops – such crops seem to mobilize and retain nutrients and water very effectively over extended periods, thus providing resistance to drought (e.g. Burch and Johns, 1978; Passioura, 1983, 2006; Ekanayake et al., 1985; Champoux et al., 1995; Price et al., 2002a; Kato et al., 2006; Kirkegaard et al., 2007; Bernier et al., 2008; Kamoshita et al., 2008; Karcher et al., 2008; Cairns et al., 2009; Hund et al., 2009; McKenzie et al., 2009), flooding and other consequences of climate change, as well as to fertilizer runoff. In addition, the development of plants with deep roots may in fact stimulate photosynthetic yields as these are considered to be more controlled by the carbon sinks of plants (e.g. Zhu et al., 2010) [demand typically being considerably more controlling than supply when one is seeking to increase biotechnological fluxes (Cornish-Bowden et al., 1995; Hofmeyr and Cornish-Bowden, 2000)]. The production (by breeding) of deep roots in some cultivars will undoubtedly be at the expense of above-ground biomass yields, but there is no evidence that it has to be so (e.g. Fisher et al., 1994). Thus, the research agenda is clear: we need to learn much more about those genes that control root development as part of whole plant development, the interactions of various roots with soil and soil organisms, and the actual benefits of net carbon, nutrient and water sequestration that can be effected by such crops under various agronomic conditions. This is likely to include the requirement to develop novel instrumentation (and algorithms) to measure root and other phenotypes (e.g. Nadezhdina and Čermák, 2003; Granier et al., 2006; French et al., 2009; Gregory et al., 2009; Iyer-Pascuzzi et al., 2010; Wielopolski et al., 2010), as well as the informatics necessary (e.g. Jenkins et al., 2004) for storing and making available such data, including the anticipated flood of genomics data. While there is a way to go before such crops might have, for example, the grain yields of present day cereals, their breeding and deployment seems a very promising avenue for sustainable agriculture.

ACKNOWLEDGEMENTS

I thank a considerable number of individuals (there are too many to name you all) for guiding my thinking here, and Steve O'Hagan for setting up the web page at http://dbkgroup.org/carbonsequestration/rootsystem.html. I thank referees for some useful suggestions.

LITERATURE CITED

Al-Kaisi
MM
Grote
JB
Cropping systems effects on improving soil carbon stocks of exposed subsoil
Soil Science Society of America Journal
 , 
2007
, vol. 
71
 (pg. 
1381
-
1388
)
Amado
TJ
Bayer
C
Conceicao
PC
Spagnollo
E
de Campos
BH
da Veiga
M
Potential of carbon accumulation in no-till soils with intensive use and cover crops in southern Brazil
Journal of Environmental Quality
 , 
2006
, vol. 
35
 (pg. 
1599
-
1607
)
Anderson-Teixeira
KJ
Davis
SC
Masters
MD
Delucia
EH
Changes in soil organic carbon under biofuel crops
Global Change Biology Bioenergy
 , 
2009
, vol. 
1
 (pg. 
75
-
96
)
Angadi
SV
Entz
MH
Root system and water use patterns of different height sunflower cultivars
Agronomy Journal
 , 
2002
, vol. 
94
 (pg. 
136
-
145
)
Ao
JH
Fu
JB
Tian
J
Yan
XL
Liao
H
Genetic variability for root morph-architecture traits and root growth dynamics as related to phosphorus efficiency in soybean
Functional Plant Biology
 , 
2010
, vol. 
37
 (pg. 
304
-
312
)
Arnone
JA
3rd
Verburg
PS
Johnson
DW
, et al.  . 
Prolonged suppression of ecosystem carbon dioxide uptake after an anomalously warm year
Nature
 , 
2008
, vol. 
455
 (pg. 
383
-
386
)
Atkinson
CJ
Fitzgerald
JD
Hipps
NA
Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review
Plant and Soil
 , 
2010
, vol. 
337
 (pg. 
1
-
18
)
Baggs
EM
Partitioning the components of soil respiration: a research challenge
Plant and Soil
 , 
2006
, vol. 
284
 (pg. 
1
-
5
)
Bastviken
D
Tranvik
LJ
Downing
JA
Crill
PM
Enrich-Prast
A
Freshwater methane emissions offset the continental carbon sink
Science
 , 
2011
, vol. 
331
 pg. 
50
 
Batjes
NH
Total carbon and nitrogen in the soils of the world
European Journal of Soil Science
 , 
1996
, vol. 
47
 (pg. 
151
-
163
)
Bayuelo-Jiménez
JS
Gallardo-Valdéz
M
Pérez-Decelis
VA
Magdaleno-Armas
L
Ochoa
I
Lynch
JP
Genotypic variation for root traits of maize (Zea mays L.) from the Purhepecha Plateau under contrasting phosphorus availability
Field Crops Research
 , 
2011
, vol. 
121
 (pg. 
350
-
362
)
Beddington
J
Food security: contributions from science to a new and greener revolution
Philosophical Transactions of the Royal Society B: Biological Sciences
 , 
2010
, vol. 
365
 (pg. 
61
-
71
)
Bedini
S
Pellegrino
E
Avio
L
, et al.  . 
Changes in soil aggregation and glomalin-related soil protein content as affected by the arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices
Soil Biology and Biochemistry
 , 
2009
, vol. 
41
 (pg. 
1491
-
1496
)
Beer
C
Reichstein
M
Tomelleri
E
, et al.  . 
Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate
Science
 , 
2010
, vol. 
329
 (pg. 
834
-
838
)
Bellamy
PH
Loveland
PJ
Bradley
RI
Lark
RM
Kirk
GJ
Carbon losses from all soils across England and Wales 1978–2003
Nature
 , 
2005
, vol. 
437
 (pg. 
245
-
248
)
Benfey
PN
Bennett
M
Schiefelbein
J
Getting to the root of plant biology: impact of the Arabidopsis genome sequence on root research
The Plant Journal
 , 
2010
, vol. 
61
 (pg. 
992
-
1000
)
Bennett
T
Scheres
B
Root development – two meristems for the price of one?
Plant Development
 , 
2010
, vol. 
91
 (pg. 
67
-
102
)
Bernacchi
CJ
Hollinger
SE
Meyers
T
The conversion of the corn/soybean ecosystem to no-till agriculture may result in a carbon sink
Global Change Biology
 , 
2005
, vol. 
11
 (pg. 
1867
-
1872
)
Berner
RA
Paleoclimate – the rise of plants and their effect on weathering and atmospheric CO2
Science
 , 
1997
, vol. 
276
 (pg. 
544
-
546
)
Berner
RA
Kothavala
Z
GEOCARB III: a revised model of atmospheric CO2 over phanerozoic time
American Journal of Science
 , 
2001
, vol. 
301
 (pg. 
182
-
204
)
Bernier
J
Atlin
GN
Serraj
R
Kumar
A
Spaner
D
Breeding upland rice for drought resistance
Journal of the Science of Food and Agriculture
 , 
2008
, vol. 
88
 (pg. 
927
-
939
)
Bevan
MW
Garvin
DF
Vogel
JP
Brachypodium distachyon genomics for sustainable food and fuel production
Current Opinion in Biotechnology
 , 
2010
, vol. 
21
 (pg. 
211
-
217
)
Bond-Lamberty
B
Thomson
A
Temperature-associated increases in the global soil respiration record
Nature
 , 
2010
, vol. 
464
 (pg. 
579
-
582
)
Bonos
SA
Rush
D
Hignight
K
Meyer
WA
Selection for deep root production in tall fescue and perennial ryegrass
Crop Science
 , 
2004
, vol. 
44
 (pg. 
1770
-
1775
)
Bot
AJ
Nachtergaele
FO
Young
A
Land resource potential and constraints at regional and country levels.
 , 
2000
 
Rome, FAO. ftp://ftp.fao.org/agl/agll/docs/wsr.pdf
Bozell
JJ
Petersen
GR
Technology development for the production of biobased products from biorefinery carbohydrates – the US Department of Energy's ‘Top 10’ revisited
Green Chemistry
 , 
2010
, vol. 
12
 (pg. 
539
-
554
)
Bradley
RI
Milne
R
Bell
J
Lilly
A
Jordan
C
Higgins
A
A soil carbon and land use database for the United Kingdom
Soil Use and Management
 , 
2005
, vol. 
21
 (pg. 
363
-
369
)
Breecker
DO
Sharp
ZD
McFadden
LD
Atmospheric CO2 concentrations during ancient greenhouse climates were similar to those predicted for A.D. 2100
Proceedings of the National Academy of Sciences, USA
 , 
2010
, vol. 
107
 (pg. 
576
-
580
)
Bucher
M
Functional biology of plant phosphate uptake at root and mycorrhiza interfaces
New Phytologist
 , 
2007
, vol. 
173
 (pg. 
11
-
26
)
Bucher
M
Wegmüller
S
Drissner
D
Chasing the structures of small molecules in arbuscular mycorrhizal signaling
Current Opinion in Plant Biology
 , 
2009
, vol. 
12
 (pg. 
500
-
507
)
Bull
ID
van Bergen
PF
Nott
CJ
Poulton
PR
Evershed
RP
Organic geochemical studies of soils from the Rothamsted classical experiments – V. The fate of lipids in different long-term experiments
Organic Geochemistry
 , 
2000
, vol. 
31
 (pg. 
389
-
408
)
Burch
GJ
Johns
GG
Root absorption of water and physiological responses to water deficits by Festuca arundinacea Schreb. and Trifolim repens L
Australian Journal of Plant Physiology
 , 
1978
, vol. 
5
 (pg. 
859
-
871
)
Burgess
SSO
Bleby
TM
Redistribution of soil water by lateral roots mediated by stem tissues
Journal of Experimental Botany
 , 
2006
, vol. 
57
 (pg. 
3283
-
3291
)
Burgess
SSO
Adams
MA
Turner
NC
Ong
CK
The redistribution of soil water by tree root systems
Oecologia
 , 
1998
, vol. 
115
 (pg. 
306
-
311
)
Burney
JA
Davis
SJ
Lobell
DB
Greenhouse gas mitigation by agricultural intensification
Proceedings of the National Academy of Sciences, USA
 , 
2010
, vol. 
107
 (pg. 
12052
-
12057
)
Buzan
T
How to mind map.
 , 
2002
London
Thorsons
Cahill
JF
Jr
McNickle
GG
Haag
JJ
Lamb
EG
Nyanumba
SM
St Clair
CC
Plants integrate information about nutrients and neighbors
Science
 , 
2010
, vol. 
328
 pg. 
1657
 
Cairns
JE
Audebert
A
Mullins
CE
Price
AH
Mapping quantitative trait loci associated with root growth in upland rice (Oryza sativa L.) exposed to soil water-deficit in fields with contrasting soil properties
Field Crops Research
 , 
2009
, vol. 
114
 (pg. 
108
-
118
)
Campbell
JE
Lobell
DB
Genova
RC
Field
CB
The global potential of bioenergy on abandoned agriculture lands
Environmental Science and Technology
 , 
2008
, vol. 
42
 (pg. 
5791
-
5794
)
Canadell
J
Jackson
RB
Ehleringer
JR
Mooney
HA
Sala
OE
Schulze
ED
Maximum rooting depth of vegetation types at the global scale
Oecologia
 , 
1996
, vol. 
108
 (pg. 
583
-
595
)
Casimiro
I
Beeckman
T
Graham
N
, et al.  . 
Dissecting Arabidopsis lateral root development
Trends in Plant Science
 , 
2003
, vol. 
8
 (pg. 
165
-
171
)
Chaitra
J
Vinod
MS
Sharma
N
Hittalmani
S
Shashidhar
HE
Validation of markers linked to maximum root length in rice (Oryza sativa L.)
Current Science
 , 
2006
, vol. 
90
 (pg. 
835
-
838
)
Champoux
MC
Wang
G
Sarkarung
S
, et al.  . 
Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers
Theoretical and Applied Genetics
 , 
1995
, vol. 
90
 (pg. 
969
-
981
)
Chapin
FS
Woodwell
GM
Randerson
JT
, et al.  . 
Reconciling carbon-cycle concepts, terminology, and methods
Ecosystems
 , 
2006
, vol. 
9
 (pg. 
1041
-
1050
)
Chloupek
O
Forster
BP
Thomas
WTB
The effect of semi-dwarf genes on root system size in field-grown barley
Theoretical and Applied Genetics
 , 
2006
, vol. 
112
 (pg. 
779
-
786
)
Ciais
P
Wattenbach
M
Vuichard
N
, et al.  . 
The European carbon balance. Part 2: croplands
Global Change Biology
 , 
2010
, vol. 
16
 (pg. 
1409
-
1428
)
Clifton-Brown
JC
Breuer
J
Jones
MB
Carbon mitigation by the energy crop
Miscanthus. Global Change Biology
 , 
2007
, vol. 
13
 (pg. 
2296
-
2307
)
Collard
BC
Mackill
DJ
Marker-assisted selection: an approach for precision plant breeding in the twenty-first century
Philosophical Transactions of the Royal Society B: Biological Sciences
 , 
2008
, vol. 
363
 (pg. 
557
-
572
)
Collins
HP
Smith
JL
Fransen
S
Alva
AK
Kruger
CE
Granatstein
DM
Carbon sequestration under irrigated switchgrass (Panicum virgatum L.) production
Soil Science Society of America Journal
 , 
2010
, vol. 
74
 (pg. 
2049
-
2058
)
Cornish-Bowden
A
Hofmeyr
J-HS
Cárdenas
ML
Strategies for manipulating metabolic fluxes in biotechnology
Bioorganic Chemistry
 , 
1995
, vol. 
23
 (pg. 
439
-
449
)
Coudert
Y
Perin
C
Courtois
B
Khong
NG
Gantet
P
Genetic control of root development in rice, the model cereal
Trends in Plant Science
 , 
2010
, vol. 
15
 (pg. 
219
-
226
)
Courtois
B
Ahmadi
N
Khowaja
F
, et al.  . 
Rice root genetic architecture: meta-analysis from a drought QTL database
Rice
 , 
2009
, vol. 
2
 (pg. 
115
-
128
)
Cox
TS
Bender
M
Picone
C
, et al.  . 
Breeding perennial grain crops
Critical Reviews in Plant Sciences
 , 
2002
, vol. 
21
 (pg. 
59
-
91
)
Cox
TS
Glover
JD
Van Tassel
DL
Cox
CM
DeHaan
LR
Prospects for developing perennial-grain crops
Bioscience
 , 
2006
, vol. 
56
 (pg. 
649
-
659
)
Crevoisier
C
Sweeney
C
Gloor
M
Sarmiento
JL
Tans
PP
Regional US carbon sinks from three-dimensional atmospheric CO2 sampling
Proceedings of the National Academy of Sciences, USA
 , 
2010
, vol. 
107
 (pg. 
18348
-
18353
)
Crush
JR
Nichols
SN
Easton
HS
Ouyang
L
Hume
DE
Comparisons between wild populations and bred perennial ryegrasses for root growth and root/shoot partitioning
New Zealand Journal of Agricultural Research
 , 
2009
, vol. 
52
 (pg. 
161
-
169
)
Crush
JR
Nichols
SN
Ouyang
L
Adventitious root mass distribution in progeny of four perennial ryegrass (Lolium perenne L.) groups selected for root shape
New Zealand Journal of Agricultural Research
 , 
2010
, vol. 
53
 (pg. 
193
-
200
)
De Deyn
GB
Cornelissen
JHC
Bardgett
RD
Plant functional traits and soil carbon sequestration in contrasting biomes
Ecology Letters
 , 
2008
, vol. 
11
 (pg. 
516
-
531
)
DeHaan
LR
Van Tassel
DL
Cox
TS
Perennial grain crops: a synthesis of ecology and plant breeding
Renewable Agriculture and Food Systems
 , 
2005
, vol. 
20
 (pg. 
5
-
14
)
Demirbas
A
Competitive liquid biofuels from biomass
Applied Energy
 , 
2011
, vol. 
88
 (pg. 
17
-
28
)
Devaiah
BN
Nagarajan
VK
Raghothama
KG
Phosphate homeostasis and root development in Arabidopsis are synchronized by the zinc finger transcription factor ZAT6
Plant Physiology
 , 
2007
, vol. 
145
 (pg. 
147
-
159
)
Dobson
PD
Kell
DB
Carrier-mediated cellular uptake of pharmaceutical drugs: an exception or the rule?
Nature Reviews Drug Discovery
 , 
2008
, vol. 
7
 (pg. 
205
-
220
)
Dohleman
FG
Long
SP
More productive than maize in the Midwest: how does Miscanthus do it?
Plant Physiology
 , 
2009
, vol. 
150
 (pg. 
2104
-
2115
)
Dondini
M
Hastings
A
Saiz
G
Jones
MB
Smith
P
The potential of Miscanthus to sequester carbon in soils: comparing field measurements in Carlow, Ireland to model predictions
Global Change Biology Bioenergy
 , 
2009
, vol. 
1
 (pg. 
413
-
425
)
Dondini
M
Van Groenigen
KJ
Del Galdo
I
Jones
MB
Carbon sequestration under Miscanthus: a study of C-13 distribution in soil aggregates
Global Change Biology Bioenergy
 , 
2009
, vol. 
1
 (pg. 
321
-
330
)
Doney
SC
The growing human footprint on coastal and open-ocean biogeochemistry
Science
 , 
2010
, vol. 
328
 (pg. 
1512
-
1516
)
de Dorlodot
S
Forster
B
Pagès
L
Price
A
Tuberosa
R
Draye
X
Root system architecture: opportunities and constraints for genetic improvement of crops
Trends in Plant Science
 , 
2007
, vol. 
12
 (pg. 
474
-
481
)
Doussan
C
Pages
L
Pierret
A
Soil exploration and resource acquisition by plant roots: an architectural and modelling point of view
Agronomie
 , 
2003
, vol. 
23
 (pg. 
419
-
431
)
Draper
J
Mur
LA
Jenkins
G
, et al.  . 
Brachypodium distachyon. A new model system for functional genomics in grasses
Plant Physiology
 , 
2001
, vol. 
127
 (pg. 
1539
-
1555
)
Dungait
JAJ
Stear
NA
van Dongen
BE
Bol
R
Evershed
RP
Off-line pyrolysis and compound-specific stable carbon isotope analysis of lignin moieties: a new method for determining the fate of lignin residues in soil
Rapid Communications in Mass Spectrometry
 , 
2008
, vol. 
22
 (pg. 
1631
-
1639
)
Dungait
JAJ
Bol
R
Bull
ID
Evershed
RP
Tracking the fate of dung-derived carbohydrates in a temperate grassland soil using compound-specific stable isotope analysis
Organic Geochemistry
 , 
2009
, vol. 
40
 (pg. 
1210
-
1218
)
Dungait
JAJ
Bol
R
Lopez-Capel
E
, et al.  . 
Applications of stable isotope ratio mass spectrometry in cattle dung carbon cycling studies
Rapid Communications in Mass Spectrometry
 , 
2010
, vol. 
24
 (pg. 
495
-
500
)
DuPont
ST
Culman
SW
Ferris
H
Buckley
DH
Glover
JD
No-tillage conversion of harvested perennial grassland to annual cropland reduces root biomass, decreases active carbon stocks, and impacts soil biota
Agriculture, Ecosystems and Environment
 , 
2010
, vol. 
137
 (pg. 
25
-
32
)
Eathington
SR
Crosbie
TM
Edwards
MD
Reiter
RS
Bull
JK
Molecular markers in a commercial breeding program
Crop Science
 , 
2007
, vol. 
47
 (pg. 
S154
-
S163
)
Edgerton
MD
Increasing crop productivity to meet global needs for feed, food, and fuel
Plant Physiology
 , 
2009
, vol. 
149
 (pg. 
7
-
13
)
Eglin
T
Ciais
P
Piao
SL
, et al.  . 
Historical and future perspectives of global soil carbon response to climate and land-use changes
Tellus Series B-Chemical and Physical Meteorology
 , 
2010
, vol. 
62
 (pg. 
700
-
718
)
Ekanayake
IJ
Otoole
JC
Garrity
DP
Masajo
TM
Inheritance of root characters and their relations to drought resistance in rice
Crop Science
 , 
1985
, vol. 
25
 (pg. 
927
-
933
)
Fedoroff
NV
Battisti
DS
Beachy
RN
, et al.  . 
Radically rethinking agriculture for the 21st century
Science
 , 
2010
, vol. 
327
 (pg. 
833
-
834
)
Feeney
DS
Crawford
JW
Daniell
T
, et al.  . 
Three-dimensional microorganization of the soil–root–microbe system
Microbial Ecology
 , 
2006
, vol. 
52
 (pg. 
151
-
158
)
Fisher
MJ
Rao
IM
Ayarza
MA
, et al.  . 
Carbon storage by introduced deep-rooted grasses in the South American savannas
Nature
 , 
1994
, vol. 
371
 (pg. 
236
-
238
)
Fitter
AH
An architectural approach to the comparative ecology of plant root systems
New Phytologist
 , 
1987
, vol. 
106
 (pg. 
61
-
77
)
Fitter
AH
Stickland
TR
Architectural analysis of plant root systems. 2. Influence of nutrient supply on architecture in contrasting plant species
New Phytologist
 , 
1991
, vol. 
118
 (pg. 
383
-
389
)
Fitter
AH
Gilligan
CA
Hollingworth
K
Kleczkowski
A
Twyman
RM
Pitchford
JW
NERC Soil Biodiversity Programme
Biodiversity and ecosystem function in soil
Functional Ecology
 , 
2005
, vol. 
19
 (pg. 
369
-
377
)
Follett
RF
Reed
DA
Soil carbon sequestration in grazing lands: societal benefits and policy implications
Rangeland Ecology and Management
 , 
2010
, vol. 
63
 (pg. 
4
-
15
)
Foresight
The future of food and farming: final project report.
 , 
2011
London
Government Office for Science
French
A
Ubeda-Tomas
S
Holman
TJ
Bennett
MJ
Pridmore
T
High-throughput quantification of root growth using a novel image-analysis tool
Plant Physiology
 , 
2009
, vol. 
150
 (pg. 
1784
-
1795
)
Fukai
S
Cooper
M
Development of drought-resistant cultivars using physio-morphological traits in rice
Field Crops Research
 , 
1995
, vol. 
40
 (pg. 
67
-
86
)
Gadkar
V
Rillig
MC
The arbuscular mycorrhizal fungal protein glomalin is a putative homolog of heat shock protein 60
FEMS Microbiology Letters
 , 
2006
, vol. 
263
 (pg. 
93
-
101
)
Galdos
MV
Cerri
CC
Lal
R
Bernoux
M
Feigl
B
Cerri
CEP
Net greenhouse gas fluxes in Brazilian ethanol production systems
Global Change Biology Bioenergy
 , 
2010
, vol. 
2
 (pg. 
37
-
44
)
Galinha
C
Hofhuis
H
Luijten
M
, et al.  . 
PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development
Nature
 , 
2007
, vol. 
449
 (pg. 
1053
-
1057
)
Gill
RA
Jackson
RB
Global patterns of root turnover for terrestrial ecosystems
New Phytologist
 , 
2000
, vol. 
147
 (pg. 
13
-
31
)
Gillespie
AW
Walley
FL
Farrell
RE
, et al.  . 
Profiling rhizosphere chemistry: evidence from carbon and nitrogen K-edge XANES and pyrolysis-FIMS
Soil Science Society of America Journal
 , 
2009
, vol. 
73
 (pg. 
2002
-
2012
)
Glover
JD
Cox
CM
Reganold
JP
Future farming: a return to roots?
Scientific American
 , 
2007
, vol. 
297
 (pg. 
82
-
89
)
Glover
JD
Reganold
JP
Bell
LW
, et al.  . 
Increased food and ecosystem security via perennial grains
Science
 , 
2010
, vol. 
328
 (pg. 
1638
-
1639
)
Godfray
HC
Beddington
JR
Crute
IR
, et al.  . 
Food security: the challenge of feeding 9 billion people
Science
 , 
2010
, vol. 
327
 (pg. 
812
-
818
)
Godfray
HCJ
Crute
IR
Haddad
L
, et al.  . 
The future of the global food system
Philosophical Transactions of the Royal Society B: Biological Sciences
 , 
2010
, vol. 
365
 (pg. 
2769
-
2777
)
Grandy
AS
Loecke
TD
Parr
S
Robertson
GP
Long-term trends in nitrous oxide emissions, soil nitrogen, and crop yields of till and no-till cropping systems
Journal of Environmental Quality
 , 
2006
, vol. 
35
 (pg. 
1487
-
1495
)
Granier
C
Aguirrezabal
L
Chenu
K
, et al.  . 
PHENOPSIS, an automated platform for reproducible phenotyping of plant responses to soil water deficit in Arabidopsis thaliana permitted the identification of an accession with low sensitivity to soil water deficit
New Phytologist
 , 
2006
, vol. 
169
 (pg. 
623
-
635
)
Gregory
AS
Webster
CP
Watts
CW
, et al.  . 
Soil management and grass species effects on the hydraulic properties of shrinking soils
Soil Science Society of America Journal
 , 
2010
, vol. 
74
 (pg. 
753
-
761
)
Gregory
PJ
Plant roots: growth, activity and interaction with soils.
 , 
2006
Oxford
Blackwell
Gregory
PJ
Bengough
AG
Grinev
D
, et al.  . 
Root phenomics of crops: opportunities and challenges
Functional Plant Biology
 , 
2009
, vol. 
36
 (pg. 
922
-
929
)
Grimshaw
RG
Truong
P
Introduction and review: introducing the vetiver system, vetiver networking, agricultural applications, and future uses for energy/fuel and carbon sequestration
Proceedings of the 1st Indian National Vetiver Workshop
 , 
2008
San Antonio, TX
The Vetiver Network International
(pg. 
4
-
22
)
Guo
LB
Gifford
RM
Soil carbon stocks and land use change: a meta analysis
Global Change Biology
 , 
2002
, vol. 
8
 (pg. 
345
-
360
)
Gyssels
G
Poesen
J
Bochet
E
Li
Y
Impact of plant roots on the resistance of soils to erosion by water: a review
Progress in Physical Geography
 , 
2005
, vol. 
29
 (pg. 
189
-
217
)
Hall-Spencer
JM
Rodolfo-Metalpa
R
Martin
S
, et al.  . 
Volcanic carbon dioxide vents show ecosystem effects of ocean acidification
Nature
 , 
2008
, vol. 
454
 (pg. 
96
-
99
)
Hargreaves
CE
Gregory
PJ
Bengough
AG
Measuring root traits in barley (Hordeum vulgare ssp vulgare and ssp spontaneum) seedlings using gel chambers, soil sacs and X-ray microtomography
Plant and Soil
 , 
2009
, vol. 
316
 (pg. 
285
-
297
)
Heaton
EA
Dohleman
FG
Long
SP
Meeting US biofuel goals with less land: the potential of Miscanthus
Global Change Biology
 , 
2008
, vol. 
14
 (pg. 
2000
-
2014
)
Helgason
T
Fitter
AH
Natural selection and the evolutionary ecology of the arbuscular mycorrhizal fungi (Phylum Glomeromycota)
Journal of Experimental Botany
 , 
2009
, vol. 
60
 (pg. 
2465
-
2480
)
Higgins
JA
Bailey
PC
Laurie
DA
Comparative genomics of flowering time pathways using Brachypodium distachyon as a model for the temperate grasses
PLoS One
 , 
2010
, vol. 
5
 pg. 
e10065
 
Hill
WG
A century of corn selection
Science
 , 
2005
, vol. 
307
 (pg. 
683
-
684
)
Hillier
J
Whittaker
C
Dailey
G
, et al.  . 
Greenhouse gas emissions from four bioenergy crops in England and Wales: integrating spatial estimates of yield and soil carbon balance in life cycle analyses
GCB Bioenergy
 , 
2009
, vol. 
1
 (pg. 
267
-
281
)
Hinsinger
P
Bengough
AG
Vetterlein
D
Young
IM
Rhizosphere: biophysics, biogeochemistry and ecological relevance
Plant and Soil
 , 
2009
, vol. 
321
 (pg. 
117
-
152
)
Hochholdinger
F
Bennetzen
JL
Hake
SC
The maize root system: morphology, anatomy, and genetics
Handbook of maize: its biology.
 , 
2009
New York
Springer
(pg. 
145
-
160
)
Hochholdinger
F
Tuberosa
R
Genetic and genomic dissection of maize root development and architecture
Current Opinion in Plant Biology
 , 
2009
, vol. 
12
 (pg. 
172
-
177
)
Hochholdinger
F
Park
WJ
Sauer
M
Woll
K
From weeds to crops: genetic analysis of root development in cereals
Trends in Plant Science
 , 
2004
, vol. 
9
 (pg. 
42
-
48
)
Hochholdinger
F
Woll
K
Sauer
M
Dembinsky
D
Genetic dissection of root formation in maize (Zea mays) reveals root-type specific developmental programmes
Annals of Botany
 , 
2004
, vol. 
93
 (pg. 
359
-
368
)
Hofmeyr
JS
Cornish-Bowden
A
Regulating the cellular economy of supply and demand
FEBS Letters
 , 
2000
, vol. 
476
 (pg. 
47
-
51
)
Högberg
P
Read
DJ
Towards a more plant physiological perspective on soil ecology
Trends in Ecology and Evolution
 , 
2006
, vol. 
21
 (pg. 
548
-
554
)
Hu
FY
Tao
DY
Sacks
E
, et al.  . 
Convergent evolution of perenniality in rice and sorghum
Proceedings of the National Academy of Sciences, USA
 , 
2003
, vol. 
100
 (pg. 
4050
-
4054
)
Huggins
DR
Reganold
JP
No-till: the quiet revolution
Scientific American
 , 
2008
, vol. 
299
 (pg. 
70
-
77
)
Hull
D
Pettifer
SR
Kell
DB
Defrosting the digital library: bibliographic tools for the next generation web
PLoS Computational Biology
 , 
2008
, vol. 
4
 pg. 
e1000204
 
Hund
A
Richner
W
Soldati
A
van Fracheboud
Y
Stamp
P
Root morphology and photosynthetic performance of maize inbred lines at low temperature
European Journal of Agronomy
 , 
2007
, vol. 
27
 (pg. 
52
-
61
)
Hund
A
Ruta
N
Liedgens
M
Rooting depth and water use efficiency of tropical maize inbred lines, differing in drought tolerance
Plant and Soil
 , 
2009
, vol. 
318
 (pg. 
311
-
325
)
Hund
A
Reimer
R
Messmer
R
A consensus map of QTLs controlling the root length of maize
Plant and Soil
 , 
2011
 
(in press).
Ichii
K
Wang
WL
Hashimoto
H
, et al.  . 
Refinement of rooting depths using satellite-based evapotranspiration seasonality for ecosystem modeling in California
Agricultural and Forest Meteorology
 , 
2009
, vol. 
149
 (pg. 
1907
-
1918
)
Iyer-Pascuzzi
AS
Symonova
O
Mileyko
Y
, et al.  . 
Imaging and analysis platform for automatic phenotyping and trait ranking of plant root systems
Plant Physiology
 , 
2010
, vol. 
152
 (pg. 
1148
-
1157
)
Jackson
RB
Canadell
J
Ehleringer
JR
Mooney
HA
Sala
OE
Schulze
ED
A global analysis of root distributions for terrestrial biomes
Oecologia
 , 
1996
, vol. 
108
 (pg. 
389
-
411
)
Jackson
RB
Mooney
HA
Schulze
ED
A global budget for fine root biomass, surface area, and nutrient contents
Proceedings of the National Academy of Sciences, USA
 , 
1997
, vol. 
94
 (pg. 
7362
-
7366
)
Jastrow
JD
Amonette
JE
Bailey
VL
Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration
Climatic Change
 , 
2007
, vol. 
80
 (pg. 
5
-
23
)
Jenkins
H
Hardy
N
Beckmann
M
, et al.  . 
A proposed framework for the description of plant metabolomics experiments and their results
Nature Biotechnology
 , 
2004
, vol. 
22
 (pg. 
1601
-
1606
)
Jiao
N
Azam
F
Jiao
N
Azam
F
Sanders
S
Microbial carbon pump and its significance for carbon sequestration in the ocean
Microbial carbon pump in the ocean.
 , 
2011
Washington, DC
Science/AAAS
Jiao
N
Herndl
GJ
Hansell
DA
, et al.  . 
Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean
Nature Reviews Microbiology
 , 
2010
, vol. 
8
 (pg. 
593
-
599
)
Jiménez
JJ
Lal
R
Mechanisms of C sequestration in soils of Latin America
Critical Reviews in Plant Sciences
 , 
2006
, vol. 
25
 (pg. 
337
-
365
)
Jobbágy
EG
Jackson
RB
The vertical distribution of soil organic carbon and its relation to climate and vegetation
Ecological Applications
 , 
2000
, vol. 
10
 (pg. 
423
-
436
)
Johansson
AM
Pettersson
ME
Siegel
PB
Carlborg
Ö
Genome-wide effects of long-term divergent selection
PLoS Genetics
 , 
2010
, vol. 
6
 pg. 
e1001188
 
Kamoshita
A
Babu
RC
Boopathi
NM
Fukai
S
Phenotypic and genotypic analysis of drought-resistance traits for development of rice cultivars adapted to rainfed environments
Field Crops Research
 , 
2008
, vol. 
109
 (pg. 
1
-
23
)
Karcher
DE
Richardson
MD
Hignight
K
Rush
D
Drought tolerance of tall fescue populations selected for high root/shoot ratios and summer survival
Crop Science
 , 
2008
, vol. 
48
 (pg. 
771
-
777
)
Kardol
P
Wardle
DA
How understanding aboveground–belowground linkages can assist restoration ecology
Trends in Ecology and Evolution
 , 
2010
, vol. 
25
 (pg. 
670
-
679
)
Kato
Y
Abe
J
Kamoshita
A
Yamagishi
J
Genotypic variation in root growth angle in rice (Oryza sativa L.) and its association with deep root development in upland fields with different water regimes
Plant and Soil
 , 
2006
, vol. 
287
 (pg. 
117
-
129
)
Kean
S
Besting Johnny Appleseed
Science
 , 
2010
, vol. 
328
 (pg. 
301
-
303
)
Kell
DB
Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases
BMC Medical Genomics
 , 
2009
, vol. 
2
 
2
van Kessel
C
Boots
B
de Graaff
MA
Harris
D
Blum
H
Six
J
Total soil C and N sequestration in a grassland following 10 years of free air CO2 enrichment
Global Change Biology
 , 
2006
, vol. 
12
 (pg. 
2187
-
2199
)
Kirkegaard
JA
Lilley
JM
Howe
GN
Graham
JM
Impact of subsoil water use on wheat yield
Australian Journal of Agricultural Research
 , 
2007
, vol. 
58
 (pg. 
303
-
315
)
Koerber
GR
Hill
PW
Edwards-Jones
G
Jones
DL
Estimating the component of soil respiration not dependent on living plant roots: comparison of the indirect y-intercept regression approach and direct bare plot approach
Soil Biology and Biochemistry
 , 
2010
, vol. 
42
 (pg. 
1835
-
1841
)
Kögel-Knabner
I
The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter
Soil Biology and Biochemistry
 , 
2002
, vol. 
34
 (pg. 
139
-
162
)
Kristensen
HL
Thorup-Kristensen
K
Root growth and nitrate uptake of three different catch crops in deep soil layers
Soil Science Society of America Journal
 , 
2004
, vol. 
68
 (pg. 
529
-
537
)
Krull
ES
Baldock
JA
Skjemstad
JO
Importance of mechanisms and processes of the stabilisation of soil organic matter for modelling carbon turnover
Functional Plant Biology
 , 
2003
, vol. 
30
 (pg. 
207
-
222
)
Kutschera
L
Lichtenegger
E
Sobotik
M
Wurzelatlas der Kulturpflanzen gemäßigter Gebiete mit Arten des Feldgemüsebaues.
 , 
2009
 
Frankfurt/Main: DLG Verlag
Kuzyakov
Y
Sources of CO2 efflux from soil and review of partitioning methods
Soil Biology and Biochemistry
 , 
2006
, vol. 
38
 (pg. 
425
-
448
)
Lal
R
Soil carbon sequestration to mitigate climate change
Geoderma
 , 
2004
, vol. 
123
 (pg. 
1
-
22
)
Lal
R
Carbon sequestration
Philosophical Transactions of the Royal Society B: Biological Sciences
 , 
2008
, vol. 
363
 (pg. 
815
-
830
)
Lal
R
Sequestration of atmospheric CO2 in global carbon pools
Energy and Environmental Science
 , 
2008
, vol. 
1
 (pg. 
86
-
100
)
Lal
R
Beyond Copenhagen: mitigating climate change and achieving food security through soil carbon sequestration
Food Security
 , 
2010
, vol. 
2
 (pg. 
169
-
177
)
Lal
R
Enhancing eco-efficiency in agro-ecosystems through soil carbon sequestration
Crop Science
 , 
2010
, vol. 
50
 (pg. 
S120
-
S131
)
Lal
R
Managing soils for a warming earth in a food-insecure and energy-starved world
Journal of Plant Nutrition and Soil Science
 , 
2010
, vol. 
173
 (pg. 
4
-
15
)
Lal
R
Sequestering carbon in soils of agro-ecosystems
Food Policy
 , 
2011
, vol. 
36
 (pg. 
S33
-
S39
)
Lal
R
Griffin
M
Apt
J
Lave
L
Morgan
MG
Ecology. Managing soil carbon
Science
 , 
2004
, vol. 
304
 pg. 
393
 
Lambers
H
Mougel
C
Jaillard
B
Hinsinger
P
Plant–microbe–soil interactions in the rhizosphere: an evolutionary perspective
Plant and Soil
 , 
2009
, vol. 
321
 (pg. 
83
-
115
)
Lavania
UC
Lavania
S
Sequestration of atmospheric carbon into subsoil horizons through deep-rooted grasses – vetiver grass model
Current Science
 , 
2009
, vol. 
97
 (pg. 
618
-
619
)
Lehmann
J
Bio-energy in the black
Frontiers in Ecology and the Environment
 , 
2007
, vol. 
5
 (pg. 
381
-
387
)
Leigh
J
Hodge
A
Fitter
AH
Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material
New Phytologist
 , 
2009
, vol. 
181
 (pg. 
199
-
207
)
Liebig
MA
Johnson
HA
Hanson
JD
Frank
AB
Soil carbon under switchgrass stands and cultivated cropland
Biomass and Bioenergy
 , 
2005
, vol. 
28
 (pg. 
347
-
354
)
Lilley
JM
Fukai
S
Effect of timing and severity of water-deficit on 4 diverse rice cultivars. 1. Rooting pattern and soil-water extraction
Field Crops Research
 , 
1994
, vol. 
37
 (pg. 
205
-
213
)
Lippman
Z
Tanksley
SD
Dissecting the genetic pathway to extreme fruit size in tomato using a cross between the small-fruited wild species Lycopersicon pimpinellifolium and L. esculentum var. giant heirloom
Genetics
 , 
2001
, vol. 
158
 (pg. 
413
-
422
)
Løes
AK
Gahoonia
TS
Genetic variation in specific root length in Scandinavian wheat and barley accessions
Euphytica
 , 
2004
, vol. 
137
 (pg. 
243
-
249
)
López-Bellido
RJ
Lal
R
Owens
LB
López-Bellido
L
Does North Appalachian agriculture contribute to soil carbon sequestration?
Agriculture, Ecosystems and Environment
 , 
2010
, vol. 
137
 (pg. 
373
-
376
)
Lorenz
K
Lal
R
The depth distribution of soil organic carbon in relation to land use and management and the potential of carbon sequestration in subsoil horizons
Advances in Agronomy
 , 
2005
, vol. 
88
 (pg. 
35
-
66
)
Lucas
M
Swarup
R
Paponov
IA
, et al.  . 
Short-Root regulates primary, lateral, and adventitious root development in Arabidopsis
Plant Physiology
 , 
2011
, vol. 
155
 (pg. 
384
-
398
)
Luo
YQ
Terrestrial carbon-cycle feedback to climate warming
Annual Review of Ecology, Evolution, and Systematics
 , 
2007
, vol. 
38
 (pg. 
683
-
712
)
Luster
J
Gottlein
A
Nowack
B
Sarret
G
Sampling, defining, characterising and modeling the rhizosphere – the soil science tool box
Plant and Soil
 , 
2009
, vol. 
321
 (pg. 
457
-
482
)
von Lützow
M
Kögel-Knabner
I
Ekschmitt
K
, et al.  . 
Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions – a review
European Journal of Soil Science
 , 
2006
, vol. 
57
 (pg. 
426
-
445
)
Ma
Z
Wood
CW
Bransby
DI
Impacts of soil management on root characteristics of switchgrass
Biomass and Bioenergy
 , 
2000
, vol. 
18
 (pg. 
105
-
112
)
Ma
Z
Wood
CW
Bransby
DI
Impact of row spacing, nitrogen rate, and time on carbon partitioning of switchgrass
Biomass and Bioenergy
 , 
2001
, vol. 
20
 (pg. 
413
-
419
)
Macías
F
Arbestain
MC
Soil carbon sequestration in a changing global environment
Mitigation and Adaptation Strategies for Global Change
 , 
2010
, vol. 
15
 (pg. 
511
-
529
)
MacKay
DJC
Sustainable energy – without the hot air.
 , 
2008
Cambridge
UIT Cambridge
 
Available free online at http://www.withouthotair.com/
Macleod
CJA
Binley
A
Hawkins
SL
, et al.  . 
Genetically modified hydrographs: what can grass genetics do for temperate catchment hydrology?
Hydrological Processes
 , 
2007
, vol. 
21
 (pg. 
2217
-
2221
)
MacLeod
M
Moran
D
Eory
V
, et al.  . 
Developing greenhouse gas marginal abatement cost curves for agricultural emissions from crops and soils in the UK
Agricultural Systems
 , 
2010
, vol. 
103
 (pg. 
198
-
209
)
Malhi
Y
Baldocchi
DD
Jarvis
PG
The carbon balance of tropical, temperate and boreal forests
Plant, Cell and Environment
 , 
1999
, vol. 
22
 (pg. 
715
-
740
)
McCarthy
JF
Ilavsky
J
Jastrow
JD
Mayer
LM
Perfect
E
Zhuang
J
Protection of organic carbon in soil microaggregates via restructuring of aggregate porosity and filling of pores with accumulating organic matter
Geochimica Cosmochimica Acta
 , 
2008
, vol. 
72
 (pg. 
4725
-
4744
)
McKenzie
BM
Bengough
AG
Hallett
PD
Thomas
WTB
Forster
B
McNicol
JW
Deep rooting and drought screening of cereal crops: a novel field-based method and its application
Field Crops Research
 , 
2009
, vol. 
112
 (pg. 
165
-
171
)
McNeil
BI
Matear
RJ
Southern Ocean acidification: a tipping point at 450-ppm atmospheric CO2
Proceedings of the National Academy of Sciences, USA
 , 
2008
, vol. 
105
 (pg. 
18860
-
18864
)
Meir
P
Cox
P
Grace
J
The influence of terrestrial ecosystems on climate
Trends in Ecology and Evolution
 , 
2006
, vol. 
21
 (pg. 
254
-
260
)
Meuwissen
T
Goddard
M
Accurate prediction of genetic values for complex traits by whole-genome resequencing
Genetics
 , 
2010
, vol. 
185
 (pg. 
623
-
631
)
Meuwissen
TH
Hayes
BJ
Goddard
ME
Prediction of total genetic value using genome-wide dense marker maps
Genetics
 , 
2001
, vol. 
157
 (pg. 
1819
-
1829
)
Mokany
K
Raison
RJ
Prokushkin
AS
Critical analysis of root: shoot ratios in terrestrial biomes
Global Change Biology
 , 
2006
, vol. 
12
 (pg. 
84
-
96
)
Moni
C
Rumpel
C
Virto
I
Chabbi
A
Chenu
C
Relative importance of sorption versus aggregation for organic matter storage in subsoil horizons of two contrasting soils
European Journal of Soil Science
 , 
2010
, vol. 
61
 (pg. 
958
-
969
)
Monson
RK
Lipson
DL
Burns
SP
, et al.  . 
Winter forest soil respiration controlled by climate and microbial community composition
Nature
 , 
2006
, vol. 
439
 (pg. 
711
-
714
)
Montgomery
DR
Soil erosion and agricultural sustainability
Proceedings of the National Academy of Sciences, USA
 , 
2007
, vol. 
104
 (pg. 
13268
-
13272
)
Mora
CI
Driese
SG
Colarusso
LA
Middle to late Paleozoic atmospheric CO2 levels from soil carbonate and organic matter
Science
 , 
1996
, vol. 
271
 (pg. 
1105
-
1107
)
Moreau
L
Lemarie
S
Charcosset
A
Gallais
A
Economic efficiency of one cycle of marker-assisted selection
Crop Science
 , 
2000
, vol. 
40
 (pg. 
329
-
337
)
Nadezhdina
N
Čermák
J
Instrumental methods for studies of structure and function of root systems of large trees
Journal of Experimental Botany
 , 
2003
, vol. 
54
 (pg. 
1511
-
1521
)
Nepstad
DC
Decarvalho
CR
Davidson
EA
, et al.  . 
The role of deep roots in the hydrological and carbon cycles of amazonian forests and pastures
Nature
 , 
1994
, vol. 
372
 (pg. 
666
-
669
)
Nielsen
UN
Ayres
E
Wall
DH
Bardgett
RD
Soil biodiversity and carbon cycling: a review and synthesis of studies examining diversity–function relationships
European Journal of Soil Science
 , 
2011
, vol. 
62
 (pg. 
105
-
116
)
Obara
M
Tamura
W
Ebitani
T
Yano
M
Sato
T
Yamaya
T
Fine-mapping of qRL6·1, a major QTL for root length of rice seedlings grown under a wide range of NH4+ concentrations in hydroponic conditions
Theoretical and Applied Genetics
 , 
2010
, vol. 
121
 (pg. 
535
-
547
)
O'Donnell
AG
Young
IM
Rushton
SP
Shirley
MD
Crawford
JW
Visualization, modelling and prediction in soil microbiology
Nature Reviews Microbiology
 , 
2007
, vol. 
5
 (pg. 
689
-
699
)
Orr
JC
Fabry
VJ
Aumont
O
, et al.  . 
Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms
Nature
 , 
2005
, vol. 
437
 (pg. 
681
-
686
)
Orwin
KH
Buckland
SM
Johnson
D
, et al.  . 
Linkages of plant traits to soil properties and the functioning of temperate grassland
Journal of Ecology
 , 
2010
, vol. 
98
 (pg. 
1074
-
1083
)
Osmont
KS
Sibout
R
Hardtke
CS
Hidden branches: developments in root system architecture
Annual Review of Plant Biology
 , 
2007
, vol. 
58
 (pg. 
93
-
113
)
Ostle
NJ
Levy
PE
Evans
CD
Smith
P
UK land use and soil carbon sequestration
Land Use Policy
 , 
2009
, vol. 
26
 (pg. 
S274
-
S283
)
O'Toole
JC
Bland
WL
Genotypic variation in crop plant root systems
Advances in Agronomy
 , 
1987
, vol. 
41
 (pg. 
91
-
145
)
Otto
R
Trivelin
PCO
Franco
HCJ
Faroni
CE
Vitti
AC
Root system distribution of sugar cane as related to nitrogen fertilization, evaluated by two methods: monolith and probes
Revista Brasileira De Ciencia Do Solo
 , 
2009
, vol. 
33
 (pg. 
601
-
611
)
Parniske
M
Arbuscular mycorrhiza: the mother of plant root endosymbioses
Nature Reviews Microbiology
 , 
2008
, vol. 
6
 (pg. 
763
-
775
)
Paschold
A
Marcon
C
Hoecker
N
Hochholdinger
F
Molecular dissection of heterosis manifestation during early maize root development
Theoretical and Applied Genetics
 , 
2010
, vol. 
120
 (pg. 
383
-
388
)
Passioura
J
Increasing crop productivity when water is scarce – from breeding to field management
Agricultural Water Management
 , 
2006
, vol. 
80
 (pg. 
176
-
196
)
Passioura
JB
Roots and drought resistance
Agricultural Water Management
 , 
1983
, vol. 
7
 (pg. 
265
-
280
)
Pataki
DE
Billings
SA
Naumburg
E
Goedhart
CM
Water sources and nitrogen relations of grasses and shrubs in phreatophytic communities of the Great Basin Desert
Journal of Arid Environments
 , 
2008
, vol. 
72
 (pg. 
1581
-
1593
)
Paustian
K
Six
J
Elliott
ET
Hunt
HW
Management options for reducing CO2 emissions from agricultural soils
Biogeochemistry
 , 
2000
, vol. 
48
 (pg. 
147
-
163
)
Pearl
J
Causality: models, reasoning and inference.
 , 
2000
Cambridge
Cambridge University Press
Péret
B
De Rybel
B
Casimiro
I
, et al.  . 
Arabidopsis lateral root development: an emerging story
Trends in Plant Science
 , 
2009
, vol. 
14
 (pg. 
399
-
408
)
Peterson
RL
Massicotte
HB
Melville
LH
Mycorrhizas: anatomy and cell biology.
 , 
2004
London
CABI Publishing
Philippot
L
Hallin
S
Börjesson
G
Baggs
EM
Biochemical cycling in the rhizosphere having an impact on global change
Plant and Soil
 , 
2009
, vol. 
321
 (pg. 
61
-
81
)
Post
WM
Kwon
KC
Soil carbon sequestration and land-use change: processes and potential
Global Change Biology
 , 
2000
, vol. 
6
 (pg. 
317
-
327
)
Powlson
DS
Whitmore
AP
Goulding
KWT
Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false
European Journal of Soil Science
 , 
2011
, vol. 
62
 (pg. 
42
-
55
)
Prechtel
A
von Lützow
M
Schneider
BU
, et al.  . 
Organic carbon in soils of Germany: status quo and the need for new data to evaluate potentials and trends of soil carbon sequestration
Journal of Plant Nutrition and Soil Science
 , 
2009
, vol. 
172
 (pg. 
601
-
614
)
Pretty
J
Agricultural sustainability: concepts, principles and evidence
Philosophical Transactions of the Royal Society B: Biological Sciences
 , 
2008
, vol. 
363
 (pg. 
447
-
465
)
Pretty
J
Sutherland
WJ
Ashby
J
, et al.  . 
The top 100 questions of importance to the future of global agriculture
International Journal of Agricultural Sustainability
 , 
2010
, vol. 
8
 (pg. 
219
-
236
)
Price
AH
Tomos
AD
Virk
DS
Genetic dissection of root growth in rice (Oryza sativa L).1. a hydroponic screen
Theoretical and Applied Genetics
 , 
1997
, vol. 
95
 (pg. 
132
-
142
)
Price
AH
Steele
KA
Gorham
J
, et al.  . 
Upland rice grown in soil-filled chambers and exposed to contrasting water-deficit regimes I. Root distribution, water use and plant water status
Field Crops Research
 , 
2002
, vol. 
76
 (pg. 
11
-
24
)
Price
AH
Steele
KA
Moore
BJ
Jones
RGW
Upland rice grown in soil-filled chambers and exposed to contrasting water-deficit regimes II. Mapping quantitative trait loci for root morphology and distribution
Field Crops Research
 , 
2002
, vol. 
76
 (pg. 
25
-
43
)
Qin
Z
Huang
Y
Quantification of soil organic carbon sequestration potential in cropland: a model approach
Science China-Life Sciences
 , 
2010
, vol. 
53
 (pg. 
868
-
884
)
Randall
GW
Mulla
DJ
Nitrate nitrogen in surface waters as influenced by climatic conditions and agricultural practices
Journal of Environmental Quality
 , 
2001
, vol. 
30
 (pg. 
337
-
344
)
Reay
DS
Smith
P
Hymus
G
Sabine
C
New directions: the changing role of the terrestrial carbon sink in determining atmospheric CO2 concentrations
Atmospheric Environment
 , 
2007
, vol. 
41
 (pg. 
5813
-
5815
)
Rebouillat
J
Dievart
A
Verdeil
JL
, et al.  . 
Molecular genetics of rice root development
Rice
 , 
2009
, vol. 
2
 (pg. 
15
-
34
)
Reid
PC
Fischer
AC
Lewis-Brown
E
, et al.  . 
Impacts of the oceans on climate change
Advances in Marine Biology
 , 
2009
, vol. 
56
 (pg. 
1
-
150
)
Riebesell
U
Schulz
KG
Bellerby
RG
, et al.  . 
Enhanced biological carbon consumption in a high CO2 ocean
Nature
 , 
2007
, vol. 
450
 (pg. 
545
-
548
)
Rillig
MC
Arbuscular mycorrhizae and terrestrial ecosystem processes
Ecology Letters
 , 
2004
, vol. 
7
 (pg. 
740
-
754
)
Robertson
GP
Paul
EA
Harwood
RR
Greenhouse gases in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphere
Science
 , 
2000
, vol. 
289
 (pg. 
1922
-
1925
)
Robinson
D
Scaling the depths: below-ground allocation in plants, forests and biomes
Functional Ecology
 , 
2004
, vol. 
18
 (pg. 
290
-
295
)
Rohr
JR
Schotthoefer
AM
Raffel
TR
, et al.  . 
Agrochemicals increase trematode infections in a declining amphibian species
Nature
 , 
2008
, vol. 
455
 (pg. 
1235
-
1239
)
Royer
DL
Berner
RA
Beerling
DJ
Phanerozoic atmospheric CO2 change: evaluating geochemical and paleobiological approaches
Earth-Science Reviews
 , 
2001
, vol. 
54
 (pg. 
349
-
392
)
Rubino
M
Dungait
JAJ
Evershed
RP
, et al.  . 
Carbon input belowground is the major C flux contributing to leaf litter mass loss: evidences from a C-13 labelled-leaf litter experiment
Soil Biology and Biochemistry
 , 
2010
, vol. 
42
 (pg. 
1009
-
1016
)
Sabine
CL
Feely
RA
Gruber
N
, et al.  . 
The oceanic sink for anthropogenic CO2
Science
 , 
2004
, vol. 
305
 (pg. 
367
-
371
)
Sainju
UM
Whitehead
WF
Singh
BP
Agricultural management practices to sustain crop yields and improve soil and environmental qualities
Scientific World Journal
 , 
2003
, vol. 
3
 (pg. 
768
-
789
)
Sanderman
J
Baldock
JA
Accounting for soil carbon sequestration in national inventories: a soil scientist's perspective
Environmental Research Letters
 , 
2010
, vol. 
5
 (pg. 
1
-
6
)
Sanguineti
MC
Li
S
Maccaferri
M
, et al.  . 
Genetic dissection of seminal root architecture in elite durum wheat germplasm
Annals of Applied Biology
 , 
2007
, vol. 
151
 (pg. 
291
-
305
)
Santner
A
Calderon-Villalobos
LI
Estelle
M
Plant hormones are versatile chemical regulators of plant growth
Nature Chemical Biology
 , 
2009
, vol. 
5
 (pg. 
301
-
307
)
Sartori
F
Lal
R
Ebinger
MH
Parrish
DJ
Potential soil carbon sequestration and CO2 offset by dedicated energy crops in the USA
Critical Reviews in Plant Sciences
 , 
2006
, vol. 
25
 (pg. 
441
-
472
)
Schenk
HJ
Jackson
RB
The global biogeography of roots
Ecological Monographs
 , 
2002
, vol. 
72
 (pg. 
311
-
328
)
Schenk
HJ
Jackson
RB
Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems
Journal of Ecology
 , 
2002
, vol. 
90
 (pg. 
480
-
494
)
Schenk
HJ
Jackson
RB
Mapping the global distribution of deep roots in relation to climate and soil characteristics
Geoderma
 , 
2005
, vol. 
126
 (pg. 
129
-
140
)
Schimel
DS
House
JI
Hibbard
KA
, et al.  . 
Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems
Nature
 , 
2001
, vol. 
414
 (pg. 
169
-
172
)
Shi
D
Xu
Y
Hopkinson
BM
Morel
FM
Effect of ocean acidification on iron availability to marine phytoplankton
Science
 , 
2010
, vol. 
327
 (pg. 
676
-
679
)
Silver
WL
Ryals
R
Eviner
V
Soil carbon pools in California's annual grassland ecosystems
Rangeland Ecology and Management
 , 
2010
, vol. 
63
 (pg. 
128
-
136
)
Singh
BK
Bardgett
RD
Smith
P
Reay
DS
Microorganisms and climate change: terrestrial feedbacks and mitigation options
Nature Reviews Microbiology
 , 
2010
, vol. 
8
 (pg. 
779
-
790
)
Six
J
Feller
C
Denef
K
Ogle
SM
de Moraes Sa
JC
Albrecht
A
Soil organic matter, biota and aggregation in temperate and tropical soils: effects of no-tillage
Agronomie
 , 
2002
, vol. 
22
 (pg. 
755
-
775
)
Smith
P
Soils as carbon sinks: the global context
Soil Use and Management
 , 
2004
, vol. 
20
 (pg. 
212
-
218
)
Smith
P
Fang
C
A warm response by soils
Nature
 , 
2010
, vol. 
464
 (pg. 
499
-
500
)
Smith
P
Olesen
JE
Synergies between the mitigation of, and adaptation to, climate change in agriculture
Journal of Agricultural Science
 , 
2010
, vol. 
148
 (pg. 
543
-
552
)
Smith
P
Martino
D
Cai
Z
, et al.  . 
Greenhouse gas mitigation in agriculture
Philosophical Transactions of the Royal Society B: Biological Sciences
 , 
2008
, vol. 
363
 (pg. 
789
-
813
)
Smith
P
Bhogal
A
Edgington
P
, et al.  . 
Consequences of feasible future agricultural land-use change on soil organic carbon stocks and greenhouse gas emissions in Great Britain
Soil Use and Management
 , 
2010
, vol. 
26
 (pg. 
381
-
398
)
Smith
P
Lanigan
G
Kutsch
WL
, et al.  . 
Measurements necessary for assessing the net ecosystem carbon budget of croplands
Agriculture, Ecosystems and Environment
 , 
2010
, vol. 
139
 (pg. 
302
-
315
)
Sohi
SP
Krull
E
Lopez-Capel
E
Bol
R
A review of biochar and its use and function in soil
Advances in Agronomy
 , 
2010
, vol. 
105
 (pg. 
47
-
82
)
Somerville
C
Youngs
H
Taylor
C
Davis
SC
Long
SP
Feedstocks for lignocellulosic biofuels
Science
 , 
2010
, vol. 
329
 (pg. 
790
-
792
)
Soussana
JF
Luscher
A
Temperate grasslands and global atmospheric change: a review
Grass and Forage Science
 , 
2007
, vol. 
62
 (pg. 
127
-
134
)
Soussana
JF
Fuhrer
J
Jones
M
Van Amstel
A
The greenhouse gas balance of grasslands in Europe
Agriculture, Ecosystems and Environment
 , 
2007
, vol. 
121
 (pg. 
1
-
4
)
Staddon
PL
Fitter
AH
Does elevated atmospheric carbon dioxide affect arbuscular mycorrhizas?
Trends in Ecology and Evolution
 , 
1998
, vol. 
13
 (pg. 
455
-
458
)
Steele
KA
Price
AH
Shashidhar
HE
Witcombe
JR
Marker-assisted selection to introgress rice QTLs controlling root traits into an Indian upland rice variety
Theoretical and Applied Genetics
 , 
2006
, vol. 
112
 (pg. 
208
-
221
)
Steele
KA
Virk
DS
Kumar
R
Prasad
SC
Witcombe
JR
Field evaluation of upland rice lines selected for QTLs controlling root traits
Field Crops Research
 , 
2007
, vol. 
101
 (pg. 
180
-
186
)
Steinbach
HS
Alvarez
R
Changes in soil organic carbon contents and nitrous oxide emissions after introduction of no-till in Pampean agroecosystems
Journal of Environmental Quality
 , 
2006
, vol. 
35
 (pg. 
3
-
13
)
Stone
EL
Kalisz
PJ
On the maximum extent of tree roots
Forest Ecology and Management
 , 
1991
, vol. 
46
 (pg. 
59
-
102
)
Stone
R
The invisible hand behind a vast carbon reservoir
Science
 , 
2010
, vol. 
328
 (pg. 
1476
-
1477
)
Strack
D
Fester
T
Hause
B
Schliemann
W
Walter
MH
Arbuscular mycorrhiza: biological, chemical, and molecular aspects
Journal of Chemical Ecology
 , 
2003
, vol. 
29
 (pg. 
1955
-
1979
)
Swarup
R
Kramer
EM
Perry
P
, et al.  . 
Root gravitropism requires lateral root cap and epidermal cells for transport and response to a mobile auxin signal
Nature Cell Biology
 , 
2005
, vol. 
7
 (pg. 
1057
-
1065
)
Tanimoto
E
Regulation of root growth by plant hormones – roles for auxin and gibberellin
Critical Reviews in Plant Sciences
 , 
2005
, vol. 
24
 (pg. 
249
-
265
)
Taylor
LL
Leake
JR
Quirk
J
Hardy
K
Banwart
SA
Beerling
DJ
Biological weathering and the long-term carbon cycle: integrating mycorrhizal evolution and function into the current paradigm
Geobiology
 , 
2009
, vol. 
7
 (pg. 
171
-
191
)
Tester
M
Langridge
P
Breeding technologies to increase crop production in a changing world
Science
 , 
2010
, vol. 
327
 (pg. 
818
-
822
)
Torn
MS
Trumbore
SE
Chadwick
OA
Vitousek
PM
Hendricks
DM
Mineral control of soil organic carbon storage and turnover
Nature
 , 
1997
, vol. 
389
 (pg. 
170
-
173
)
Trachsel
S
Messmer
R
Stamp
P
Hund
A
Mapping of QTLs for lateral and axile root growth of tropical maize
Theoretical and Applied Genetics
 , 
2009
, vol. 
119
 (pg. 
1413
-
1424
)
Trachsel
S
Kaeppler
SM
Brown
KM
Lynch
JP
Shovelomics: high throughput phenotyping of maize (Zea mays L.) root architecture in the field
Plant and Soil
 , 
2011
, vol. 
341
 (pg. 
75
-
87
)
Tuberosa
R
Salvi
S
Sanguineti
MC
Landi
P
Maccaferri
M
Conti
S
Mapping QTLs regulating morpho-physiological traits and yield: case studies, shortcomings and perspectives in drought-stressed maize
Annals of Botany
 , 
2002
, vol. 
89
 (pg. 
941
-
963
)
Tuberosa
R
Salvi
S
Giuliani
S
, et al.  . 
Costa de Oliveira
A
Varshney
RK
Genomics of root architecture and functions in maize
Root genomics.
 , 
2010
Heidelberg
Springer
(pg. 
179
-
204
)
Turley
C
Eby
M
Ridgwell
AJ
, et al.  . 
The societal challenge of ocean acidification
Marine Pollution Bulletin
 , 
2010
, vol. 
60
 (pg. 
787
-
792
)
Utomo
HS
Linscombe
SD
Current patents and future development underlying marker-assisted breeding in major grain crops
Recent Patents on DNA and Gene Sequencing
 , 
2009
, vol. 
3
 (pg. 
53
-
62
)
Van Tassel
DL
DeHaan
LR
Cox
TS
Missing domesticated plant forms: can artificial selection fill the gap?
Evolutionary Applications
 , 
2010
, vol. 
3
 (pg. 
434
-
452
)
Varma
A
Mycorrhiza: genetics and molecular biology, eco-function, biotechnology, eco-physiology, structure and systematics
 , 
2008
New York
Springer
Villamil
MB
Miguez
FE
Bollero
GA
Multivariate analysis and visualization of soil quality data for no-till systems
Journal of Environmental Quality
 , 
2008
, vol. 
37
 (pg. 
2063
-
2069
)
Virto
I
Barre
P
Chenu
C
Microaggregation and organic matter storage at the silt-size scale
Geoderma
 , 
2008
, vol. 
146
 (pg. 
326
-
335
)
Virto
I
Moni
C
Swanston
C
Chenu
C
Turnover of intra- and extra-aggregate organic matter at the silt-size scale
Geoderma
 , 
2010
, vol. 
156
 (pg. 
1
-
10
)
Vispute
TP
Zhang
H
Sanna
A
Xiao
R
Huber
GW
Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils
Science
 , 
2010
, vol. 
330
 (pg. 
1222
-
1227
)
Wang
R
Farrona
S
Vincent
C
, et al.  . 
PEP1 regulates perennial flowering in Arabis alpina
Nature
 , 
2009
, vol. 
459
 (pg. 
423
-
427
)
Wang
YG
Li
Y
Ye
XH
Chu
Y
Wang
XP
Profile storage of organic/inorganic carbon in soil: from forest to desert
Science of the Total Environment
 , 
2010
, vol. 
408
 (pg. 
1925
-
1931
)
Watt
M
Schneebeli
K
Dong
P
Wilson
IW
The shoot and root growth of Brachypodium and its potential as a model for wheat and other cereal crops
Functional Plant Biology
 , 
2009
, vol. 
36
 (pg. 
960
-
969
)
West
TO
Post
WM
Soil organic carbon sequestration rates by tillage and crop rotation: a global data analysis
Soil Science Society of America Journal
 , 
2002
, vol. 
66
 (pg. 
1930
-
1946
)
Whited
GM
Feher
FJ
Benko
DA
, et al.  . 
Development of a gas-phase bioprocess for isoprene-monomer production using metabolic pathway engineering
Industrial Biotechnology
 , 
2010
, vol. 
6
 (pg. 
152
-
163
)
Wielopolski
L
Yanai
RD
Levine
CR
Mitra
S
Vadeboncoeur
MA
Rapid, non-destructive carbon analysis of forest soils using neutron-induced gamma-ray spectroscopy
Forest Ecology and Management
 , 
2010
, vol. 
260
 (pg. 
1132
-
1137
)
Wilson
GW
Rice
CW
Rillig
MC
Springer
A
Hartnett
DC
Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments
Ecology Letters
 , 
2009
, vol. 
12
 (pg. 
452
-
461
)
Yang
M
Ding
G
Shi
L
Feng
J
Xu
F
Meng
J
Quantitative trait loci for root morphology in response to low phosphorus stress in Brassica napus
Theoretical and Applied Genetics
 , 
2010
, vol. 
121
 (pg. 
181
-
193
)
Yi
K
Menand
B
Bell
E
Dolan
L
A basic helix–loop–helix transcription factor controls cell growth and size in root hairs
Nature Genetics
 , 
2010
, vol. 
42
 (pg. 
264
-
267
)
Yvon-Durocher
G
Jones
JI
Trimmer
M
Woodward
G
Montoya
JM
Warming alters the metabolic balance of ecosystems
Philosophical Transactions of the Royal Society B: Biological Sciences
 , 
2010
, vol. 
365
 (pg. 
2117
-
2126
)
Zhang
H
Forde
BG
An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture
Science
 , 
1998
, vol. 
279
 (pg. 
407
-
409
)
Zhao
M
Running
SW
Drought-induced reduction in global terrestrial net primary production from 2000 through 2009
Science
 , 
2010
, vol. 
329
 (pg. 
940
-
943
)
Zhu
XG
Long
SP
Ort
DR
Improving photosynthetic efficiency for greater yield
Annual Review of Plant Biololgy
 , 
2010
, vol. 
61
 (pg. 
235
-
261
)
Zhu
YG
Miller
RM
Carbon cycling by arbuscular mycorrhizal fungi in soil–plant systems
Trends in Plant Science
 , 
2003
, vol. 
8
 (pg. 
407
-
409
)
Zimmermann
M
Leifeld
J
Schmidt
MWI
Smith
P
Fuhrer
J
Measured soil organic matter fractions can be related to pools in the RothC model
European Journal of Soil Science
 , 
2007
, vol. 
58
 (pg. 
658
-
667
)
Zimmermann
R
Sakai
H
Hochholdinger
F
The Gibberellic Acid Stimulated-Like gene family in maize and its role in lateral root development
Plant Physiology
 , 
2010
, vol. 
152
 (pg. 
356
-
365
)

Comments

0 Comments