Abstract

Background

Conservation of the unique biodiversity of mountain ecosystems needs trans-disciplinary approaches to succeed in a crowded colloquial world. Geographers, conservationists, ecologists and social scientists have, in the past, had the same conservation goals but have tended to work independently. In this review, the need to integrate different conservation criteria and methodologies is discussed. New criteria are offered for prioritizing species and habitats for conservation in montane ecosystems that combine both ecological and social data.

Scope

Ecological attributes of plant species, analysed through robust community statistical packages, provide unbiased classifications of species assemblages and environmental biodiversity gradients and yield importance value indices (IVIs). Surveys of local communities’ utilization of the vegetation provides use values (UVs). This review suggests a new means of assessing anthropogenic pressure on plant biodiversity at both species and community levels by integrating IVI and UV data sets in a combined analysis.

Conclusions

Mountain ecosystems are hot spots for plant conservation efforts because they hold a high overall plant diversity as communities replace each other along altitudinal and climatic gradients, including a high proportion of endemic species. This review contributes an enhanced understanding of (1) plant diversity in mountain ecosystems with special reference to the western Himalayas; (2) ethnobotanical and ecosystem service values of mountain vegetation within the context of anthropogenic impacts; and (3) local and regional plant conservation strategies and priorities.

INTRODUCTION

Ecosystem ecology is a major part of the discipline of ecology (Barbault, 1997); the term ecosystem was invented by Sir Arthur Tansley (Tansley, 1935) for a community of organisms and their environment. Ecosystem ecology has become very important in the 21st century because of the highly accelerated rate of anthropogenic modification of natural systems. Human alteration of natural ecosystems dates back millennia to the use of fire, overexploitation and later to the introduction of agriculture. The more recent agricultural expansions in the past 200 years, however, linked to increases in population, industrialization and anthropogenic climatic changes, are recognized as the main causal factors of the massive degradation of natural ecosystems that we now experience (Billings, 1972; Odum and Odum, 1972; Macdonald and Service, 1996; Macdonald and Willis, 2013).

On a global scale, mountain, highland and plateau ecosystems above 1500 m, which cover approximately one-fifth of the earth's land surface (Geist, 2005), support a high and varied plant biodiversity due to their diverse landscape and climate, despite supporting about 12 % of the world's human population (Cincotta et al., 2000; Loucks et al., 2008). Mountain ecosystems do not just provide direct and indirect ecosystem services for the sustenance of human life; their influence is far more widespread because lowland ecosystems and human populations also depend on them for services. The western Himalayan region provides an example, where there is a long-established tradition of using plants directly for medicinal purposes and as a source of fodder for livestock. Here, as well as all over South Asia, the mountains are crucial for the resilience of lowland human settlements which depend on their major river catchments for both agricultural and domestic water supplies (Manandhar and Rasul, 2009; Xu et al., 2009; Rasul, 2010). The Himalayas are the origin of ten of the largest rivers in Asia and the economies of several south Asian countries are mainly based on the flow of these rivers, which ensure food security by providing irrigation water for rice and wheat – the major staple foods (Adhikari et al., 1995; Archer and Fowler, 2004; Rasul, 2010). The shrubby vegetation of high altitudes also regulates avalanche movements and protects soils from wash-out and erosion (Hester and Brooker, 2007). Unwise use of montane plant resources is a direct threat to biodiversity maintenance and the continued proper functioning of mountain ecosystems (Sharma et al., 2010; Tarrasón et al., 2010), as well as to the continuance of traditional livelihoods at both local and regional scales. High-altitude species and ecosystems are also potentially under threat of biodiversity loss from global warming – a consequence of both geographical range contraction and mountain-top ecosystem extinction risk (La Sorte and Jetz, 2010; Mondoni et al., 2011, 2012).

Increasing awareness of human impacts on ecosystems has generated a growing appreciation of the wide range of benefits that biological resources and ecological processes provide to human societies in the past decade and a half, called ecosystem services (MEA, 2005). These are defined as ‘conditions and processes through which ecosystems and species in them sustain and fulfil human life’ (Deane, 1999) or as the ‘components of nature used for human well-being’ (Boyd and Banzhaf, 2006). Ecosystem services result from interactions between biotic and abiotic components of ecosystems (Adhikari et al., 1995; Singh, 2002) and can be grouped into four categories according to the benefits that they provide for people – provisioning, regulating, supporting and cultural services (MEA, 2003). Plant species are the primary producers in every ecosystem and also the primary source of direct and indirect goods and services to humans (Fig. 1). Their direct provisioning services to humans are food, fodder, medicines, timber, fuel-wood and grazing, while regulating services include moderating air and water quality and erosion control. They also play a vital role in supporting services such as soil formation, and nutrient and water cycling and in cultural services, including traditional human knowledge systems. Maintaining a high level of plant diversity is connected to the maintenance of ecosystem services provision, even though the mechanisms may not yet be entirely clear, and it is widely believed that more species will be needed to provide ecosystem functioning under future environmental change scenarios (Haines-Young and Potschin, 2010; Isbell et al., 2011). Thus, preserving as much plant biodiversity as possible across the widest range of ecosystems is generally seen as an indispensable approach to maintain the benefits that they provide to humans.

Fig. 1.

Classification of ecosystem services in the western Himalayan region with modifications to the broad categories specified in the Millennium Ecosystem Assessment (MEA, 2003; Kremen, 2005; Wallace, 2007).

Fig. 1.

Classification of ecosystem services in the western Himalayan region with modifications to the broad categories specified in the Millennium Ecosystem Assessment (MEA, 2003; Kremen, 2005; Wallace, 2007).

Ecosystems in high mountain regions are intricate and significant cost and time factors are involved in their study, particularly where they are remote. Conserving plant biodiversity requires consistent and sound qualitative as well as quantitative records of botanical data on a regular basis (Clubbe et al., 2010) and robust phytosociological (quantitative ecological) techniques are essential to achieve this. Ethnobotanical methods can be linked to this, to describe and evaluate the nature and value of the ecosystem services that plant communities provide for local people. Data obtained through a combination of these techniques provides basic knowledge for conservation managers and biodiversity planners to evaluate the services provided by mountain ecosystems and to formulate sustainable management options.

This review provides an overview of ecological knowledge about montane ecosystems in a way which seeks to integrate the previously different approaches, drawing upon the authors’ experience of the western Himalayas. Until our recent work undertaken there, no previous attempt had been made to combine quantitative and qualitative ecological (phytosociological) and ethnobotanical data in order to describe and assess plant communities and their associated provisioning services as a basis for plant conservation planning. These two methodological approaches are now described in more detail. The review addresses the application of phytosociological techniques to vegetation description and quantification and then goes on to review ethnobotanical approaches to the assessment of plant uses. It discusses how importance value indices (IVIs), derived from phytosociological data, can be combined with use values (UVs), derived from ethnobotanical studies, to provide a new gateway to the assessment of anthropogenic pressures on plant biodiversity at both species and community levels. In the western Himalayas, there is well-established traditional ecological knowledge of plant use for human well-being, but this is at risk of loss alongside the growing threats to the species themselves as a result of a range of anthropogenic impacts.

PHYTOSOCIOLOGY AND ETHNOBOTANY USED TO IDENTIFY AND QUANTIFY VEGETATION-DERIVED ECOSYSTEM SERVICES

Phytosociology

The distribution of individuals of the same and different plant species in a community is a function of micro-environmental variations, time and biotic relationships. Plant species assemble in a community in a definite fashion and understanding this can be helpful during quantification and evaluation of ecosystem services (Daubenmire, 1968; Billings, 1972; Mueller-Dombois and Ellenberg, 1974; Rieley and Page, 1990; Greig-Smith, 2010). Phytosociology is the science of vegetation classification based on each species’ co-occurrence and its relation to the surrounding environment. This has provided valuable methods for vegetation assessment that have been applied in vegetation mapping, ecosystem services quantification and biodiversity conservation (Rieley and Page, 1990; Ewald, 2003; Biondi, 2011). The health of ecosystems is closely allied to their plant biodiversity (Ruiz et al., 2008; Schäfer, 2011) and thus vegetation classification is a vital first step towards ecosystem management and conservation. This knowledge is particularly important when studying rare or endemic species, for developing management strategies to protect them and/or reducing fragmentation of their habitats (Ewald, 2003; Aægisdóttir et al., 2009).

Phytosociological field techniques allow ecologists to calculate diversity, richness and abundance of plant species in an ecosystem which not only helps them to decide on conservation priorities, but also their role as indicators of particular habitat types (Whittaker et al., 2001; Greig-Smith, 2010; Tüxen and Whittaker, 2010). Moreover, IVIs can be calculated from such data by adding the relative values of species cover, density and frequency. In addition, frequency, constancy and fidelity analyses help to identify the most threatened species and those habitats needing protection (Baillie, 2004; Hester and Brooker, 2007; Zou et al., 2007).

Phytosociology originated with the Swiss ecologist Josias Braun Blanquet (1884–1980) in Europe. A number of plant sociology schools developed subsequently at the beginning of the 20th century, two of which rapidly gained importance – the Zurich-Montpellier and the Uppsala schools. In 1915, Braun Blanquet defined the plant community as a plant group having characteristic (indicator) species and a stability with the surrounding environment (Rodwell, 1991–2000; Podani, 2006). The plant community of a region is a function not only of time but also of other factors such as altitude, slope, latitude, aspect, rainfall and humidity, all of which play a role in its formation and composition (Kharkwal et al., 2005). The ecological diversity of vegetation communities is a measure of the strength of the whole ecosystem (Thompson and Brown, 1992; McGrady-Steed and Morin, 2000). The choice of sampling method used in any phytosociological study depends on the types of data desired, the objective of the study, the morphology of the vegetation, the geomorphology of the region, the available resources and time (Moore and Chapman, 1986; Biondi, 2011). The number of samples to be taken from a study area has to be enough to provide a good representation of the plant communities of that area.

The most common quantitative sampling methods are the quadrat and line transects. The quadrat method originated with Frederick Edward Clements (1874–1945) (Weaver and Clements, 1938, 1966). In its simplest form the quadrat is used to count the individuals and estimate cover of each species to determine their abundance, but it is also used to determine differences in the composition and structure of vegetation. It allows the user to define a fixed area, called a plot or relevé, within which plant characteristics are measured. This may be adapted in a variety of ways for analysing almost any type of vegetation. The line transect is typically used when there are apparent vegetation differences, such as along a gradient, from one point of interest to another within a sampling site. The two methods are often used together, especially when both quantification of vegetation and assessment of ecological gradients are desirable. Species composition, plant species density, cover and abundance are the most important characteristics for sampling with quadrats (Cox, 1996; Khan et al., 2013a). Several scales for ranking vegetation cover have been suggested; two commonly used are the Braun Blanquet (1884–1980) and Daubenmire (1968) cover class scales (Braun-Blanquet et al., 1932; Daubenmire, 1968). This is done by assigning cover class estimates for herbaceous and shrubby vegetation while diameter at breast height (dbh) is used for trees (Goldsmith et al., 1986).

Once phytosociological data are collected, they need to be analysed in a statistical framework. Multivariate statistical techniques, which have emerged in the last few decades, help ecologists to discover structure in the data set and to analyse the effects of environmental factors on whole groups of species (Clymo, 1980; Bergmeier, 2002; Anderson et al., 2006). Computer technology has revolutionized the field of community ecology, with a range of statistical programs available to help ecologists to understand and interpret ecological data in a more precise way. Software packages such as TWINSPAN, DECORANA (Hill, 1979; Hill and Gauch, 1980), CANOCO (ter Braak, 1989; ter Braak and Smilauer, 2002) and PC-ORD (McCune, 1986; McCune and Mefford, 1999; Grandin, 2006) are examples of packages used for vegetation classification and ordination in quantitative ecology (Gilliam and Elizabeth, 2003). Community data are summarized by constructing a low dimensional space, in which similar samples and species are placed close together and dissimilar ones far apart from each other by convenient and objective means (Gauch, 2010). Agglomerative cluster analysis (ACA), indicator species analysis (ISA), detrended correspondence analysis (DCA), principal components analysis (PCA) and canonical correspondence analysis (CCA) are the most widely used classification and ordination techniques to determine plant communities, their ecological gradients, indicator species, and the significance of the relationships between floristic and environmental data (Hill and Gauch, 1980; ter Braak, 1987; Dufrêne and Legendre, 1997). More recently the combination of field survey with remote sensing techniques for mapping vegetation and habitat types has increased (Sherrouse et al., 2010; Kumar et al., 2011; ten Brink et al., 2013).

Humans have used the services of ecosystems, particularly the vegetation, for millennia, but in less than 100 years it has become increasingly obvious that our use is no longer sustainable and that many ecosystems are no longer functioning adequately. Phytosociological knowledge now needs to be combined with equally rigorous ethnobotanical analysis if humankind is to have any hope of restoring ecosystem services to their optima again.

The ethnobotanical approach for assessing plant-based ecosystem services

Natural vegetation provides basic needs for indigenous human communities and is often their prime source of livelihood, especially in the developing world. Plant–human relationships are as old as human history. In AD 77, the Greek surgeon Dioscorides published ‘De Materia Medica’, a catalogue of about 600 plants in the Mediterranean region, with information on how the Greeks used the plants, especially for medicinal purposes. The records from earlier cultures of Africa and China, the Nile and the Indus valleys have also revealed the use of herbal medicines by the inhabitants of those regions over several millennia (Baqar, 2001). The American botanist John William Hershberger used the term ethnobotany for the first time in 1895 in a lecture in Philadelphia to describe the scientific study of the relationships that exist between people and plants (Hershberger, 1895). Ethnobotany involves botany, anthropology, ecology, economics and linguistics. It can inform us about the present-day uses of plant species, including the development of new products such as drugs from plants, and their conservation status. Traditional botanical knowledge can be used in the assessment of economic benefits derived from plants, both at basic and at commercial levels. Such knowledge can be used as an analytical tool for the quantification of provisioning services provided by vegetation and can also maximize the value of traditional ecological knowledge. It can be applied in long-term management and conservation strategies (Pieroni and Giusti, 2009; Anthwal et al., 2010; Tang and Gavin, 2010). The World Health Organization (WHO) has recognized the role that plants play in traditional healing systems and thereby their contribution to the provision of health services, particularly in the developing world. Moreover, plants have provided the models for 50 % of the present-day allopathic drugs in the developed world (Robbers et al., 1996). Due to this immense value, some of the plants utilized for ethnomedicines are in decline due to over-collecting.

Ethnobotanical studies investigate the structural relationships between human society and the environment using socio-anthropological methods; these relationships can be social, economic, symbolic, religious, commercial and/or artistic (Aumeeruddy, 2003). Such studies can thus be a useful tool to quantify ecosystem services (Ford, 1994; Phillips et al., 1994). Recently, in rapidly developing parts of the world, ethnobotanical studies have progressed from the production of inventories of plant species towards more practical quantitative approaches which place emphasis on sustainable use and the conservation of plant resources (Rossato et al., 1999; Da Cunha and De Albuquerque, 2006; Uniyal et al., 2006; De Albuquerque, 2009; Teklehaymanot and Giday, 2010).

Information on how indigenous people interact with the natural environment can be collected and analysed in a number of ways depending on the study objectives and research questions. Such analyses may range from laboratory analyses (e.g. to identify therapeutic compounds), to ethnobotanical surveys and assessment of priorities for conservation management. Whatever the analyses may be used for, one common requirement is that the information is obtained in a systematic manner (Martin, 2004; Thomas et al., 2007, 2009) but, in contrast to scientific fieldwork, ethnobotanical surveys require that the researcher deploys additional skills such as calmness, patience, courtesy, empathy and keeping secrets (Ragupathy et al., 2008; Miehe et al., 2009) in their interactions with indigenous communities.

Ethnobotanical data have been analysed qualitatively to record plant uses and the plant parts that are collected, but more recently, quantitative ethnobotany has led to more rigorous hypothesis-based analyses of data sets (Phillips et al., 1994; Rossato et al., 1999; Da Cunha and De Albuquerque, 2006; De Albuquerque, 2009). Ethnobotanical data sets based on indigenous traditional knowledge can be tallied and analysed together with data from vegetation surveys to provide a better understanding and management of ecosystems (Moerman, 1991; Negi, 2010). One such approach, which will be described in more detail below, is the integration of plant UVs derived from ethnobotanical surveys with phytosociological data on the distribution and relative importance of individual plant species within a community, by dividing the number of uses of particular species in a region by the number of informants from that region (Phillips et al., 1994; Mucina, 1997; Da Cunha and De Albuquerque, 2006).

BOTANICAL CONSERVATION IN ASIAN MONTANE ECOSYSTEMS

The unique topographic attributes of mountain areas, such as slope, aspect and altitude, provide characteristic spatial patterns for mountain ecosystems and processes (Radcliffe, 1982). Prominent vegetation zones are based mainly on altitudinal and climatic variations, while the variation in aspect enhances habitat heterogeneity and brings micro-environmental variation in to the vegetation pattern (Clapham, 1973). High mountains all over the globe are important locations for species-rich assemblages (Dirnböck et al., 2001; Vetaas and Grytnes, 2002; Casazza et al., 2005, 2008; Fu et al., 2006; Nowak et al., 2011) and endemic floras (Myers et al., 2000; Halloy and Mark, 2003; Kazakis et al., 2007; Khan, 2012). The Himalayas, the mountains of Central Asia, south-west China, the Caucasus, East Africa and the Andes are recognized as globally important biodiversity hotspots (Fig. 2).

Mountain biodiversity is, however, under threat and a number of endangered plant species are on the verge of disappearance because montane plant species respond in a very sensitive way to environmental change (Gordon et al., 2002; Holtmeier and Broll, 2005; Miller et al., 2006; Thuiller, 2007). This is, in part, a consequence of the narrow ecological amplitudes displayed by many montane and alpine species, but it also reflects increasing grazing pressure or collection for food or other uses (Hobbs and Huenneke, 1992). As a result, mountain regions are predicted to be locations for rapid species extinction, particularly under the threat of global warming (Kullman, 2010). Studies have already shown an upward elevation shift of habitat types and of alpine species over the recent past and the appearance of species from lower altitudes at higher elevations (Valley, 2003; Dobbertin et al., 2005; Beckage et al., 2008; Lenoir et al., 2008; Walther et al., 2009; Takahashi et al., 2012), combined with the dominance of more resistant and vigorous species. Consequently, vegetation homogeneity has increased in some locations, enhanced by the selective utilization of plants by humans (Collins et al., 2002; Kikvidze et al., 2005; Srivastava and Vellend, 2005; Del Moral et al., 2010; Grabherr et al., 2011).

Montane ecosystems need proper management against these negative climatic and anthropogenic influences for their future sustainability (Kessler, 2000; Halloy and Mark, 2003; Holzinger et al., 2008; Erschbamer et al., 2011). Sustainable approaches to resource use are particularly urgent in less economically developed countries where there is a strong reliance by the indigenous people on plant resources. In the Himalayas, for example, there is widespread traditional use of species, often resulting in overuse, combined with a lack of botanical recording which makes the planning of conservation strategies a challenging task. The Himalayas differ from other mountain systems, for example the European Alps, in that in the former the people still possess an intact traditional healthcare system and ethnobotanical knowledge. Ethnobotanical knowledge has been largely lost in the Alps by contrast, and there is also a lower population density at high altitudes. The main land-use problem in the Alps at the current time is land abandonment, rather than degradation through over-exploitation (Gehrig-Fasel et al., 2009; Niedrist et al., 2009).

Bringing sustainability into the use and management of plant resources in mountain areas is a challenging task, especially in remote mountain ranges such as the Himalayas, Hindu Kush and Karakoram where there are both geographical and geopolitical constraints. These mountain ranges are also located in geopolitically immature and democratically young countries such as India, Nepal, Pakistan and Afghanistan where, in the majority of cases, policy-makers and politicians pay little regard to the scientific evidence on plant biodiversity and threats to its survival when taking decisions related to natural resource management. In addition, parts of these geopolitical territories have faced various political or tribal conflicts and unrest, e.g. the Hindu Kush mountains in Afghanistan. Such unrest reduces the opportunity for documentation of existing biodiversity and the implementation of conservation management.

The plant resources and botanical importance of the Central Asian mountains – the three largest mountain ranges of the world

The Irano-Turanian region of the Tethyan sub-kingdom has a rich and significant floristic diversity due to the presence of several mountain ranges. This region, which encompasses Afghanistan, most parts of Iran and north-western Pakistan, a few central Asian states, southern China and northern India, supports diverse vegetation communities, owing to the diversity of geo-climatic zones and the presence of five significant mountain systems – the Kirthar and Suleiman with the world's largest three – Hindu Kush, Karakorum and Himalayas (Fig. 3). These mountain ranges meet together in north-western Pakistan where they hold a plant biodiversity of about 19 000 species (Champion and Harry, 1965; Dasti et al., 2010).

Fig. 3.

Irano-Turanian region showing five of the world's significant mountain systems: the Himalayas Range (HIR), Karakorum Range (KAR), Hindu Kush Range (HKR), Suleiman Range (SUR) and the Kirthar Range (KIR). Source: http://botany.org/plantsciencebulletin/psb-2008-54-4.php

Fig. 3.

Irano-Turanian region showing five of the world's significant mountain systems: the Himalayas Range (HIR), Karakorum Range (KAR), Hindu Kush Range (HKR), Suleiman Range (SUR) and the Kirthar Range (KIR). Source: http://botany.org/plantsciencebulletin/psb-2008-54-4.php

The Kirthar mountain range commences at the Arabian Sea coast and extends about 300 km northwards to the Mula River in the east-central Baluchistan of Pakistan. Due to low rainfall, poor soil conditions, deforestation and grazing pressures these mountains are less rich in floristic diversity and are predominantly occupied by xerophytic plant species such as Ziziphus nummularia, Salvadora oleoides, Dodonea viscosa, Grewia tenax and Capparis deciduas (Enright et al., 2005; Perveen and Hussain, 2007).

The Sulaiman Mountains are a major geological feature of the northern Baluchistan province; they extend westward to the Zabul province in Afghanistan and northward to the Hindu Kush. Their vegetation is sparse and scattered in the form of tufts of grasses and thorny plants; Pinus gerardiana (Chilghoza) forests are unique to this range.

The Hindu Kush mountain range stretches 800 km between the Suleiman range (in the south-west), the Himalayas (in the east) and the Karakorum (in the north-east) and forms the geopolitical boundary between Pakistan and Afghanistan. The forest areas of the Hindu Kush are characterized by Cedrus deodara, Picea smithiana, Pinus wallichiana, Pinus roxburgii and Abies pindrow especially in wetter areas that come under the influence of the monsoon. The eastern part of the Hindu Kush becomes increasingly similar to the adjacent Himalayas in terms of climate and flora, and thus most bio-geographers use the collective term Hindu Kush-Himalaya (HKH) for these ranges (Miehe et al., 2009; Dong et al., 2010).

The Karakorum mountain range, which is about 500 km long, connects the plateaux of Tibet and the Pamir and forms a part of the political border between Pakistan, India and China (Xiang et al., 2002; Phartiyal et al., 2005; Eberhardt et al., 2007; Marston, 2008; Khan et al., 2009). The vegetation is mainly xeric in nature due to the cold, arid climate. Vegetation zones can be categorized on the basis of humidity and elevation gradient from semi-desert, through montane shrub to alpine meadow. A few studies indicate the shrubby nature of the vegetation at lower altitudes (around 2700 m), with alpine pastures at higher altitudes (above 3500 m). Characteristic plant species of the Karakorum Range are Salix karelinii and Juniperus semiglobosa.

The Himalayan range of mountains is about 2500 km long and 400 km wide and occupies a comparatively small part of Pakistani territory but a larger part of India, Nepal and China. Important indicator species of the Himalayan range are Pinus wallichiana, Abies pindrow, Rhododendron species, Fragaria nubicola, Viola species and Clematis species. Floristically, the vegetation of the western and northern Himalayas becomes increasingly analogous, respectively, to that of the Hindu Kush and the monsoon belt of the Karakorum mountains in terms of species composition and richness, owing to geological, physiographic and climatic similarities. Alpine and subalpine habitats, where altitude becomes the most powerful limiting factor, further strengthen the floristic affinities with higher elevation vegetation of the Hindu Kush and the western Himalayas (Miehe et al., 1996; Pei, 1998; Hamayun et al., 2006; Eberhardt et al., 2007; Qureshi et al., 2007a; Wazir et al., 2008; Ahmad et al., 2009; Ali and Qaiser, 2009).

Plant diversity decreases with a reduction in the monsoon effect as one moves from south-east to north-west in the Himalayas. Other factors responsible for this decline are the increase in altitudinal and latitudinal gradients. In general the Himalayan vegetation ranges from tropical evergreen species in the south-east to thorn steppe and alpine species in the north-western parts (Behera and Kushwaha, 2007; Fig. 4). The dominance of an endemic flora in the western Himalayas, especially at high elevations, indicates the high conservation importance of these ecosystems (Dhar 2002); Dhar advocates that the timberline zones should be protected as priority regions. Throughout the Himalayan range, plants are threatened by the high anthropogenic pressures exerted by farming, herding, fuel, timber, and medicinal plant collection. In response, the mountain vegetation of this region has become a significant focus in recent ecological, conservation and ethnobotanical studies (Hamayun et al., 2003; Parolly, 2004; Lovett et al., 2006; Khan et al., 2007, 2012a, b; Shaheen et al., 2011, 2012).

Fig. 4.

Vegetation zonations in the Himalayas, using Nepal as an example. (1) Western Himalayan alpine shrub and meadows. (2) Western Himalayan subalpine conifer forests. (3) Himalayan subtropical pine forests. (4) Himalayan subtropical broadleaf forests. (5) Savanna and grasslands. (6) Western Himalayan broadleaf forests. (7) Eastern Himalayan alpine shrub and meadows. (8) Eastern Himalayan broadleaf forests. (9) Eastern Himalayan subalpine conifer forests. Source: World Wildlife Fund http://www.eoearth.org/article/Nepal?topic=49460

Fig. 4.

Vegetation zonations in the Himalayas, using Nepal as an example. (1) Western Himalayan alpine shrub and meadows. (2) Western Himalayan subalpine conifer forests. (3) Himalayan subtropical pine forests. (4) Himalayan subtropical broadleaf forests. (5) Savanna and grasslands. (6) Western Himalayan broadleaf forests. (7) Eastern Himalayan alpine shrub and meadows. (8) Eastern Himalayan broadleaf forests. (9) Eastern Himalayan subalpine conifer forests. Source: World Wildlife Fund http://www.eoearth.org/article/Nepal?topic=49460

Plant conservation efforts in the Himalayas

Despite possessing very diverse vegetation (Shrestha and Joshi, 1996), the plant resources of the Irano-Turanian region in general and the Himalayas in particular have not been examined thoroughly due to climatic, socioeconomic and geopolitical constraints. These mountains support approximately 19 000 plant species of which approximately 7500 are valued for their medicinal uses (Pei, 1998). Unlike the eastern Himalayas, where monsoon-driven vegetation predominates under higher rainfall and humidity (Behera et al., 2005; Dutta and Agrawal, 2005; Roy and Behera, 2005; Chawla et al., 2008; Anthwal et al., 2010), the vegetation in the western Himalayas in general (Dickoré and Nüsser, 2000; Chawla et al., 2008; Ahmad et al., 2009; Kukshal et al., 2009; Shaheen et al., 2011), and in the Naran Valley in particular (Khan et al., 2011a), has closer affinities with that of the Hindu Kush mountains, which have a drier and cooler climate (Noroozi et al., 2008; Wazir et al., 2008; Ali and Qaiser, 2009). Nevertheless, the vegetation in both these mountain systems as well as in the Karakorum (Miehe et al., 1996; Eberhardt et al., 2007) exhibits great similarity above the tree line (Miehe et al., 2009), where climatic conditions are more comparable.

Only very few studies have used modern numerical/statistical techniques to quantify and model plant species, communities and environmental as well as cultural drivers of vegetation variation in this region, particularly in the more distant and least accessible parts of the mountains. In addition, plant community identification and classification using modern techniques has so far been restricted to the plains and low-altitude areas (Qureshi et al., 2006; Dasti et al., 2007; Perveen and Hussain, 2007; Saima et al., 2009; Siddiqui et al., 2009). The remote mountainous areas must now be the focus for vegetation studies due to their important phytogeographical location (Adhikari et al., 1995). In addition to the scientific exploration of biotic and abiotic components of mountain ecosystems, there is also an immediate need for facilitation, social mobilization and education of the indigenous people of these remote regions. Education and awareness about habitat destruction, and decreasing biodiversity with increasing population and climate change are high priorities (Díaz et al., 2006; Ma et al., 2007; Hermy et al., 2008; Giam et al., 2010). The indigenous mountain people have a great deal of traditional ecological knowledge about vegetation ecosystem services, particularly provisioning services, which, in return, needs to be documented and incorporated into conservation and climate change adaptation strategies. Thus, there needs to be a three-way participatory flow of knowledge and information between vegetation scientists, local people and conservation managers.

In a recent review, Vačkář et al. (2012) pointed out that each aspect of biodiversity cannot be assessed using a single indicator and suggested the use of multiple indices and indicators for a better understanding of biodiversity in relation to human activities (Dolan et al., 2011; Feola et al., 2011; Vačkář et al., 2012). In our study in the western Himalayas (Khan, 2012), we employed two different approaches to identify indicator species based on ecological as well as cultural analyses. ‘Ecological’ indicator species were identified as a result of extensive vegetation description and statistical analysis, while ‘traditional’ indicator species were recognized on the basis of ethnobotanical surveys amongst local people. The ecological component of this study was distinctive as our work identified indicator species based on their ecological fidelity and abundance. Other vegetation studies along environmental gradients in mountain ecosystems have merely compared the diversity indices among communities and treated all species equally without considering their ecological position and their meaning in those particular ecosystems (Carpenter, 2005; Oommen and Shanker, 2005; Gould et al., 2006; Ren et al., 2006; Dasti et al., 2007; Crimmins et al., 2008; Wazir et al., 2008; Siddiqui et al., 2009). We used species abundance data in PCORD to calculate the indicator values and thus at least one statistically significant indicator species was selected from each of the tree, shrub and herb layers in each of the plant communities using ISA. At the same time the faithfulness of these indicators was tested by their categorization in fidelity classes. Species with higher fidelity values were considered to have the maximum conservation priority, i.e. these were species having restricted distribution, and probably special or fragmented habitats and were at highest risk (Zou et al., 2007; Pinke and Pál, 2008; Haarmeyer et al., 2010). One of the individual aspects of our study was combining IVIs and UVs in their analyses to obtain residual values of plant species signifying anthropogenic pressure on them. Thus, this approach opens up a new way to study and manage ecosystem services and environmental sustainability (Layke et al., 2011; Moldan et al., 2011) and to prioritize special habitats and species of conservation importance.

Identification of traditional use patterns of plant resources in the western Himalayas; a step towards better conservation management

In the remote valleys of the Himalayas people exploit natural resources and vegetation according to their seasonal migration with livestock to summer pastures and they have valuable knowledge of the ecosystem services that can be derived from the vegetation. The use of plants for medicinal uses, grazing and fodder now imposes a high pressure on the plant biodiversity, with implications for longer-term sustainability; with some species under such continuous pressure they are likely to become extinct in the near future. Anthropogenic activities and biodiversity are in conflict with each other. People choose species only because of their own needs and hence put pressure on rare species (Ahmad et al., 2002). The major social problems responsible for the enormous anthropogenic pressures on the vegetation in the region are the increased population, prevailing poverty, lack of awareness and poor education, which combine to increase the competition for and overexploitation of the natural plant resources.

In a study of the Naran Valley (Khan, 2012), we evaluated the knowledge of local people about recent trends in abundance of various plant species. There was a close coincidence between the findings from both ecological and ethnobotanical perspectives indicating a high extinction risk for plant species most valued (Khan et al., 2012b). Many of the species recorded in this study (83 %) provide an array of provisioning services. Preference analysis showed medicinal use to be highest (56·9 % of responses) followed by grazing and food (13·1 and 10·8 %, respectively). The elevated priority given to medicinal use illustrates the depth of traditional knowledge about plants in the community and the lack of basic health facilities. It can also be attributed to the high market value of medicinal species (Khan et al., 2013b).

Each medicinal species found in the region is noteworthy but a few have a pre-eminent importance in the local healthcare system. Dioscorea deltoidea, for example, is used to treat urinary tract problems, and as a tonic and anthelmintic. Local hakeems (experts in traditional medicine) use Podophyllum hexandrum in digestive troubles and for treating cancer. Powdered bark of Berberis pseudoumbellata is used for the treatment of fever, backache, jaundice and urinary tract infections whilst its fruit is valued as a tonic. Orchid species such as Cypripedium cordigerum and Dactylorhiza hatagirea are considered to be aphrodisiacs and used as nerve tonics. All of these species are listed by CITES (the Convention on International Trade in Endangered Species of Wild Fauna and Flora) (Fig. 5). We found 97 prominent remedial uses of medicinal plants, divided into 15 major categories based on ailments of specific parts of the human system. The largest number of ailments cured with medicinal plants were associated with the digestive system (32·76 % responses) followed by those associated with the respiratory and urinary systems (13·72 and 9·13 %, respectively) (Khan et al., 2013b). There was considerable harmony between peoples’ own perception of the ecological status of each species when compared with the classification of the plant species according to the IUCN Red List criteria. Indigenous people reported a reducing trend in the availability and population sizes of 112 plant species (56·56 % of the total species), 32 of which fell in the IUCN category of Critically Endangered, 22 in Endangered, 18 in Vulnerable, 24 in Near Threatened and only 16 in the category of Least Concern. Alarmingly, most of the species of conservation concern were classed as either endemic, indicator or faithful species with high habitat specificity, indicating that these species required specific conservation attention from all stake holders (Khan et al., 2011a, b, 2012a, b, 2013c) (Fig. 6)7.

Fig. 5.

Six of the more important plant species used for traditional medicine in the western Himalayas. (A) Podophyllum hexandrum (see Appendix, species no. 69 for details). (B) Rheum australe (species no. 79). (C) Primula denticulata (species no. 72). (D) Polygonatum verticillatum (species no. 70). (E) Fritillaria roylei (species no. 39). (F) Paeonia emodi (species no. 60).

Fig. 5.

Six of the more important plant species used for traditional medicine in the western Himalayas. (A) Podophyllum hexandrum (see Appendix, species no. 69 for details). (B) Rheum australe (species no. 79). (C) Primula denticulata (species no. 72). (D) Polygonatum verticillatum (species no. 70). (E) Fritillaria roylei (species no. 39). (F) Paeonia emodi (species no. 60).

Fig. 6.

Schematic map of the Naran Valley, western Himalaya showing its various vegetation zones (communities, Com.) and conservation status of endemic species. For area and communities details see Khan et al., 2011a, b, 2012a, b; Khan, 2012.

Fig. 6.

Schematic map of the Naran Valley, western Himalaya showing its various vegetation zones (communities, Com.) and conservation status of endemic species. For area and communities details see Khan et al., 2011a, b, 2012a, b; Khan, 2012.

Fig. 7.

The major topics for biodiversity conservation in montane ecosystem.

Fig. 7.

The major topics for biodiversity conservation in montane ecosystem.

Integration of species’ IV (abundance) with UV gave the pattern of use with high significance (Khan et al., 2011b; Khan, 2012) and residual value analyses using linear regression statistics revealed that 93 species (50·8 % of the used and 46·9 % of the total species) had residual values greater than the standard deviation, signifying they are overused. The top 10 species with highest residuals were Juglans regia, Polygonatum verticillatum, Origanum vulgare, Cedrus deodara, Malva neglecta, Rumex nepalensis, Rheum australe, Geranium wallichianum, Polygonum aviculare and Paeonia emodi.

Reduction in vegetation-derived ecosystem services: a threat to sustainable utilization of plant biodiversity in mountain ecosystems

Plant resources are the most accessible source of products and incomes for economically marginalized societies, and are subsequently under extensive pressure to provide both provisioning and environmental benefits. Sustainable utilization and conservation of biodiversity are essential for the continuation of ecosystem functioning (Srivastava and Vellend, 2005; Kienast et al., 2009); nevertheless, indigenous people give less attention to long-term ecosystem goods and services as they focus, of necessity, on marginal and short-term benefits. Local residents, especially of the older generation, prefer to live in the mountains because they can derive free benefits from accessing a range of plant-derived provisioning ecosystem services. In contrast, members of the younger generation tend to leave these rural spaces in search of education, facilities and an ‘easy’ modern life; thus, they are less aware of or dependent upon ecosystem services. Over time, the traditional ecological knowledge of the older generation will diminish or, at worst, be entirely lost.

Extensive use of natural vegetation in the past has decreased the provisioning services in montane ecosystems (Pereira et al., 2005; Sharma et al., 2008; Duraiappah, 2011; Khan et al., 2012b). The consequence of the imbalance in supply of these services and the increasing human demands has been deterioration in the condition of the natural habitats and increasing rarity of plant biodiversity (Díaz et al., 2006; Giam et al., 2010; Khan et al., 2012b). These effects are becoming exacerbated as indigenous people can neither access alternative services locally (e.g. healthcare services, which are either sparsely located and/or expensive) nor can they compete in urban societies. Linked with the imminent threat of species extinctions as a result of non-sustainable exploitation, the traditional indigenous knowledge of the people is at considerable threat of being eroded and ultimately lost.

Plant biodiversity can, however, be restored and the risks of ecosystem degradation may be combated, if measures such as reforestation, establishment of protected areas, greater awareness by the people and ex-situ conservation of rare species can be initiated (Brown and Shogren, 1998; Parody et al., 2001; Niemi and McDonald, 2004; Pereira et al., 2005; Muzaffar et al., 2011). Long-term management and conservation strategies might therefore have optimistic outcomes for both maintaining and restoring mountain biodiversity and ecosystem services, which would also have a positive impact on the lowland ecosystems by ensuring the flow of rivers for irrigation of agricultural land (Archer and Fowler, 2004).

Biodiversity conservation: the role of indigenous knowledge

In addition to the three most widely accepted biodiversity conservation criteria – rarity, threat and endemism – there are other important criteria that should be considered – historical, traditional and educational values. Traditional ecological knowledge in Asia in general and in the remote valleys of the western Himalayas and Hindu Kush in particular, can play a key role in the formulation and implementation of conservation strategies. Such knowledge reflects a life time's experience of the relationship between human cultures and the natural environment. Increasing urbanization and industrialization cause losses of traditional knowledge as the natural environment becomes degraded or as people move away from their native villages. Traditional ethnomedicinal knowledge is a particular and valuable form of indigenous knowledge; it is a cultural asset that can be used for the recognition and preservation of valuable species as well as the habitats in which they occur (Pieroni et al., 2007; Jules et al., 2008; Gaikwad et al., 2011). In the Himalayas, population growth, prevailing poverty and expansion of agricultural land are the main causes of habitat and biodiversity loss and achieving the goal of sustainable resource use requires the management and collaboration of various governmental and non-governmental agencies involved in natural resources supervision and management together with the local communities (Gorenflo and Brandon, 2005). Apart from a number of other constraints, geopolitical barriers have always been hurdles in effective conservation measures and strategies and must be overcome for the betterment of sustainable future (Sandwith, 2003).

The need for an IUCN Red Data book for Himalayan biodiversity

There is no thorough work, such as a Red Data Book, on endangered plant species in the Himalayan region, despite its unique endemic flora. There has been very limited and fragmented published work on only a few IUCN Red List plant species (Ali, 2008; Alam and Ali, 2009, 2010; Ali and Qaiser, 2011), so one can find very few comparators to evaluate endangered and critical plant species at a national level (Ali, 2008). In part this is a result of the political conflict in this area over the last century (Hanson et al., 2009). New efforts are, however, emerging and can be seen in a few publications over the last two or three years (Alam and Ali, 2010; Ali and Qaiser, 2011), although these provide descriptions of a very limited number of species. The case study by Khan (2012) can be compared with studies from other areas of the Himalaya, especially the eastern, in terms of the potential for linking endemism and ecosystem services (Samant and Dhar, 1997; Aumeeruddy, 2003; Kala, 2007; Qureshi et al., 2007b) and could lead the way in developing a robust approach to critically evaluate the vegetation across the wider Himalayan region. In our study of the Naran Valley several plant species were recorded that are known to be endangered either globally or regionally and are listed by CITES. On the basis of IUCN criteria, several species were categorised as Critically Endangered (CR), Endangered (EN), Vulnerable (VU) and Near Threatened (NT). Only 39·4 % of the total species come under the IUCN criterion of Least Concern (LC) (IUCN Categories, 2001; IUCN Standards and Petitions Subcommittee, 2011).

The western Himalayas host a flora that is rich in endemic species, with 300 endemic species documented (Ali et al., 1972–2009; Ali, 2008). Endemic species have an exceptional individuality and significance as their distribution is limited to a particular region, and hence ecologists and taxonomists always emphasize their quantification, documentation and conservation as a key priority. In 2002, the Convention on Biological Diversity agreed to protect 50 % of the significant regions for plant diversity and conservation based on species endemism, richness and ecosystem endangerment (Ma et al., 2007). In our study of the Naran Valley, 64 plant species (32·32 %) of the total are endemic to the three mountain systems of the Himalayas, Hindu Kush and Karakorum. Twenty of these are endemic to the Himalayas alone, 29 are mutually shared by the Himalayas and Hindu Kush, while 19 are mutually shared by all three mountain ranges (reference: Flora of Pakistan). Applying IUCN Red List criteria at a regional level to these 64 endemic species, shows 20 as Critically Endangered (CR), 14 as Endangered (EN), 12 as Vulnerable (VU), 11 as Near Threatened (NT) and only seven as of Least Concern (LC). These results indicate that the Naran Valley is a hot spot for endemic flora, with three species being endemic to Pakistan (Appendix). The endemic species have a high fidelity level (fidelity classes 3–5), signifying the selective nature of the environmental conditions under which they grow (Khan, 2012). The highest numbers of endemic subalpine species were recorded in a northern aspect plant community at altitudes of between 2800 and 3400 m and in a timberline plant community (3300–4000 m).

We thus suggest that the use of IUCN Red List criteria should be given priority and that new government and corporate policies be implemented to allow for ecosystem services to be included systematically in economic decisions. Such concepts can also be applied beyond land and resource management, in broader government and corporate investment decisions that impact biodiversity. By building on the evidence and tools from past efforts, new solutions can be designed to maintain the critical plant resources that sustain both the mountain and the lowland ecosystems. A narrow range of habitats for specific indicator species and the presence of endemic vegetation in the region indicate that, once deteriorated, these mountain plant species would be extremely difficult to restore due to a number of climatic, edaphic and anthropogenic constraints. Our study emphasizes the importance of this fragile ecosystem for long-term environmental sustainability and ecosystem services management (Fig. 7).

SYNTHESIS AND CONCLUSIONS

This review emphasizes the need for sustainable utilization of plant biodiversity in order to maintain provisioning ecosystem services on the one hand and indigenous traditional knowledge which enables these uses on the other hand. The anthropogenic impacts on the vegetation require an assessment of the conservation status of all plant species and of the indicator, rare and endemic species in particular. We have demonstrated how an ethnoecological approach towards biodiversity conservation can be linked to quantitative ecology. This is a novel, integrative approach involving knowledge obtained from phytosociological classification, ordination, distribution, richness, diversity, ecosystem services and ethnobotanical perceptions of conservation. The findings from our case study from a remote Himalayan valley, located amongst three of the world's largest mountain ranges, illustrates how this approach can be used to identify the conservation status of plant species, from the perspective of both ecological criteria (i.e. endemism, endangerment and rarity) and the traditional knowledge of local people. Future work should address the long-lasting consequences of the loss of plant biodiversity for the sustainability of ecosystem services other than just provisioning services, i.e. also regulatory, supporting and cultural services.

ACKNOWLEDGEMENTS

Professor Pat Heslop-Harrison, Department of Biology, University of Leicester, is gratefully acknowledged for constructive assessment of S.H.K.'s PhD which led to the present invited review. Professor Heiko Balzter (Professor of Physical Geography and Director of the Centre for Landscape and Climate Research) is also acknowledged for providing facilities in Leicester as Research Fellow to complete this paper.

LITERATURE CITED

Aægisdóttir
HH
Kuss
P
Stöcklin
J
Isolated populations of a rare alpine plant show high genetic diversity and considerable population differentiation
Annals of Botany
 , 
2009
, vol. 
104
 (pg. 
1313
-
1322
)
Adhikari
BS
Rawat
YS
Singh
SP
Structure and function of high altitude forests of Central Himalaya II. Nutrient dynamics
Annals of Botany
 , 
1995
, vol. 
75
 (pg. 
249
-
258
)
Ahmad
H
Ahmad
A
Jan
MM
The medicinal plants of Salt Range
Journal of Biological Sciences
 , 
2002
, vol. 
3
 (pg. 
175
-
177
)
Ahmad
H
Khan
SM
Ghafoor
S
Ali
N
Ethnobotanical study of upper siran
Journal of Herbs, Spices and Medicinal Plants
 , 
2009
, vol. 
15
 (pg. 
86
-
97
)
Alam
J
Ali
SI
Conservation status of Astragalus gilgitensis Ali (Fabaceae): a critically endangered species in the Gilgit district, Pakistan
Phyton – Annales Rei Botanicae
 , 
2009
, vol. 
48
 (pg. 
211
-
223
)
Alam
J
Ali
SI
Contribution to the red list of the plants of Pakistan
Pakistan Journal of Botany
 , 
2010
, vol. 
42
 (pg. 
2967
-
2971
)
Ali
H
Qaiser
M
The ethnobotany of Chitral Valley, Pakistan with particular reference to medicinal plants
Pakistan Journal of Botany
 , 
2009
, vol. 
41
 (pg. 
2009
-
2041
)
Ali
H
Qaiser
M
Contribution to the red List of Pakistan: a case study of the narrow endemic Silene longisepala (Caryophyllaceae)
Oryx
 , 
2011
, vol. 
45
 (pg. 
522
-
527
)
Ali
SI
Significance of Flora with special reference to Pakistan
Pakistan Journal of Botany
 , 
2008
, vol. 
40
 (pg. 
967
-
971
)
Ali
SI
Nasir
E
Qaiser
M
Flora of Pakistan
 , 
1972–2009
USA
Pakistan Agricultural Research Council and The University of California
Anderson
MJ
Ellingsen
KE
McArdle
BH
Multivariate dispersion as a measure of beta diversity
Ecology Letters
 , 
2006
, vol. 
9
 (pg. 
683
-
693
)
Anthwal
A
Gupta
N
Sharma
A
Anthwal
S
Kim
K
Conserving biodiversity through traditional beliefs in sacred groves in Uttarakhand Himalaya, India
Resources, Conservation and Recycling
 , 
2010
, vol. 
54
 (pg. 
962
-
971
)
Archer
DR
Fowler
HJ
Spatial and temporal variations in precipitation in the Upper Indus Basin, global teleconnections and hydrological implications
Hydrology and Earth System Sciences
 , 
2004
, vol. 
8
 (pg. 
47
-
61
)
Aumeeruddy
YaSJP
People and plants working paper 12
Applied Ethnobotany; case studies from the Himalayan region
 , 
2003
Godalming
WWF
(pg. 
3
-
4
)
Baillie
JEMea
IUCN Red List of Threatened Species. A Global Species Assessment
 , 
2004
 
Baqar
SR
Text Book of Economic Botany
 , 
2001
Rawalpindi
Ferozsons (PVT) Ltd
Barbault
R
La Biodiversité; Introduction à la biologie de la conservation
 , 
1997
Paris
Les Fondamentaux, Hachette
Beckage
B
Osborne
B
Gavin
DG
Pucko
C
Siccama
T
Perkins
T
A rapid upward shift of a forest ecotone during 40 years of warming in the Green Mountains of Vermont
Proceedings of the National Academy of Sciences USA
 , 
2008
, vol. 
105
 (pg. 
4197
-
4202
)
Behera
MD
Kushwaha
SPS
An analysis of altitudinal behavior of tree species in Subansiri district, Eastern Himalaya
Biodiversity and Conservation
 , 
2007
, vol. 
16
 (pg. 
1851
-
1865
)
Behera
MD
Kushwaha
SPS
Roy
PS
Rapid assessment of biological richness in a part of Eastern Himalaya: an integrated three-tier approach
Forest Ecology and Management
 , 
2005
, vol. 
207
 (pg. 
363
-
384
)
Bergmeier
E
The vegetation of the high mountains of Crete – A revision and multivariate analysis
Phytocoenologia
 , 
2002
, vol. 
32
 (pg. 
205
-
249
)
Billings
WD
Plants, man, and the ecosystem
 , 
1972
2nd edn
London
Macmillan
Biondi
E
Phytosociology today: methodological and conceptual evolution
Plant Biosystems
 , 
2011
, vol. 
145
 (pg. 
19
-
29
)
Boyd
J
Banzhaf
S
What are ecosystem services? The need for standardized environmental accounting units.
 , 
2006
Washington
DC
 
RFFP Discussion Paper 06–02
Braun-Blanquet
J
Conard
HS
Fuller
GD
Plant sociology: the study of plant communities
 , 
1932
New York
McGraw-Hill
Brown
GM
Jr
Shogren
JF
Economics of the Endangered Species Act
Journal of Economic Perspectives
 , 
1998
, vol. 
12
 (pg. 
3
-
20
)
Carpenter
C
The environmental control of plant species density on a Himalayan elevation gradient
Journal of Biogeography
 , 
2005
, vol. 
32
 (pg. 
999
-
1018
)
Casazza
G
Barberis
G
Minuto
L
Ecological characteristics and rarity of endemic plants of the Italian Maritime Alps
Biological Conservation
 , 
2005
, vol. 
123
 (pg. 
361
-
371
)
Casazza
G
Zappa
E
Mariotti
MG
Médail
F
Minuto
L
Ecological and historical factors affecting distribution pattern and richness of endemic plant species: the case of the Maritime and Ligurian Alps hotspot
Diversity and Distributions
 , 
2008
, vol. 
14
 (pg. 
47
-
58
)
Champion
G
Harry
SSK
Forest types of Pakistan.
 , 
1965
Pakistan Forest Institute
Peshawar, Pakistan
Chawla
A
Rajkumar
S
Singh
KN
Lal
B
Singh
RD
Thukral
AK
Plant species diversity along an altitudinal gradient of Bhabha Valley in western Himalaya
Journal of Mountain Science
 , 
2008
, vol. 
5
 (pg. 
157
-
177
)
Cincotta
RP
Wisnewski
J
Engelman
R
Human population in the biodiversity hotspots
Nature
 , 
2000
, vol. 
404
 (pg. 
990
-
992
)
Clapham
WB
Natural ecosystems
 , 
1973
New York
Macmillan/Collier-Macmillan
Clubbe
C
Hamilton
M
Corcoran
M
Using the Global Strategy for Plant Conservation to guide conservation implementation in the UK Overseas Territories
Kew Bulletin
 , 
2010
, vol. 
65
 (pg. 
509
-
517
)
Clymo
RS
Preliminary survey of the peat-bog Hummell Knowe Moss using various numerical methods
Vegetatio
 , 
1980
, vol. 
42
 (pg. 
129
-
148
)
Collins
MD
Vázquez
DP
Sanders
NJ
Species–area curves, homogenization and the loss of global diversity
Evolutionary Ecology Research
 , 
2002
, vol. 
4
 (pg. 
457
-
464
)
Cox
GW
Laboratory manual of general ecology
 , 
1996
7th edn
Dubuque
Willium C. Brown Publishers
Crimmins
TM
Crimmins
MA
Bertelsen
D
Balmat
J
Relationships between alpha diversity of plant species in bloom and climatic variables across an elevation gradient
International Journal of Biometeorology
 , 
2008
, vol. 
52
 (pg. 
353
-
366
)
Da Cunha
LVFC
De Albuquerque
UP
Quantitative ethnobotany in an Atlantic Forest fragment of Northeastern Brazil – Implications to conservation
Environmental Monitoring and Assessment
 , 
2006
, vol. 
114
 (pg. 
1
-
25
)
Dasti
AA
Saima
S
Athar
M
Attiq-ur-Rahman
Malik
SA
Botanical composition and multivariate analysis of vegetation on the Pothowar Plateau, Pakistan
Journal of the Botanical Research Institute of Texas
 , 
2007
, vol. 
1
 (pg. 
557
-
568
)
Dasti
AA
Saima
S
Mahmood
Z
Athar
M
Gohar
S
Vegetation zonation along the geological and geomorphological gradient at eastern slope of Sulaiman Range, Pakistan
African Journal of Biotechnology
 , 
2010
, vol. 
9
 (pg. 
6105
-
6115
)
Daubenmire
RF
Plant communities: a textbook of plant synecology
 , 
1968
New York
Harper and Row
De Albuquerque
UP
Quantitative ethnobotany or quantification in ethnobotany?
Ethnobotany Research and Applications
 , 
2009
, vol. 
7
 (pg. 
1
-
4
)
Deane
V
Nature's services: societal dependence on natural ecosystems
Population and Environment
 , 
1999
, vol. 
20
 (pg. 
277
-
278
)
Del Moral
R
Saura
JM
Emenegger
JN
Primary succession trajectories on a barren plain, Mount St. Helens, Washington
Journal of Vegetation Science
 , 
2010
, vol. 
21
 (pg. 
857
-
867
)
Dhar
U
Conservation implications of plant endemism in high-altitude Himalaya
Current Science
 , 
2002
, vol. 
82
 (pg. 
141
-
148
)
Díaz
S
Fargione
J
Chapin
FS
III
Tilman
D
Biodiversity loss threatens human well-being
PLoS Biology
 , 
2006
, vol. 
4
 (pg. 
1300
-
1305
)
Dickoré
WB
Nüsser
M
Flora of Nanga Parbat (NW Himalaya, Pakistan). An annotated inventory of vascular plants with remarks on vegetation dynamics
Englera
 , 
2000
, vol. 
19
 (pg. 
1
-
253
)
Dirnböck
T
Dullinger
S
Grabherr
G
A new grassland community in the Eastern Alps (Austria): evidence of environmental distribution limits of endemic plant communities
Phytocoenologia
 , 
2001
, vol. 
31
 (pg. 
521
-
536
)
Dobbertin
M
Hilker
N
Rebetez
M
Zimmermann
NE
Wohlgemuth
T
Rigling
A
The upward shift in altitude of pine mistletoe (Viscum album ssp. austriacum) in Switzerland—the result of climate warming?
International Journal of Biometeorology
 , 
2005
, vol. 
50
 (pg. 
40
-
47
)
Dolan
RW
Moore
ME
Stephens
JD
Documenting effects of urbanization on flora using herbarium records
Journal of Ecology
 , 
2011
, vol. 
99
 (pg. 
1055
-
1062
)
Dong
S
Wen
L
Zhu
L
Li
X
Implication of coupled natural and human systems in sustainable rangeland ecosystem management in HKH region
Frontiers of Earth Science in China
 , 
2010
, vol. 
4
 (pg. 
42
-
50
)
Dufrêne
M
Legendre
P
Species assemblages and indicator species: the need for a flexible asymmetrical approach
Ecological Monographs
 , 
1997
, vol. 
67
 (pg. 
345
-
366
)
Duraiappah
AK
Ecosystem services and human well-being: do global findings make any sense?
Bioscience
 , 
2011
, vol. 
61
 (pg. 
7
-
8
)
Dutta
RK
Agrawal
M
Development of ground vegetation under exotic tree plantations on restored coal mine spoil land in a dry tropical region of India
Journal of Environmental Biology
 , 
2005
, vol. 
26
 (pg. 
645
-
652
)
Eberhardt
E
Dickoré
WB
Miehe
G
Vegetation map of the Batura Valley (Hunza Karakorum, North Pakistan)
Erdkunde
 , 
2007
, vol. 
61
 (pg. 
93
-
112
)
Enright
NJ
Miller
BP
Akhter
R
Desert vegetation and vegetation–environment relationships in Kirthar National Park, Sindh, Pakistan
Journal of Arid Environments
 , 
2005
, vol. 
61
 (pg. 
397
-
418
)
Erschbamer
B
Unterluggauer
P
Winkler
E
Mallaun
M
Changes in plant species diversity revealed by long-term monitoring on mountain summits in the Dolomites (northern Italy)
Preslia
 , 
2011
, vol. 
83
 (pg. 
387
-
401
)
Ewald
J
A critique for phytosociology
Journal of Vegetation Science
 , 
2003
, vol. 
14
 (pg. 
291
-
296
)
Feola
S
Carranza
ML
Schaminée
JHJ
Janssen
JAM
Acosta
ATR
EU habitats of interest: an insight into Atlantic and Mediterranean beach and foredunes
Biodiversity and Conservation
 , 
2011
, vol. 
20
 (pg. 
1457
-
1468
)
Ford
RI
The nature and status of ethnobotany
 , 
1994
Ann Arbor
University of Michigan
 
Anthropological Papers of the University of Michigan Museum of Anthropology. No. 67
Fu
C
Hua
X
Li
J
Chang
Z
Pu
Z
Chen
J
Elevational patterns of frog species richness and endemic richness in the Hengduan Mountains, China: geometric constraints, area and climate effects
Ecography
 , 
2006
, vol. 
29
 (pg. 
919
-
927
)
Gaikwad
J
Wilson
PD
Ranganathan
S
Ecological niche modeling of customary medicinal plant species used by Australian Aborigines to identify species-rich and culturally valuable areas for conservation
Ecological Modelling
 , 
2011
, vol. 
222
 (pg. 
3437
-
3443
)
Gauch
HG
Multivariate analysis in community ecology
 , 
2010
Cambridge
Cambridge University Press
Gehrig Fasel
J
Guisan
A
Zimmermann
NE
Tree line shifts in the Swiss Alps: climate change or land abandonment?
Journal of Vegetation Science
 , 
2009
, vol. 
18
 (pg. 
571
-
582
)
Geist
H
Our earth's changing land: An encyclopedia of land-use and land-cover change
 , 
2005
 
Greenwood Publishing Group
Giam
X
Bradshaw
CJA
Tan
HTW
Sodhi
NS
Future habitat loss and the conservation of plant biodiversity
Biological Conservation
 , 
2010
, vol. 
143
 (pg. 
1594
-
1602
)
Gilliam
FS
Elizabeth
SN
Making more sense of the order: a review of Canoco for Windows 4·5, PC-ORD version 4 and SYN-TAX 2000
Journal of Vegetation Science
 , 
2003
, vol. 
14
 (pg. 
297
-
304
)
Goldsmith
FB
Harrison
CM
Morton
AJ
Moore
PD
Chapman
SB
Description and analysis of vegetation
Methods in plant ecology
 , 
1986
2nd edn
Oxford
Blackwell Scientific Publications
(pg. 
437
-
524
)
Gordon
JE
Dvorák
IJ
Jonasson
C
Josefsson
M
Kociánová
M
Thompson
DBA
Geo-ecology and management of sensitive montane landscapes
Geografiska Annaler, Series A: Physical Geography
 , 
2002
, vol. 
84
 (pg. 
193
-
203
)
Gorenflo
LJ
Brandon
K
Agricultural capacity in high biodiversity forest ecosystems
Ambio
 , 
2005
, vol. 
34
 (pg. 
199
-
204
)
Gould
WA
Gonzalez
G
Carrero
RG
Structure and composition of vegetation along an elevational gradient in Puerto Rico
Journal of Vegetation Science
 , 
2006
, vol. 
17
 (pg. 
653
-
664
)
Grabherr
G
Gottfried
M
Pauli
H
Zachos
FE
Habel
JC
Global change effects on alpine plant diversity
Biodiversity hotspots. Distribution and protection of conservation priority areas
 , 
2011
Springer
(pg. 
529
-
536
)
Grandin
U
PC-ORD version 5: a user-friendly toolbox for ecologists
Journal of Vegetation Science
 , 
2006
, vol. 
17
 (pg. 
843
-
844
)
Greig-Smith
P
Quantitative plant ecology
 , 
2010
3rd edn
Oxford
Blackwell Scientific
Haarmeyer
DH
Schmiedel
U
Dengler
J
Bösing
BM
How does grazing intensity affect different vegetation types in arid Succulent Karoo, South Africa? Implications for conservation management
Biological Conservation
 , 
2010
, vol. 
143
 (pg. 
588
-
596
)
Haines-Young
R
Potschin
M
Raffaelli
D
Frid
C
The links between biodiversity, ecosystem services and human well-being
Ecosystem ecology: a new synthesis.
 , 
2010
Cambridge
Cambridge University Press
(pg. 
110
-
139
BES Ecological Reviews Series
Halloy
SRP
Mark
AF
Climate-change effects on alpine plant biodiversity: a New Zealand perspective on quantifying the threat
Arctic, Antarctic, and Alpine Research
 , 
2003
, vol. 
35
 (pg. 
248
-
254
)
Hamayun
M
Khan
MA
Begum
S
Marketing of medicinal plants of Utror-Gabral Valleys, Swat, Pakistan
Journal of Ethnobotanical Leaflets
 , 
2003
, vol. 
2
 (pg. 
25
-
32
)
Hamayun
M
Khan
SA
Lee
I-
Khan
MA
Conservation assessment of Hindu-Kush Mountain Region of Pakistan: a case study of Utror and Gabral Valleys, District Swat, Pakistan
Asian Journal of Plant Sciences
 , 
2006
, vol. 
5
 (pg. 
725
-
732
)
Hanson
T
Brooks
TM
Da Fonseca
GAB
, et al.  . 
Warfare in biodiversity hotspots
Conservation Biology
 , 
2009
, vol. 
23
 (pg. 
578
-
587
)
Hermy
M
Van Der Veken
S
Van Calster
H
Plue
J
Forest ecosystem assessment, changes in biodiversity and climate change in a densely populated region (Flanders, Belgium)
Plant Biosystems
 , 
2008
, vol. 
142
 (pg. 
623
-
629
)
Hester
A
Brooker
R
Threatened habitats: marginal vegetation in upland areas
Issues in Environmental Science and Technology
 , 
2007
, vol. 
25
 (pg. 
107
-
134
)
Hill
MO
TWINSPAN; A Fortran program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes
 , 
1979
Hill
MO
Gauch
HG
Jr
Detrended correspondence analysis: an improved ordination technique
Vegetatio
 , 
1980
, vol. 
42
 (pg. 
47
-
58
)
Hobbs
RJ
Huenneke
LF
Disturbance, diversity, and invasion: implications for conservation
Conservation Biology
 , 
1992
, vol. 
6
 (pg. 
324
-
337
)
Holtmeier
FK
Broll
G
Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales
Global Ecology and Biogeography
 , 
2005
, vol. 
14
 (pg. 
395
-
410
)
Holzinger
B
Hülber
K
Camenisch
M
Grabherr
G
Changes in plant species richness over the last century in the eastern Swiss Alps: elevational gradient, bedrock effects and migration rates
Plant Ecology
 , 
2008
, vol. 
195
 (pg. 
179
-
196
)
IUCN
IUCN Red List Categories and Criteria
 , 
2001
Switzerland and Cambridge, UK
IUCN
 
Version 3·1 IUCN Species Survival Commission. Gland
IUCN
Standards
Petitions
Subcommittee
Guidelines for Using the IUCN Red List Categories and Criteria
 , 
2011
 
Version 9·0. Prepared by the Standards and Petitions Subcommittee. Downloadable from http://www.iucnredlist.org/documents/RedListGuidelines.pdf
Isbell
F
Calcagno
V
Hector
A
, et al.  . 
High plant diversity is needed to maintain ecosystem services
Nature
 , 
2011
, vol. 
477
 (pg. 
199
-
202
)
Jules
P
Bill
A
Fikret
B
Simone
FA
Nigel
D
Eugene
H
How do biodiversity and culture intersect?
2008
(pg. 
2
-
5
In: Plenary paper presented at the conference for Sustaining Cultural and Biological Diversity in a Rapidly Changing World: Lessons for Global Policy
Kala
CP
Local preferences of ethnobotanical species in the Indian Himalaya: implications for environmental conservation
Current Science
 , 
2007
, vol. 
93
 (pg. 
1828
-
1834
)
Kazakis
G
Ghosn
D
Vogiatzakis
IN
Papanastasis
VP
Vascular plant diversity and climate change in the alpine zone of the Lefka Ori, Crete
Biodiversity and Conservation
 , 
2007
, vol. 
16
 (pg. 
1603
-
1615
)
Kessler
M
Elevational gradients in species richness and endemism of selected plant groups in the central Bolivian Andes
Plant Ecology
 , 
2000
, vol. 
149
 (pg. 
181
-
193
)
Khan
SD
Walker
DJ
Hall
SA
Burke
KC
Shah
MT
Stockli
L
Did the Kohistan-Ladakh island arc collide first with India?
Bulletin of the Geological Society of America
 , 
2009
, vol. 
121
 (pg. 
366
-
384
)
Khan
SM
Plant communities and vegetation ecosystem services in the Naran Valley, Western Himalaya
 , 
2012
University of Leicester
 
PhD Thesis
Khan
SM
Ahmad
H
Ramzan
M
Jan
MM
Ethnomedicinal plant resources of Shawar Valley
Pakistan Journal of Biological Sciences
 , 
2007
, vol. 
10
 (pg. 
1743
-
1746
)
Khan
SM
Harper
DM
Page
S
Ahmad
H
Species and community diversity of vascular flora along environmental gradient in Naran Valley: a multivariate approach through Indicator Species Analysis
Pakistan Journal of Botany
 , 
2011a
, vol. 
43
 (pg. 
2337
-
2346
)
Khan
SM
Harper
DM
Page
S
Ahmad
H
Residual value analyses of the medicinal flora of the Western Himalayas: the Naran Valley, Pakistan
Pakistan Journal of Botany
 , 
2011b
, vol. 
43
  
SI-97–104
Khan
SM
Ahmad
H
Page
S
Harper
DM
Anthropogenic influences on the natural ecosystem of the Naran Valley in the western Himalayas
Pakistan Journal of Botany
 , 
2012a
, vol. 
44 (SI)
 (pg. 
231
-
238
)
Khan
SM
Page
S
Ahmad
H
Shaheen
H
Harper
DM
Vegetation dynamics in the Western Himalayas, diversity indices and climate change
Journal of Science, Technology and Development
 , 
2012b
, vol. 
31
 (pg. 
232
-
243
)
Khan
SM
Page
S
Ahmad
H
, et al.  . 
Phyto-climatic gradient of vegetation and habitat specificity in the high elevation western Himalayas
Pakistan Journal of Botany
 , 
2013a
, vol. 
45
 (pg. 
223
-
230
)
Khan
SM
Page
S
Ahmad
H
, et al.  . 
Medicinal flora and ethnoecological knowledge in the Naran Valley, Western Himalaya, Pakistan
Journal of Ethnobiology and Ethnomedicine
 , 
2013b
, vol. 
9
 pg. 
4
 
Khan
SM
Page
S
Ahmad
H
Harper
D
Identifying plant species and communities across environmental gradients in the Western Himalayas: method development and conservation use
Ecological Informatics
 , 
2013c
, vol. 
14
 (pg. 
99
-
103
)
Kharkwal
G
Mehrotra
P
Rawat
YS
Pangtey
YPS
Phytodiversity and growth form in relation to altitudinal gradient in the Central Himalayan (Kumaun) region of India
Current Science
 , 
2005
, vol. 
89
 (pg. 
873
-
878
)
Kienast
F
Bolliger
J
Potschin
M
, et al.  . 
Assessing landscape functions at the continental scale: a methodological framework
Environmental Management
 , 
2009
, vol. 
44
 (pg. 
1099
-
1120
)
Kikvidze
Z
Pugnaire
FI
Brooker
RW
, et al.  . 
Linking patterns and processes in alpine plant communities: a global study
Ecology
 , 
2005
, vol. 
86
 (pg. 
1395
-
1400
)
Kremen
C
Managing ecosystem services: what do we need to know about their ecology?
Ecology Letters
 , 
2005
, vol. 
8
 (pg. 
468
-
479
)
Kukshal
S
Nautiyal
BP
Anthwal
A
Sharma
A
Bhatt
AB
Phytosociological investigation and life form pattern of grazinglands under pine canopy in temperate zone, Northwest Himalaya, India
Research Journal of Botany
 , 
2009
, vol. 
4
 (pg. 
55
-
69
)
Kullman
L
Alpine flora dynamics – a critical review of responses to climate change in the Swedish Scandes since the early 1950s
Nordic Journal of Botany
 , 
2010
, vol. 
28
 (pg. 
398
-
408
)
Kumar
A
Chawla
A
Rajkumar
S
Characterization of Solang valley watershed in western Himalaya for bio-resource conservation using remote sensing techniques
Environmental Monitoring and Assessment
 , 
2011
, vol. 
179
 (pg. 
469
-
478
)
La Sorte
FA
Jetz
W
Projected range contractions of montane biodiversity under global warming
Proceedings of the Royal Society B: Biological Sciences
 , 
2010
, vol. 
277
 (pg. 
3401
-
3410
)
Layke
C
Mapendembe
A
Brown
C
Walpole
M
Winn
J
Indicators from the global and sub-global Millennium Ecosystem Assessments: an analysis and next steps
Ecological Indicators
 , 
2011
, vol. 
17
 (pg. 
77
-
87
)
Lenoir
J
Gegout
J
Marquet
P
De Ruffray
P
Brisse
H
A significant upward shift in plant species optimum elevation during the 20th century
Science
 , 
2008
, vol. 
320
 (pg. 
1768
-
1771
)
Loucks
C
Ricketts
TH
Naidoo
R
Lamoreux
J
Hoekstra
J
Explaining the global pattern of protected area coverage: relative importance of vertebrate biodiversity, human activities and agricultural suitability
Journal of Biogeography
 , 
2008
, vol. 
35
 (pg. 
1337
-
1348
)
Lovett
JC
Marshall
AR
Carr
J
Changes in tropical forest vegetation along an altitudinal gradient in the Udzungwa Mountains National Park, Tanzania
African Journal of Ecology
 , 
2006
, vol. 
44
 (pg. 
478
-
490
)
Ma
C
Moseley
RK
Chen
W
Zhou
Z
Plant diversity and priority conservation areas of Northwestern Yunnan, China
Biodiversity and Conservation
 , 
2007
, vol. 
16
 (pg. 
757
-
774
)
Macdonald
D
Service
K
Key topics in conservation biology
 , 
1996
Chichester
Wiley
Macdonald
D
Willis
K
Key topics in conservation biology 2
 , 
2013
Chichester
Wiley
Manandhar
P
Rasul
G
The role of the Hindu Kush-Himalayan (HKH) mountain system in the context of a changing climate: a panel discussion
Mountain Research and Development
 , 
2009
, vol. 
29
 (pg. 
184
-
187
)
Marston
RA
Land, life, and environmental change in mountains
Annals of the Association of American Geographers
 , 
2008
, vol. 
98
 (pg. 
507
-
520
)
Martin
GJ
Ethnobotany; a methods manual
 , 
2004
London
WWF and IIED
McCune
B
PC-ORD: an integrated system for multivariate analysis of ecological data
Abstracta Botanica
 , 
1986
, vol. 
10
 (pg. 
221
-
225
)
McCune
B
Mefford
MJ
PC-ORD. Multivariate analysis of ecological data, version 4
 , 
1999
McGrady-Steed
J
Morin
PJ
Biodiversity, density compensation, and the dynamics of populations and functional groups
Ecology
 , 
2000
, vol. 
81
 (pg. 
361
-
373
)
MEA
Ecosystems and human well-being: a framework for assessment
 , 
2003
 
Millennium ecosystem assessment. Washington, DC: Island Press
Miehe
G
Miehe
S
Schlütz
F
Early human impact in the forest ecotone of southern High Asia (Hindu Kush, Himalaya)
Quaternary Research
 , 
2009
, vol. 
71
 (pg. 
255
-
265
)
Miehe
S
Cramer
T
Jacobsen
J
Winiger
M
Humidity conditions in the western Karakorum as indicated by climatic data and corresponding distribution patterns of the montane and alpine vegetation
Erdkunde
 , 
1996
, vol. 
50
 (pg. 
190
-
204
)
Miller
RM
Rodríguez
JP
Aniskowicz-Fowler
T
, et al.  . 
Extinction risk and conservation priorities
Science
 , 
2006
, vol. 
313
 pg. 
441
 
Moerman
DE
The medicinal flora of Native North America: an analysis
Journal of Ethnopharmacology
 , 
1991
, vol. 
31
 (pg. 
1
-
42
)
Moldan
B
Janoušková
S
Hák
T
How to understand and measure environmental sustainability: indicators and targets
Ecological Indicators
 , 
2011
, vol. 
17
 (pg. 
4
-
13
)
Mondoni
A
Probert
RJ
Rossi
G
Vegini
E
Hay
FR
Seeds of alpine plants are short lived: implications for long-term conservation
Annals of Botany
 , 
2011
, vol. 
107
 (pg. 
171
-
179
)
Mondoni
A
Rossi
G
Orsenigo
S
Probert
RJ
Climate warming could shift the timing of seed germination in alpine plants
Annals of Botany
 , 
2012
, vol. 
110
 (pg. 
155
-
164
)
Moore
PD
Chapman
SB
Methods in plant ecology
 , 
1986
2nd edn
Oxford
Blackwell Scientific Publications
(pg. 
437
-
524
)
Mucina
L
Classification of vegetation: Past, present and future
Journal of Vegetation Science
 , 
1997
, vol. 
8
 (pg. 
751
-
760
)
Mueller-Dombois
D
Ellenberg
H
Aims and methods of vegetation ecology
 , 
1974
New York
Wiley
Muzaffar
SB
Islam
MA
Kabir
DS
, et al.  . 
The endangered forests of Bangladesh: Why the process of implementation of the Convention on Biological Diversity is not working
Biodiversity and Conservation
 , 
2011
, vol. 
20
 (pg. 
1587
-
1601
)
Myers
N
Mittermeler
RA
Mittermeler
CG
Da Fonseca
GAB
Kent
J
Biodiversity hotspots for conservation priorities
Nature
 , 
2000
, vol. 
403
 (pg. 
853
-
858
)
Nasir
E
Ali
SI
Flora of Pakistan
 , 
1971–1998
Pakistan Agricultural Research Council: The University of California, USA.
Negi
CS
Traditional culture and biodiversity conservation: Examples from Uttarakhand, Central Himalaya
Mountain Research and Development
 , 
2010
, vol. 
30
 (pg. 
259
-
265
)
Niedrist
G
Tasser
E
Lüth
C
Dalla Via
J
Tappeiner
U
Plant diversity declines with recent land use changes in European Alps
Plant Ecology
 , 
2009
, vol. 
202
 (pg. 
195
-
210
)
Niemi
GJ
McDonald
ME
Application of ecological indicators
Annual Review of Ecology, Evolution, and Systematics
 , 
2004
, vol. 
35
 (pg. 
89
-
111
)
Noroozi
J
Akhani
H
Breckle
S
Biodiversity and phytogeography of the alpine flora of Iran
Biodiversity and Conservation
 , 
2008
, vol. 
17
 (pg. 
493
-
521
)
Nowak
A
Nowak
S
Nobis
M
Distribution patterns, ecological characteristic and conservation status of endemic plants of Tadzhikistan – A global hotspot of diversity
Journal for Nature Conservation
 , 
2011
, vol. 
19
 (pg. 
296
-
305
)
Odum
EP
Odum
HT
Natural areas as necessary components of man's total environment
1972
(pg. 
178
-
189
Transactions of the 37th North American Wildlife and Natural Resources Conference, March 12–15 1972, Wildlife Management
Oommen
MA
Shanker
K
Elevational species richness patterns emerge from multiple local mechanisms in Himalayan woody plants
Ecology
 , 
2005
, vol. 
86
 (pg. 
3039
-
3047
)
Pandey
A
Pandey
R
Negi
KS
Radhamani
J
Realizing value of genetic resources of Allium in India
Genetic Resources and Crop Evolution
 , 
2008
, vol. 
55
 (pg. 
985
-
994
)
Pant
S
Samant
SS
Diversity, distribution, uses and conservation status of plant species of the Mornaula Reserve Forests, West Himalaya, India
International Journal of Biodiversity Science and Management
 , 
2006
, vol. 
2
 (pg. 
97
-
104
)
Parody
JM
Cuthbert
FJ
Decker
EH
The effect of 50 years of landscape change on species richness and community composition
Global Ecology and Biogeography
 , 
2001
, vol. 
10
 (pg. 
305
-
313
)
Parolly
G
The high mountain vegetation of Turkey – A state of the art report, including a first annotated conspectus of the major syntaxa
Turkish Journal of Botany
 , 
2004
, vol. 
28
 (pg. 
39
-
63
)
Pei
SJ
Chou
C
KTS
H
Biodiversity conservation in the mountain development of Hindu Kush-Himalayas
Frontiers in biology; the challenge of biodiversity, biotechnology and sustainable agriculture
 , 
1998
Taipei
Academica Sinica
(pg. 
223
-
234
)
Pereira
E
Queiroz
C
Pereira
HM
Vicente
L
Ecosystem services and human well-being: a participatory study in a mountain community in Portugal
Ecology and Society
 , 
2005
, vol. 
10
 pg. 
14
 
Perveen
A
Hussain
MI
Plant biodiversity and phytosociological attributes of Gorakh hill (Khirthar range)
Pakistan Journal of Botany
 , 
2007
, vol. 
39
 (pg. 
691
-
698
)
Phartiyal
B
Sharma
A
Upadhyay
R
Ram-Awatar
A
Sinha
AK
Quaternary geology, tectonics and distribution of palaeo- and present fluvio/glacio lacustrine deposits in Ladakh, NW Indian Himalaya – A study based on field observations
Geomorphology
 , 
2005
, vol. 
65
 (pg. 
241
-
256
)
Phillips
O
Gentry
AH
Reynel
C
Wilkin
P
Galvez-Durand
BC
Quantitative ethnobotany and Amazonian conservation
Conservation Biology
 , 
1994
, vol. 
8
 (pg. 
225
-
248
)
Pieroni
A
Giusti
ME
Alpine ethnobotany in Italy: traditional knowledge of gastronomic and medicinal plants among the Occitans of the upper Varaita valley, Piedmont
Journal of Ethnobiology and Ethnomedicine
 , 
2009
, vol. 
5
 pg. 
32
 
Pieroni
A
Houlihan
L
Ansari
N
Hussain
B
Aslam
S
Medicinal perceptions of vegetables traditionally consumed by South-Asian migrants living in Bradford, Northern England
Journal of Ethnopharmacology
 , 
2007
, vol. 
113
 (pg. 
100
-
110
)
Pinke
G
Pál
R
Phytosociological and conservational study of the arable weed communities in western Hungary
Plant Biosystems
 , 
2008
, vol. 
142
 (pg. 
491
-
508
)
Podani
J
Braun-Blanquet's legacy and data analysis in vegetation science
Journal of Vegetation Science
 , 
2006
, vol. 
17
 (pg. 
113
-
117
)
Qureshi
RA
Ahmad
S
Khan
AG
Hierarchical cluster analysis of Saussurea DC. (Compositae) of Pakistan based on morphological characters
International Journal of Botany
 , 
2006
, vol. 
2
 (pg. 
319
-
323
)
Qureshi
RA
Ghafar
SA
Ghufran
MA
Ethnobotanical studies of economically important plants of Gilgit and surrounding areas, Pakistan
Pakistan Journal of Scientific and Industrial Research
 , 
2007a
, vol. 
50
 (pg. 
60
-
67
)
Qureshi
RA
Ghufran
MA
Sultana
KN
Ashraf
M
Khan
AG
Ethnobotanical studies of medicinal plants of Gilgit District and surrounding areas
Ethnobotany Research and Applications
 , 
2007b
, vol. 
5
 (pg. 
115
-
122
)
Radcliffe
JE
Effects of aspect and topography on pasture production in hill country
New Zealand Journal of Agricultural Research
 , 
1982
, vol. 
25
 (pg. 
485
-
496
)
Ragupathy
S
Steven
NG
Maruthakkutti
M
Velusamy
B
Ul-Huda
MM
Consensus of the ‘Malasars’ traditional aboriginal knowledge of medicinal plants in the Velliangiri holy hills, India
Journal of Ethnobiology and Ethnomedicine
 , 
2008
, vol. 
4
 pg. 
8
 
Rana
MS
Samant
SS
Prioritization of habitats and communities for conservation in the Indian Himalayan region: A state-of-the-art approach from Manali Wildlife Sanctuary
Current Science
 , 
2009
, vol. 
97
 (pg. 
326
-
335
)
Rana
VK
Rawat
N
Chaturvedi
AK
Nautiyal
BP
Prasad
P
Nautiyal
MC
An exploration on the phenology of different growth forms of an alpine expanse of North-West Himalaya, India
New York Science Journal
 , 
2009
, vol. 
2
 (pg. 
29
-
41
)
Rasul
G
The role of the Himalayan mountain systems in food security and agricultural sustainability in South Asia
International Journal of Rural Management
 , 
2010
, vol. 
6
 (pg. 
95
-
116
)
Ren
H
Niu
S
Zhang
L
Ma
K
Distribution of vascular plant species richness along an elevational gradient in the Dongling Mountains, Beijing, China
Journal of Integrative Plant Biology
 , 
2006
, vol. 
48
 (pg. 
153
-
160
)
Rieley
J
Page
S
Ecology of plant communities
 , 
1990
Harlow
Longman
Robbers
JE
Speedie
MK
Tyler
VE
Pharmacognosy and pharmacobiotechnology
 , 
1996
Baltimore, MD
Williams and Wilkins
Rodwell
JS
British plant communities
 , 
1991–2000
Cambridge
Cambridge University Press
Rossato
SC
Leitão-Filho
HDF
Begossi
A
Ethnobotany of Caicaras of the Atlantic Forest coast (Brazil)
Economic Botany
 , 
1999
, vol. 
53
 (pg. 
387
-
395
)
Roy
PS
Behera
MD
Assessment of biological richness in different altitudinal zones in the Eastern Himalayas, Arunachal Pradesh, India
Current Science
 , 
2005
, vol. 
88
 (pg. 
250
-
257
)
Ruiz
D
Moreno
HA
Gutiérrez
ME
Zapata
PA
Changing climate and endangered high mountain ecosystems in Colombia
Science of the Total Environment
 , 
2008
, vol. 
398
 (pg. 
122
-
132
)
Saima
S
Dasti
AA
Hussain
F
Wazir
SM
Malik
SA
Floristic compositions along an 18 – km long transect in ayubia National Park district Abbottabad, Pakistan
Pakistan Journal of Botany
 , 
2009
, vol. 
41
 (pg. 
2115
-
2127
)
Samant
SS
Dhar
U
Diversity, endemism and economic potential of wild edible plants of Indian Himalaya
International Journal of Sustainable Development and World Ecology
 , 
1997
, vol. 
4
 (pg. 
179
-
191
)
Sandwith
T
Overcoming barriers: conservation and development in the Maloti-Drakensberg Mountains of Southern Africa
Journal of Sustainable Forestry
 , 
2003
, vol. 
17
 (pg. 
149
-
169
)
Schäfer
RB
Biodiversity, ecosystem functions and services in environmental risk assessment: Introduction to the special issue
Science of the Total Environment
 , 
2011
, vol. 
415
 (pg. 
1
-
2
)
Shaheen
H
Khan
SM
Harper
DM
Ullah
Z
Allem Qureshi
R
Species diversity, community structure, and distribution patterns in western Himalayan alpine pastures of Kashmir, Pakistan
Mountain Research and Development
 , 
2011
, vol. 
31
 (pg. 
153
-
159
)
Shaheen
H
Ullah
Z
Khan
SM
Harper
DM
Species composition and community structure of western Himalayan moist temperate forests in Kashmir
Forest Ecology and Management
 , 
2012
, vol. 
278
 (pg. 
138
-
145
)
Sharma
E
Tse-ring
K
Chettri
N
Shrestha
A
Biodiversity in the Himalayas–trends, perception and impacts of climate change
2008
 
In: Sharma E. ed. Proceedings of the International Mountain Biodiversity Conference Kathmandu, November 16–18 2008. International Centre for Integrated Mountain Development, Kathmandu, Nepal
Sharma
E
Chettri
N
Oli
KP
Mountain biodiversity conservation and management: a paradigm shift in policies and practices in the Hindu Kush-Himalayas
Ecological Research
 , 
2010
, vol. 
25
 (pg. 
909
-
923
)
Sherrouse
BC
Clement
JM
Semmens
DJ
A GIS application for assessing, mapping, and quantifying the social values of ecosystem services
Applied Geography
 , 
2010
, vol. 
31
 (pg. 
748
-
760
)
Shrestha
MR
Rokaya
MB
Ghimire
SK
A checklist of Trans-Himalayan dicot flora of Dolpo and its surrounding region in Northwest Nepal
Scientific World
 , 
2006
, vol. 
4
 pg. 
84
 
Shrestha
TB
Joshi
RM
Rare, endemic and endangered plants of Nepal
 , 
1996
 
WWF
Siddiqui
MF
Ahmed
M
Wahab
M
, et al.  . 
Phytosociology of Pinus roxburghii Sargent. (Chir pine) in Lesser Himalayan and Hindu Kush range of Pakistan
Pakistan Journal of Botany
 , 
2009
, vol. 
41
 (pg. 
2357
-
2369
)
Singh
A
Samant
SS
Conservation prioritization of habitats and forest communities in the Lahaul Valley of proposed cold desert biosphere reserve, north western Himalaya, India
Applied Ecology and Environmental Research
 , 
2010
, vol. 
8
 (pg. 
101
-
117
)
Singh
SP
Balancing the approaches of environmental conservation by considering ecosystem services as well as biodiversity
Current Science
 , 
2002
, vol. 
82
 (pg. 
1331
-
1335
)
Srivastava
DS
Vellend
M
Biodiversity-ecosystem function research: Is it relevant to conservation?
Annual Review of Ecology, Evolution, and Systematics
 , 
2005
, vol. 
36
 (pg. 
267
-
294
)
Takahashi
K
Hirosawa
T
Morishima
R
How the timberline formed: Altitudinal changes in stand structure and dynamics around the timberline in central Japan
Annals of Botany
 , 
2012
, vol. 
109
 (pg. 
1165
-
1174
)
Takhtadzhian
AL
Cronquist
A
Floristic regions of the world
 , 
1986
Berkeley, CA
University of California Press
Tang
R
Gavin
MC
Traditional ecological knowledge informing resource management: Saxoul conservation in inner Mongolia, China
Society and Natural Resources
 , 
2010
, vol. 
23
 (pg. 
193
-
206
)
Tansley
AG
The use and abuse of vegetational concepts and terms
Ecology
 , 
1935
, vol. 
16
 (pg. 
284
-
307
)
Tarrasón
D
Urrutia
JT
Ravera
F
Herrera
E
Andrés
P
Espelta
JM
Conservation status of tropical dry forest remnants in Nicaragua: Do ecological indicators and social perception tally?
Biodiversity and Conservation
 , 
2010
, vol. 
19
 (pg. 
813
-
827
)
Teklehaymanot
T
Giday
M
Quantitative ethnobotany of medicinal plants used by Kara and Kwego semi-pastoralist people in lower Omo River Valley, Debub Omo Zone, Southern Nations, Nationalities and Peoples Regional State, Ethiopia
Journal of Ethnopharmacology
 , 
2010
, vol. 
130
 (pg. 
76
-
84
)
ten Brink
DJ
Hendriksma
HP
Bruun
HH
Habitat specialization through germination cueing: a comparative study of herbs from forests and open habitats
Annals of Botany
 , 
2013
, vol. 
111
 (pg. 
283
-
292
)
ter Braak
CJF
The analysis of vegetation-environment relationships by canonical correspondence analysis
Vegetatio
 , 
1987
, vol. 
69
 (pg. 
69
-
77
)
ter Braak
CJF
CANOCO – an extension of DECORANA to analyze species-environment relationships
Hydrobiologia
 , 
1989
, vol. 
184
 (pg. 
169
-
170
)
ter Braak
CJF
Smilauer
P
CANOCO reference manual and user's guide to Canoco for Windows: Software for Canonical Community Ordination
 , 
2002
 
version 4·5
Thomas
E
Vandebroek
I
Van Damme
P
What works in the field? A comparison of different interviewing methods in ethnobotany with special reference to the use of photographs
Economic Botany
 , 
2007
, vol. 
61
 (pg. 
376
-
384
)
Thomas
E
Vandebroek
I
Van Damme
P
, et al.  . 
The relation between accessibility, diversity and indigenous valuation of vegetation in the Bolivian Andes
Journal of Arid Environments
 , 
2009
, vol. 
73
 (pg. 
854
-
861
)
Thompson
DBA
Brown
A
Biodiversity in montane Britain: habitat variation, vegetation diversity and some objectives for conservation
Biodiversity and Conservation
 , 
1992
, vol. 
1
 (pg. 
179
-
208
)
Thuiller
W
Biodiversity: climate change and the ecologist
Nature
 , 
2007
, vol. 
448
 (pg. 
550
-
552
)
Tüxen
R
Whittaker
RH
Handbook of vegetation science
 , 
2010
The Hague
Junk
Uniyal
SK
Kumar
A
Lal
B
Singh
RD
Quantitative assessment and traditional uses of high value medicinal plants in Chhota Bhangal area of Himachal Pradesh, western Himalaya
Current Science
 , 
2006
, vol. 
91
 (pg. 
1238
-
1242
)
Vačkář
D
ten Brink
B
Loh
J
Baillie
JEM
Reyers
B
Review of multispecies indices for monitoring human impacts on biodiversity
Ecological Indicators
 , 
2012
, vol. 
17
 (pg. 
58
-
67
)
Valley
HP
Upward shift of Himalayan pine in western Himalaya, India
Current Science
 , 
2003
, vol. 
85
 pg. 
1135
 
Vetaas
OR
Grytnes
J
Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal
Global Ecology and Biogeography
 , 
2002
, vol. 
11
 (pg. 
291
-
301
)
Wallace
KJ
Classification of ecosystem services: problems and solutions
Biological Conservation
 , 
2007
, vol. 
139
 (pg. 
235
-
246
)
Walther
GR
Beiβner
S
Burga
CA
Trends in the upward shift of alpine plants
Journal of Vegetation Science
 , 
2009
, vol. 
16
 (pg. 
541
-
548
)
Wazir
SM
Dasti
AA
Saima
S
Shah
J
Hussain
F
Multivariate analysis of vegetation of Chapursan valley: An alpine meadow in Pakistan
Pakistan Journal of Botany
 , 
2008
, vol. 
40
 (pg. 
615
-
626
)
Weaver
JE
Clements
FE
Plant ecology
 , 
1938, 1996
2nd edn
New York
McGraw-Hill
Whittaker
RJ
Willis
KJ
Field
R
Scale and species richness: towards a general, hierarchical theory of species diversity
Journal of Biogeography
 , 
2001
, vol. 
28
 (pg. 
453
-
470
)
Xiang
F
Wang
C-
Zhu
L
Cenozoic molasse at the south edge of the Qinghai-Tibetan plateau
Journal of the Chengdu Institute of Technology
 , 
2002
, vol. 
29
 (pg. 
515
-
520
)
Xu
J
Grumbine
RE
Shrestha
A
, et al.  . 
The melting Himalayas: Cascading effects of climate change on water, biodiversity, and livelihoods
Conservation Biology
 , 
2009
, vol. 
23
 (pg. 
520
-
530
)
Zou
D
He
Y
Lin
Q
Cui
G
Evaluation of the level of threat and protective classification of the vegetation of Makehe Forest in Sanjiangyuan Nature Reserve, west China
Frontiers of Forestry in China
 , 
2007
, vol. 
2
 (pg. 
179
-
184
)

APPENDIX

Species of conservation priority from a case study in one Himalayan valley (Khan, 2012) based on their residual values (descending order), % constancy, perception of abundance (trend mentioned by indigenous people), IUCN criteria at regional level and data on endemism or other level of threat from the published literature1.

Species no. Name IV Residual value % Constancy Trend IUCN criteria applied to our results Endemic and Threatened status (IUCN) at regional and global level (from published literature) 
Abies pindrow Royle 3027 14·038 16 NT  
Acantholimon lycopodioides Boiss. 154 –14·114 NC VU A4cd; B2bc(i,ii,iv); C1 + 2ab  
Acer caesium Wall ex Brandis 49 7·538 1·6 CR A3cd + 4cd; B2b(iii,v)c(i,ii,iv); C1 + 2ab; D Vulnerable in the Himalaya 
Achillea millefolium L. 364 –5·419 16·6 NC LC  
Aconitum heterophyllum Wall. 58 –6·4 3·4 EN A3cd + 4 cd; C1 + 2ab; D; E Endemic to the Himalaya and Hindu Kush /Vulnerable species of Pakistan 
Aconitum violaceum Jacquen ex. Stapf 154 –5·977 8·4 VU A4cd; B2bc(i,ii,iv); C1 + 2ab; D Endemic to the Himalaya also Vulnerable (Kumar et al., 2011
Actaea spicata L. 33 –8·362 1·4 NT  
Adiantum venustum D. Don 108 –4·828 9·2 NC LC  
Aesculus indica (Wall. Ex Camb) Hook. 11 5·774 0·6 CR A3cd +4cd; C1 + 2ab; D  
10 Alliaria petiolata (M. Bieb.) Cavara and Grande 13 3·942 1·2 CR A3cd +4cd; C1 + 2ab; D  
11 Allium humile Kunth. 155 –12·238 6·8 NT Endemic to the Himalaya (Samant and Dhar, 1997; Pandey et al., 2008
12 Alopecurus arundinaceus Poir. 194 4·637 LC  
13 Anaphalis triplinervis (Sims) C. B. Clarke 132 4·023 6·2 NT  
14 Androsace hazarica R.R. Stewart ex Y. Nasir 62 –11·543 4·6 CR A4cd; B2bc(i,ii,iv); C1 + 2ab; E Endemic to Pakistan (Ali et al., 1972–2009
15 Androsace primuloides Duby 133 –11·984 CR A3cd + 4; B2b(iii,v)c(i,ii,iv); C1 + 2a; E Endemic to the Himalaya and Hindu Kush 
16 Androsace rotundifolia Watt 456 –10·121 26·8 LC  
17 Anemone falconeri Thoms. 155 –10·12 9·6 EN A3cd + 4cd; B2b(iii,v)c(i,ii,iv); C1 + 2a; D; E Endemic to the Himalaya and Hindu Kush (Ali et al., 1972–2009
18 Anemone obtusiloba D.Don 143 –8·046 9·2 NT Endemic to the Himalayas, Hindu Kush and Karakorum (Shrestha et al., 2006; Rana and Samant, 2009
19 Anemone rupicola Cambess 227 –12·307 8·2 NT  
20 Anemone tetrasepala Royle 304 –11·046 10·6 NT Endemic to the Himalayas and Hindu Kush (Rana and Samant, 2009
21 Angelica glauca Edgew. 167 –4·195 EN A3cd + 4cd; B2b(iii,v)c(i,ii,iv); C1 + 2; D; E Endemic to the Himalaya and Hindu Kush (Samant and Dhar, 1997; Rana and Samant, 2009
22 Apluda mutica (L.) Hack 188 –10·325 8·6 LC  
23 Aquiligea fragrans Benth. 29 –9·337 1·2 CR A3cd + 4cd; B2b(iii)c(i,iv); C1 + 2; D Endemic to the Himalaya and Hindu Kush (Ali et al., 1972–2009
24 Arnebia benthamii Wallich ex. G. Done 107 –12·71 CR A3cd + 4cd; B2b(iii,v)c(i,ii,iii,iv); C1 + 2ab; D Endemic to the Himalaya/Critically Endangered in the Himalaya (Shrestha et al., 2006; Kumar et al., 2011
25 Artemisia brevifolia L. 4385 –18·552 40·2 LC  
26 Artemisia vulgaris L. 381 –8·524 6·4 NC LC  
27 Asparagus racemosus Willd. 36 5·619 3·8 CR A3cd + 4cd; B2b(iii,v)c(i,ii); C1 + 2; D; E  
28 Asperula oppositifolia Reg. and Schmalh. 125 –12·934 4·8 NT  
29 Asplenium adiantum-nigrum 18 –12·269 0·6 NT  
30 Aster falconeri (C. B. Clarke) Hutch 243 –13·667 11·6 NC NT Endemic to the Himalaya and Hindu Kush (Shrestha et al., 2006; Rana and Samant, 2009
31 Astragalus anisocanthus Boiss. 271 –4·841 12·8 NC LC  
32 Astragalus scorpiurus Bunge 296 –13·996 13·4 LC  
33 Berberis pseudoumbellata Parker 979 14·761 14·8 NC VU A3cd + 4; C1 + 2ab; D Near Endemic to the Himalaya (Samant and Dhar, 1997; Singh and Samant, 2010
34 Bergenia ciliata (Haw.) Sternb. 45 –6·437 2·6 VU A3 + 4cd; C1; D1 Endemic to the Himalaya (Shaheen et al., 2011
35 Bergenia strachyei (Hook. f. and Thoms) Engl 958 –9·183 17·4 LC Nearly endemic to the Himalayas and Hindu Kush also Vulnerable in the Himalaya (Ali et al., 1972–2009; Singh and Samant, 2010; Kumar et al., 2011
36 Betula utilis D. Don 2635 9·312 8·4 CR A3cd + 4; B2b(i,ii,iii,iv,v)c(i,ii,iv);C1 + 2a; D; E Endangered species in the Himalaya and Hindu Kush (Ali et al., 1972–2009
37 Bistorta affinis (D.Don) Green 788 7·829 25·2 LC Endemic to the Himalayas, Hindu Kush and Karakorum (Shrestha et al., 2006; Rana and Samant, 2009
38 Bistorta amplexicaulis (D. Don) 180 13·625 11·4 NC NT Endemic to the Himalaya and Hindu Kush (Rana and Samant, 2009)/Endangered species of the Pakistan 
39 Bromus hordeaceus L. 279 3·109 11·8 NC LC  
40 Caltha alba Jack. Ex Comb 182 17·712 10·4 NT  
41 Capsella bursa-pastoris (L.) Medic. 86 4·308 5·6 NC LC  
42 Cassiope fastigiata (Wallich) D. Done 49 –12·325 1·2 EN A3cd + 4cd; B2b(iii,v)c(i,ii,iv); C1 + 2ab; D; Endemic to the Himalayas, Hindu Kush and Karakorum (Shrestha et al., 2006
43 Cedrus deodara (Roxb. Ex Lamb.) G. Don 663 24·724 7·2 CR A3cd + 4cd; B2b(iii,v)c(i,ii,iv); C1 Endemic to the Himalaya and Hindu Kush; National tree of the Pakistan (Takhtadzhian and Cronquist, 1986; Ali, 2008; Singh and Samant, 2010
44 Cerastium fontanum Baumg. 667 –7·338 21·8 NC LC  
45 Chenopodium album L. 196 18·625 6·8 NC LC  
46 Clematis montana Buch.-Ham. ex DC 110 –0·841 5·6 NT  
47 Colchicum luteum Baker 261 3·221 NC EN A3cd + 4cd; B2b(iii,v)c(i,ii,iv); C1 Endangered species of Pakistan (Ali et al., 1972–2009
48 Convolulus arvensis L. 57 0·489 3·2 NC VU A3 + 4; C1 + 2a; E  
49 Corydalis diphylla Wall. 194 –3·363 9·4 NC LC  
50 Corydalis govaniana Wall. 130 –0·965 5·2 EN A3cd + 4cd; B2b(iii,v)c(i,ii,iv); C1 + 2ab; D; Endemic to the Himalayas of Pakistan (Ali et al., 1972–2009; Rana and Samant, 2009; Kumar et al., 2011
51 Cotoneaster cashmiriensis G.Klotz 79 –12·648 3·4 VU A3cd + 4; B2b(i,ii,iii,iv,v)c(i,ii,iii,iv); C1 + 2ab; D1; E  
52 Cotoneaster microphyllus Wall. ex Lindl 291 9·035 12 VU A3cd + 4; C1; D  
53 Crataegus oxycantha L. 10 –1·269 0·8 CR A3cd + 4; C1 + 2; D; E  
54 Cynoglossum glochidiatum Wall. Ex Benth 792 3·873 36·2 NC LC  
55 Cynoglossum himaltoni 261 –0·915 12·8 LC  
56 Cynoglossum lanceolatum L. –3·201 0·8 NC LC  
57 Cyperus niveous 379 –14·512 16·6 LC  
58 Cypripedium cordigerum D. Don 34 –5·369 3·2 CR A4cd; B2bc(i,ii,iv); C1 + 2ab; D Endemic to the Himalaya (Ali et al., 1972–2009)/Endangered/on CITES list 
59 Dactylis glomerata L. 361 6·6 13·2 NC LC  
60 Dactylorhiza hatagirea (D. Don) Soo 29 –9·337 3·4 CR A3cd + 4; B2b(i,ii,iii,iv,v)c(i,ii,iii,iv); C1; E Endemic to the Himalaya and Hindu Kush/Critically Endangered (Singh and Samant, 2010; Kumar et al., 2011
61 Dioscoria deltoidia Wall. 30 –4·344 3·6 CR A3cd + 4; B2b(iii,v)c(i,ii,iv); C1 + 2; D; E Vulnerable/on CITES list 
62 Draba oreads Schrenk 85 –2·685 6·6 NC LC  
63 Dracocephalum nutans L. 115 –4·872 4·6 NT  
64 Dryopteris juxtapostia Christ 147 14·929 NT  
65 Dryopteris stewartii Fras.-Jenk. 791 –6·195 25·4 LC Endemic to Pakistan (Ali et al., 1972–2009
66 Eclipta prostrata L. 49 –12·462 4·8 NC LC  
67 Ephedra gerardiana Wall. Ex Stapf 604 –0·91 8·2 EN A3 + 4cd; C1 + 2ab; D; E Endangered species of Pakistan 
68 Epilobium angustifolium L. 40 3·594 3·2 VU A4cd; B2bc(i,ii,iv); C1 + 2ab; D  
69 Equisetum arvense L. 84 –6·679 5·4 NC LC  
70 Eragrostis cilianensis (All.) Lut. ex F.T. Hubbard 109 0·166 4·8 NC VU A4cd; B2bc(i,ii,iv); C1 + 2ab  
71 Eremurus himalaicus Baker 794 7·792 20·4 LC Endemic to the western Himalaya (Ali et al., 1972–2009
72 Erigeron multiradiatus (Lindl. Ex DC) C. B. Clarke 48 7·544 2·6 EN A3cd + 4; C1 + 2; D; E  
73 Erysimum melicentae Dunn. 57 –4·511 NC VU A3cd + 4; B2b(i,ii,iii,iv,v)c(i,ii,iii,iv); C1 + 2ab; D1 Endemic to the Himalaya and the Hindu Kush (Nasir and Ali, 1971–1998; Shrestha et al., 2006
74 Euphorbia wallichii Hook. f. 165 7·818 7·2 NC CR A3 + 4cd; C1 + 2ab; D  
75 Euphrasia himalayica Wetts. 328 –2·195 16·4 NT Endemic to the Himalaya and Hindu Kush (Shrestha et al., 2006
76 Fragaria nubicola Lindl. Ex Lacaita 1629 9·481 55·6 LC  
77 Fritillaria roylei Hook. f. 24 –9·306 1·4 CR A3 + 4cd; B2b(i,ii,iii,iv,v)c(i,ii,iii,iv); C1 + 2ab; D Endemic to the Himalaya and Hindu Kush/also rare and Critically Endangered (Ali et al., 1972–2009
78 Gagea elegans Wall. Ex D. Don 214 –13·487 9·2 NT  
79 Galium aparine L. 206 11·563 NC LC  
80 Galium asperuloides 230 –3·586 7·6 NC LC Endemic to the Himalayas and Hindu Kush (Singh and Samant, 2010
81 Gentiana carinata Griseb 421 –6·773 14·4 NC LC  
82 Gentiana kurro Royle 70 –9·592 3·4 CR A4cd; B2bc(i,ii,iv); C1 + 2ab; D Endemic to the Himalaya and Hindu Kush/Endangered (Ali et al., 1972–2009
83 Gentiana moorcroftiana (Wallich ex G. Don) Airy Shaw 201 1·594 9·4 VU A3cd + 4; B2b(i,ii,iii,iv,v)c(i,ii,iii,iv); C1 + 2ab; D1; E Endemic to the Himalaya and Hindu Kush (Ali et al., 1972–2009
84 Gentianodes argentia Omer, Ali and Qaiser 115 0·128 4·2 EN A3 + 4cd; B2b(i,ii,iii,iv,v)c(i,ii,iii,iv); C1 + 2; D Endemic to Pakistan (Ali et al., 1972–2009
85 Geranium nepalense Sweet. 86 –6·692 3·4 VU A3cd + 4; B2b(i,ii,iv,v)c(i,ii,iii,iv); C1 + 2ab; D1  
86 Geranium polyanthes Edgew and Hook. F 188 –4·356 10·4 LC  
87 Geranium wallichianum D. Don ex. Sweet 154 18·886 9·2 EN A3 + 4cd; B2b(i,ii,iii,iv,v)c(i,ii,iii,iv); C1 + 2ab Endemic to the Himalaya and Hindu Kush (Ali et al., 1972–2009)/Vulnerable species of Pakistan 
88 Geum elatum Wall. Ex G. Don 74 –12·617 4·8 VU A3 + 4; D; E Endemic to the Himalaya (Shrestha et al., 2006; Rana and Samant, 2009; Kumar et al., 2011
89 Gnaphalium affine D. Don 453 –15·09 19·2 NC LC  
90 Gratiola officinalis L. 0·787 1·4 EN A3 + 4; C1; D; E  
91 Hackelia uncinata (Royle ex Benth) Fischer 462 5·923 24·8 NC LC  
92 Heracleum candicans Wall. ex DC. 28 7·669 3·4 CR A3cd + 4; B2b(iv,v)c(i,ii,iv); C1 + 2ab; D Endemic to the Himalaya and Hindu Kush (Nasir and Ali, 1971–1998; Pant and Samant, 2006
93 Hyoscyamus niger L. 15 –9·251 0·8 CR A3cd + 4; C1; E Near Threatened/Alien (Nasir and Ali, 1971–1998
94 Hypericum perforatum L. 242 16·339 12·6 EN A3 + 4; C1; D; E  
95 Impatiens bicolor Royle 480 3·134 28·8 LC  
96 Impatiens edgeworthii Hook.f. 114 14·861 NC LC  
97 Indigofera heterantha Wall. Ex Brand 17 8·737 0·8 CR A3 + 4cd; B2b(i,v)c(i); C1; D; E  
98 Inula grandiflora Willd. 31 –6·35 0·6 CR A3 + 4cd; B2b(i,ii,iii,iv,v)c(i,ii,iii,iv); C1; D; E Near Threatened in Himalayas (Nasir and Ali, 1971–1998
99 Inula multiradiata 30 –12·344 0·8 NT  
100 Iris hookeriana Foster 1574 –14·979 30·8 NC NT Endemic to the Himalaya and Hindu Kush/Vulnerable species of the Pakistan (Ali et al., 1972–2009
101 Juglans regia L. 214 28·513 2·2 CR A3cd + 4cd; B2b(i,ii,iii,iv,v)c(i,ii,iii,iv); C1 + 2ab Vulnerable species of Pakistan 
102 Juncus membranaceus Royle ex D. Don 198 7·613 4·2 NC LC  
103 Juniperus communis L. 5505 –6·477 38·8 LC  
104 Juniperus excelsa M. Bieb 1063 5·935 21·4 NT  
105 Juniperus squamata Buch.-Ham. ex D. Don 1399 –14·848 11 VU A4cd; B2bc(i,ii,iv); C1 + 2ab Native to the Himalaya and Karakorum 
106 Lathyrus pratensis L. 14 8·756 LC Alien (indigenous to Europe) 
107 Leucus cephalotes (Roth) Spreng. 63 2·451 2·2 VU A3 + 4; C1; E  
108 Malva neglecta Wallr 669 22·649 38·2 NC LC  
109 Mentha longifolia (L.) Hudson. 81 –2·661 LC  
110 Mentha royleana Benth. in Wall. 10 –4·219 0·8 NC EN A3 + 4; C1; D; E  
111 Minuartia kashmirica (Edgew) Mattf 109 –8·834 5·2 NC LC Native to the Himalaya and Karakorum (Ali et al., 1972–2009
112 Morina longifolia Wall. ex. Dcs 36 –12·381 1·8 NC LC  
113 Nepeta laevigata (D. Done) Hand.-Mazz 114 4·06 5·8 EN A3 + 4cd; B2b(i,ii,iii,iv,v)c(i,ii,iii,iv); D; E Native to the Himalaya and Karakorum (Ali et al., 1972–2009
114 Onopordum acanthium L. 469 –16·071 32·2 LC  
115 Onosma bracteatum Wall. 134 7·01 7·2 NT Endemic to the Himalayas (Shrestha et al., 2006
116 Origanum vulgare L. 163 25·83 11·2 NC LC  
117 Orobanche alba Stephen ex Wallid 24 –1·325 1·4 CR A3cd + 4cd; B2b(i,ii,iii,v,v)c(i,ii,iii); C1 + 2ab  
118 Oxyria digyna L. 383 10·463 18·6 NC LC Alien 
119 Oxytropis cachemiriana Camb. 191 13·656 10 LC  
120 Paeonia emodi Wall. Ex Royle 17 17·737 1·2 CR A3cd + 4; B2b(i,ii,iii,iv,v)c(i,ii,iii,iv); C1 + 2ab; Endemic to the Himalaya and Hindu Kush (Samant and Dhar, 1997)/Vulnerable species of Pakistan 
121 Parnassia nubicola Wall. 100 –5·834 4·4 NC NT Endemic to the Himalayas (Pant and Samant, 2006; Shrestha et al., 2006
122 Pedicularis pictinata Wall. ex. Benth 112 3·147 2·8 CR A3 + 4cd; B2b(i,ii,iii)c(i,iv); C1 + 2; D; E Endemic to the Himalaya (Kumar et al., 2011
123 Pennisetum lanatum Klotzsch 84 3·321 3·4 NT  
124 Phleum alpinum L. 63 9·451 NC LC  
125 Phlomis bracteosa Royle ex Benth. 60 8·47 LC Endemic to the Himalayas, Hindu Kush and Karakorum (Shrestha et al., 2006; Singh and Samant, 2010
126 Picea smithiana (Wall.) Boiss. 287 1·06 6·6 EN A3cd + 4; B2b(i,ii,iii,iv,v)c(i,ii,iii,iv); C1 + 2ab; C1 + 2a; E Endemic to the Himalaya, Hindu Kush and Karakorum (Takhtadzhian and Cronquist, 1986; Singh and Samant, 2010
127 Pimpinella acuminata (Edgew.) C.B. Clarke 20 7·718 2·2 CR A3cd + 4cd; C1 + 2b; D; E Endemic to the Himalaya (Ali et al., 1972–2009; Rana and Samant 2009
128 Pimpinella diversifolia (Wall.) DC 58 8·482 2·4 NT  
129 Pinus wallichiana Jackson 2116 5·698 15·6 VU A3cd + 4; B2b(i,iii,v); C1 + 2ab Endemic to the Himalaya, Hindu Kush and Karakorum (Takhtadzhian and Cronquist, 1986; Singh and Samant, 2010
130 Plantago himalaica Pilger 92 –3·729 CR A3 + 4cd; B2b(i,ii,iii,iv,v)c(i,ii,iii); C1 + 2b Endemic to the Himalayas (Nasir and Ali, 1971–1998; Pant and Samant, 2006
131 Plantago lanceolata L. 406 15·32 28 NC LC  
132 Plantago major L. 287 16·178 19·6 EN A3cd + 4; B2b(i,ii,iii,iv,v)c(i,ii,iii,iv); C1 + 2ab; C1; E Rare species of Pakistan 
133 Poa alpina L. 1593 0·319 40 NC LC  
134 Poa annua L. 61 8·464 4·2 NC LC  
135 Poa stewartiana Bor in Kew Bull. 309 6·817 13·8 LC  
136 Podophyllum hexandrum Royle 72 –3·605 CR A3 + 4cd; B2b(i,ii,iii,iv,v)c(i,ii,iii,iv); C1 + 2a; D; E Critically Endangered/on CITES list; endemic to the Himalayas, Hindu Kush and Karakorum (Shrestha et al., 2006
137 Polygonatum verticillatum (L.) Allioni 386 –15·835 9·4 EN A3cd + 4; B2b(i,ii,iii,iv,v)c(i,ii,iii,iv); C2ab Vulnerable in Pakistan/on CITES list 
138 Polygonum alpinum (All.) Schur 641 17·861 17 NC LC  
139 Polygonum aviculare L. 569 –11·338 14·4 NC LC  
140 Polygonum molle (D.Done) Hara 351 –13·189 10·2 LC  
141 Polygonum plebeium R. Br 166 27·283 19 NC LC  
142 Poplus glauca H. Haines 333 9·774 2·8 NC LC  
143 Potentilla anserina L. 567 3·32 22·2 NC LC  
144 Potentilla atrosanguinea Lodd. 216 6·501 8·4 NC NT Endemic to the Himalayas and Hindu Kush (Rana and Samant, 2009
145 Potentilla nepalensis Hook. f. 549 1·376 20·8 NC LC  
146 Primula calderana Balf. F and cooper 82 –4·667 3·6 VU A3cd + 4; B2b(i,ii,iii,iv,v)c(i,ii,iii,iv); C1; D1  
147 Primula denticulata Smith 145 7·942 8·4 EN A4cd; B2bc(i,ii,iv); C1 + 2ab; D; E  
148 Primula glomerata Pax. 58 –4·387 3·8 VU A3 + 4; C1; E Endemic to the Himalaya (Shrestha et al., 2006
149 Primula rosea Royle 223 –5·543 10·4 VU A3cd + 4; B2b(i,ii,iii,iv,v)c(i,ii,iii); C1 + 2ab; D1; E Endemic to the Himalaya and Hindu Kush (Ali et al., 1972–2009
150 Prunella vulgaris L. 71 16·072 NC LC  
151 Prunus cerosioides D. Don 124 11·402 0·8 NC CR A3 + 4; C1 + 2b; D; E  
152 Pseodomertensia parvifolia (Decne) 37 1·613 3·2 VU A3cd + 4; C1; E  
153 Pseudomertensia moltkioides Royle and Kazmi 85 5·315 4·2 CR A3cd + 4cd; C1 + 2a; E Endemic to Pakistan (Ali et al., 1972–2009
154 Pseudomertensia nemerosa (D. C) R. Stewart and Kazmi 79 4·352 3·6 NT  
155 Pteris vittata L. 47 –12·536 NC  Endemic to the Himalaya (Ali et al., 1972–2009
156 Ranunculus hirtellus Royle ex D. Don 180 –14·276 CR A3cd + 4; C1; E Endemic to the Himalaya (Kumar et al., 2011
157 Ranunculus laetus Wall. Ex Hook.f. and Thoms 80 –13·654 VU A3cd + 4cd; C1 + 2; D; E  
158 Ranunculus muricatus L. 73 –13·611 3·4 NC LC  
159 Rheum australe D.Don 1320 20·406 31·6 NC CR A3cd + 4cd; 2ab; E Endemic species of the Himalayas, Hindu Kush and Karakorum also Vulnerable/Near Threatened (Samant and Dhar, 1997; Shrestha et al., 2006
160 Rhododendron hypenanthum Balf.f 946 1·649 3·8 EN A3cd + 4; B2b(i,ii,iii,iv,v)c(i,ii,iii,iv); C1 + 2ab; Endemic to the Himalayas, Hindu Kush and Karakorum (Shrestha et al., 2006; Rana and Samant, 2009) Vulnerable/Near Threatened 
161 Ribies alpestre Decne 98 6·234 2·2 CR A3 + 4cd; B2b(i,ii,iii,iv,v)c(i,ii,iii,iv); C1 + 2b; D; E  
162 Rosa webbiana Wallich ex Royle 1943 4·648 28 LC  
163 Rubus sanctus Schreber 72 10·395 1·6 NT  
164 Rumex dentatus L. 632 12·885 42·8 LC  
165 Rumex nepalensis Sprenge 147 21·929 NC NT  
166 Salix flabellaris Andersson in Kung 1100 14·506 13·6 EN A3cd + 4; B2b(i,ii,iii,iv,v)c(i,iv); C1 + 2ab; D Endemic to the Himalaya, Hindu Kush and Karakorum (Ali et al., 1972–2009
167 Salvia lanata Roxb. 88 –4·754 3·4 NC NT Alien 
168 Salvia moorcroftiana Wallich ex Benth 103 1·029 NC EN A3 + 4cd; C1 + 2; D; E Endemic to the Himalaya and Hindu Kush (Ali et al., 1972–2009
169 Sambucus weightiana Wall. Ex Wight and Arn 4926 –22·759 34·4 LC  
170 Saussurea albescens Hook. f. and Thoms 59 –12·524 NC NT  
171 Saussurea fastuosa (Decne.) Schultz-Bip 29 –2·337 NT  
172 Saussurea graminifolia Wallich ex DC 85 –12·685 NC NT  
173 Scirpus polygenosa 126 –12·033 5·8 NC LC  
174 Sedum album L. 304 –15·133 17 NC LC  
175 Sedum awersii Ledeb 195 –14·369 10·4 NC LC  
176 Senecio chrysanthemoides DC 94 –12·741 2·6 NC LC  
177 Sibbaldia cuneata O. Kuntze 1162 –8·221 31·2 NC LC  
178 Silene vulgaris Garck 39 –2·4 4·2 NT  
179 Sorbaria tomentosa (Lindl.) Rehder 730 –12·692 EN A3cd + 4; C1; E  
180 Stipa himalaica Rozhev. 72 –12·605 4·8 LC Endemic to the Himalaya and Karakorum (Ali et al., 1972–2009
181 Strobilanthes glutinosus Nees 59 –6·524 2·2 VU A3cd + 4; B2b(i,ii,iii,iv,v)c(i,ii,iii,iv); C1 + 2ab; D1 Endemic to the Himalaya (Ali et al., 1972–2009
182 Swertia ciliata (D. Don ex G. Don) B. L. Burtt 82 11·333 NC NT Endemic to the Himalayas and Hindu Kush (Shrestha et al., 2006
183 Swertia speciosa D. Don 19 –12·275 1·4 NC NT  
184 Sysimbrium irio L. 67 11·426 3·2 LC  
185 Tamarix dioica Roxb. ex Roch 195 –10·369 3·2 NC LC  
186 Taraxacum officinale Weber 689 3·494 52·2 NC LC Alien 
187 Thymus linearis Benth. 2333 4·964 64·2 NC LC  
188 Trifolium refens L. 357 15·625 16·8 LC Alien 
189 Trillidium govanianum (Wall. Ex D. Don) Kunth 48 –6·456 1·8 EN A3 + 4; C1 + 2; D; E Endemic to the Himalaya (Rana and Samant, 2009
190 Tussilago farfara L. 43 6·576 2·2 EN A3 + 4; C1 + 2; D; E  
191 Ulmus wallichiana Planch. 21 5·712 0·6 CR A3cd + 4cd; B2b(i,ii,iii,iv,v)c(i,ii,iii,iv); C1 + 2ab; D Endemic to the Himalaya (Ali et al., 1972–2009
192 Urtica dioica L. 407 9·314 16·4 LC Alien 
193 Valeriana pyrolifolia Decne 185 12·693 10·6 NC LC  
194 Verbascum thapsus L. 434 3·109 33·2 NC LC Alien 
195 Viburnum cotinifolium D. Don 163 12·83 6·2 EN A3 + 4; C1 + 2; D; E Endemic to the Himalaya (Pant and Samant, 2006; Rana and Samant, 2009; Singh and Samant, 2010
196 Viburnum grandiflorum Wall. Ex DC. 79 8·352 1·6 VU A3 + 4; C1; E  
197 Vicia bakeri Ali. 43 –12·424 1·6 CR A3bcd + 4abcd; B2b(i,ii,iii,iv,v)c(i,ii,iii,iv); C1 + 2b; D; E Endemic to the Himalaya/Pakistan (Ali et al., 1972–2009
198 Viola canescens Wall. Ex Roxb. 1656 8·369 68·4 NC VU A3cd + 4; B2b(i,ii,iii,iv,v)c(i,ii,iii,iv); C1 + 2ab Endemic to the Himalayas (Rana and Samant, 2009) and Vulnerable species of Pakistan 
Species no. Name IV Residual value % Constancy Trend IUCN criteria applied to our results Endemic and Threatened status (IUCN) at regional and global level (from published literature) 
Abies pindrow Royle 3027 14·038 16 NT  
Acantholimon lycopodioides Boiss. 154 –14·114 NC VU A4cd; B2bc(i,ii,iv); C1 + 2ab  
Acer caesium Wall ex Brandis 49 7·538 1·6 CR A3cd + 4cd; B2b(iii,v)c(i,ii,iv); C1 + 2ab; D Vulnerable in the Himalaya 
Achillea millefolium L. 364 –5·419 16·6 NC LC  
Aconitum heterophyllum Wall. 58 –6·4 3·4 EN A3cd + 4 cd; C1 + 2ab; D; E Endemic to the Himalaya and Hindu Kush /Vulnerable species of Pakistan 
Aconitum violaceum Jacquen ex. Stapf 154 –5·977 8·4 VU A4cd; B2bc(i,ii,iv); C1 + 2ab; D Endemic to the Himalaya also Vulnerable (Kumar et al., 2011
Actaea spicata L. 33 –8·362 1·4 NT  
Adiantum venustum D. Don 108 –4·828 9·2 NC LC  
Aesculus indica (Wall. Ex Camb) Hook. 11 5·774 0·6 CR A3cd +4cd; C1 + 2ab; D  
10 Alliaria petiolata (M. Bieb.) Cavara and Grande 13 3·942 1·2 CR A3cd +4cd; C1 + 2ab; D  
11 Allium humile Kunth. 155 –12·238 6·8 NT Endemic to the Himalaya (Samant and Dhar, 1997; Pandey et al., 2008
12 Alopecurus arundinaceus Poir. 194 4·637 LC  
13 Anaphalis triplinervis (Sims) C. B. Clarke 132 4·023 6·2 NT  
14 Androsace hazarica R.R. Stewart ex Y. Nasir 62 –11·543 4·6 CR A4cd; B2bc(i,ii,iv); C1 + 2ab; E Endemic to Pakistan (Ali et al., 1972–2009
15 Androsace primuloides Duby 133 –11·984 CR A3cd + 4; B2b(iii,v)c(i,ii,iv); C1 + 2a; E Endemic to the Himalaya and Hindu Kush 
16 Androsace rotundifolia Watt 456 –10·121 26·8 LC  
17 Anemone falconeri Thoms. 155 –10·12 9·6 EN A3cd + 4cd; B2b(iii,v)c(i,ii,iv); C1 + 2a; D; E Endemic to the Himalaya and Hindu Kush (Ali et al., 1972–2009
18 Anemone obtusiloba D.Don 143 –8·046 9·2 NT Endemic to the Himalayas, Hindu Kush and Karakorum (Shrestha et al., 2006; Rana and Samant, 2009
19 Anemone rupicola Cambess 227 –12·307 8·2 NT  
20 Anemone tetrasepala Royle 304 –11·046 10·6 NT Endemic to the Himalayas and Hindu Kush (Rana and Samant, 2009
21 Angelica glauca Edgew. 167 –4·195 EN A3cd + 4cd; B2b(iii,v)c(i,ii,iv); C1 + 2; D; E Endemic to the Himalaya and Hindu Kush (Samant and Dhar, 1997; Rana and Samant, 2009
22 Apluda mutica (L.) Hack 188 –10·325 8·6 LC  
23 Aquiligea fragrans Benth. 29 –9·337 1·2 CR A3cd + 4cd; B2b(iii)c(i,iv); C1 + 2; D Endemic to the Himalaya and Hindu Kush (Ali et al., 1972–2009
24 Arnebia benthamii Wallich ex. G. Done 107 –12·71 CR A3cd + 4cd; B2b(iii,v)c(i,ii,iii,iv); C1 + 2ab; D Endemic to the Himalaya/Critically Endangered in the Himalaya (Shrestha et al., 2006; Kumar et al., 2011
25 Artemisia brevifolia L. 4385 –18·552 40·2 LC  
26 Artemisia vulgaris L. 381 –8·524 6·4 NC LC  
27 Asparagus racemosus Willd. 36 5·619 3·8 CR A3cd + 4cd; B2b(iii,v)c(i,ii); C1 + 2; D; E  
28 Asperula oppositifolia Reg. and Schmalh. 125 –12·934 4·8 NT  
29 Asplenium adiantum-nigrum 18 –12·269 0·6 NT  
30 Aster falconeri (C. B. Clarke) Hutch 243 –13·667 11·6 NC NT Endemic to the Himalaya and Hindu Kush (Shrestha et al., 2006; Rana and Samant, 2009
31 Astragalus anisocanthus Boiss. 271 –4·841 12·8 NC LC  
32 Astragalus scorpiurus Bunge 296 –13·996 13·4 LC  
33 Berberis pseudoumbellata Parker 979 14·761 14·8 NC VU A3cd + 4; C1 + 2ab; D Near Endemic to the Himalaya (Samant and Dhar, 1997; Singh and Samant, 2010
34 Bergenia ciliata (Haw.) Sternb. 45 –6·437 2·6 VU A3 + 4cd; C1; D1 Endemic to the Himalaya (Shaheen et al., 2011
35 Bergenia strachyei (Hook. f. and Thoms) Engl 958 –9·183 17·4 LC Nearly endemic to the Himalayas and Hindu Kush also Vulnerable in the Himalaya (Ali et al., 1972–2009; Singh and Samant, 2010; Kumar et al., 2011
36 Betula utilis D. Don 2635 9·312 8·4 CR A3cd + 4; B2b(i,ii,iii,iv,v)c(i,ii,iv);C1 + 2a; D; E Endangered species in the Himalaya and Hindu Kush (Ali et al., 1972–2009
37 Bistorta affinis (D.Don) Green 788 7·829 25·2 LC Endemic to the Himalayas, Hindu Kush and Karakorum (Shrestha et al., 2006; Rana and Samant, 2009
38 Bistorta amplexicaulis (D. Don) 180 13·625 11·4 NC NT Endemic to the Himalaya and Hindu Kush (Rana and Samant, 2009)/Endangered species of the Pakistan 
39 Bromus hordeaceus L. 279 3·109 11·8 NC LC  
40 Caltha alba Jack. Ex Comb 182 17·712 10·4 NT  
41 Capsella bursa-pastoris (L.) Medic. 86 4·308 5·6 NC LC  
42 Cassiope fastigiata (Wallich) D. Done 49 –12·325 1·2 EN A3cd + 4cd; B2b(iii,v)c(i,ii,iv); C1 + 2ab; D; Endemic to the Himalayas, Hindu Kush and Karakorum (Shrestha et al., 2006
43 Cedrus deodara (Roxb. Ex Lamb.) G. Don 663 24·724 7·2 CR A3cd + 4cd; B2b(iii,v)c(i,ii,iv); C1 Endemic to the Himalaya and Hindu Kush; National tree of the Pakistan (Takhtadzhian and Cronquist, 1986; Ali, 2008; Singh and Samant, 2010
44 Cerastium fontanum Baumg. 667 –7·338 21·8 NC LC  
45 Chenopodium album L. 196 18·625 6·8 NC LC  
46 Clematis montana Buch.-Ham. ex DC 110 –0·841 5·6 NT  
47 Colchicum luteum Baker 261 3·221 NC EN A3cd + 4cd; B2b(iii,v)c(i,ii,iv); C1 Endangered species of Pakistan (Ali et al., 1972–2009
48 Convolulus arvensis L. 57 0·489 3·2 NC VU A3 + 4; C1 + 2a; E  
49 Corydalis diphylla Wall. 194 –3·363 9·4 NC LC  
50 Corydalis govaniana Wall. 130 –0·965 5·2 EN A3cd + 4cd; B2b(iii,v)c(i,ii,iv); C1 + 2ab; D; Endemic to the Himalayas of Pakistan (Ali et al., 1972–2009; Rana and Samant, 2009; Kumar et al., 2011
51 Cotoneaster cashmiriensis G.Klotz 79 –12·648 3·4 VU A3cd + 4; B2b(i,ii,iii,iv,v)c(i,ii,iii,iv); C1 + 2ab; D1; E  
52 Cotoneaster microphyllus Wall. ex Lindl 291 9·035 12 VU A3cd + 4; C1; D  
53 Crataegus oxycantha L. 10 –1·269 0·8 CR A3cd + 4; C1 + 2; D; E  
54 Cynoglossum glochidiatum Wall. Ex Benth 792 3·873 36·2 NC LC  
55 Cynoglossum himaltoni 261 –0·915 12·8 LC  
56 Cynoglossum lanceolatum L. –3·201 0·8 NC LC  
57 Cyperus niveous 379 –14·512 16·6 LC  
58 Cypripedium cordigerum D. Don 34 –5·369 3·2 CR A4cd; B2bc(i,ii,iv); C1 + 2ab; D Endemic to the Himalaya (Ali et al., 1972–2009)/Endangered/on CITES list 
59 Dactylis glomerata L. 361 6·6 13·2 NC LC  
60 Dactylorhiza hatagirea (D. Don) Soo 29 –9·337 3·4 CR A3cd + 4; B2b(i,ii,iii,iv,v)c(i,ii,iii,iv); C1; E Endemic to the Himalaya and Hindu Kush/Critically Endangered (Singh and Samant, 2010; Kumar et al., 2011
61 Dioscoria deltoidia Wall. 30 –4·344 3·6 CR A3cd + 4; B2b(iii,v)c(i,ii,iv); C1 + 2; D; E Vulnerable/on CITES list 
62 Draba oreads Schrenk 85 –2·685 6·6 NC LC  
63 Dracocephalum nutans L. 115 –4·872 4·6 NT  
64 Dryopteris juxtapostia Christ 147 14·929 NT  
65 Dryopteris stewartii Fras.-Jenk. 791 –6·195 25·4 LC Endemic to Pakistan (Ali et al., 1972–2009
66 Eclipta prostrata L. 49 –12·462 4·8 NC LC  
67 Ephedra gerardiana Wall. Ex Stapf 604 –0·91 8·2 EN A3 + 4cd; C1 + 2ab; D; E Endangered species of Pakistan 
68 Epilobium angustifolium L. 40 3·594 3·2 VU A4cd; B2bc(i,ii,iv); C1 + 2ab; D  
69 Equisetum arvense L. 84 –6·679 5·4 NC LC  
70 Eragrostis cilianensis (All.) Lut. ex F.T. Hubbard 109 0·166 4·8 NC VU A4cd; B2bc(i,ii,iv); C1 + 2ab  
71 Eremurus himalaicus Baker 794 7·792 20·4 LC Endemic to the western Himalaya (Ali et al., 1972–2009
72 Erigeron multiradiatus (Lindl. Ex DC) C. B. Clarke 48 7·544 2·6 EN A3cd + 4; C1 + 2; D; E  
73 Erysimum melicentae Dunn. 57 –4·511 NC VU A3cd + 4; B2b(i,ii,iii,iv,v)c(i,ii,iii,iv); C1 + 2ab; D1 Endemic to the Himalaya and the Hindu Kush (Nasir and Ali, 1971–1998; Shrestha et al., 2006
74 Euphorbia wallichii Hook. f. 165 7·818 7·2 NC CR A3 + 4cd; C1 + 2ab; D  
75 Euphrasia himalayica Wetts. 328 –2·195 16·4 NT Endemic to the Himalaya and Hindu Kush (Shrestha et al., 2006
76 Fragaria nubicola Lindl. Ex Lacaita 1629 9·481 55·6 LC  
77 Fritillaria roylei Hook. f. 24 –9·306 1·4 CR A3 + 4cd; B2b(i,ii,iii,iv,v)c(i,ii,iii,iv); C1 + 2ab; D Endemic to the Himalaya and Hindu Kush/also rare and Critically Endangered (Ali et al., 1972–2009
78 Gagea elegans Wall. Ex D. Don 214 –13·487 9·2 NT  
79 Galium aparine L. 206 11·563 NC LC  
80 Galium asperuloides 230 –3·586 7·6 NC LC Endemic to the Himalayas and Hindu Kush (Singh and Samant, 2010
81 Gentiana carinata Griseb 421 –6·773 14·4 NC LC  
82 Gentiana kurro Royle 70 –9·592 3·4 CR A4cd; B2bc(i,ii,iv); C1 + 2ab; D Endemic to the Himalaya and Hindu Kush/Endangered (Ali et al., 1972–2009
83 Gentiana moorcroftiana (Wallich ex G. Don) Airy Shaw 201 1·594 9·4 VU A3cd + 4; B2b(i,ii,iii,iv,v)c(i,ii,iii,iv); C1 + 2ab; D1; E Endemic to the Himalaya and Hindu Kush (Ali et al., 1972–2009
84 Gentianodes argentia Omer, Ali and Qaiser 115 0·128 4·2 EN A3 + 4cd; B2b(i,ii,iii,iv,v)c(i,ii,iii,iv); C1 + 2; D Endemic to Pakistan (Ali et al., 1972–2009
85 Geranium nepalense Sweet. 86 –6·692 3·4 VU A3cd + 4; B2b(i,ii,iv,v)c(i,ii,iii,iv); C1 + 2ab; D1  
86 Geranium polyanthes Edgew and Hook. F 188 –4·356 10·4 LC  
87 Geranium wallichianum D. Don ex. Sweet 154 18·886 9·2 EN A3 + 4cd; B2b(i,ii,iii,iv,v)c(i,ii,iii,iv); C1 + 2ab Endemic to the Himalaya and Hindu Kush (Ali et al., 1972–2009)/Vulnerable species of Pakistan 
88 Geum elatum Wall. Ex G. Don 74 –12·617 4·8 VU A3 + 4; D; E Endemic to the Himalaya (Shrestha et al., 2006; Rana and Samant, 2009; Kumar et al., 2011
89 Gnaphalium affine D. Don 453 –15·09 19·2 NC LC  
90 Gratiola officinalis L. 0·787 1·4 EN A3 + 4; C1; D; E  
91 Hackelia uncinata (Royle ex Benth) Fischer 462 5·923 24·8 NC LC  
92 Heracleum candicans Wall. ex DC. 28 7·669 3·4 CR A3cd + 4; B2b(iv,v)c(i,ii,iv); C1 + 2ab; D Endemic to the Himalaya and Hindu Kush (Nasir and Ali, 1971–1998; Pant and Samant, 2006
93 Hyoscyamus niger L. 15 –9·251 0·8 CR A3cd + 4; C1; E Near Threatened/Alien (Nasir and Ali, 1971–1998
94 Hypericum perforatum L. 242 16·339 12·6 EN A3 + 4; C1; D; E  
95 Impatiens bicolor Royle 480 3·134 28·8 LC  
96 Impatiens edgeworthii Hook.f. 114 14·861 NC LC  
97 Indigofera heterantha Wall. Ex Brand 17 8·737 0·8 CR A3 + 4cd; B2b(i,v)c(i); C1; D; E  
98 Inula grandiflora Willd. 31 –6·35 0·6 CR A3 + 4cd; B2b(i,ii,iii,iv,v)c(i,ii,iii,iv); C1; D; E Near Threatened in Himalayas (Nasir and Ali, 1971–1998
99 Inula multiradiata 30 –12·344 0·8 NT  
100 Iris hookeriana Foster 1574 –14·979 30·8 NC NT Endemic to the Himalaya and Hindu Kush/Vulnerable species of the Pakistan (Ali et al., 1972–2009
101 Juglans regia L. 214 28·513 2·2 CR A3cd + 4cd; B2b(i,ii,iii,iv,v)c(i,ii,iii,iv); C1 + 2ab Vulnerable species of Pakistan 
102 Juncus membranaceus Royle ex D. Don 198 7·613 4·2 NC LC  
103 Juniperus communis L. 5505 –6·477 38·8 LC  
104 Juniperus excelsa M. Bieb 1063 5·935 21·4 NT  
105 Juniperus squamata Buch.-Ham. ex D. Don 1399 –14·848 11 VU A4cd; B2bc(i,ii,iv); C1 + 2ab Native to the Himalaya and Karakorum 
106 Lathyrus pratensis L. 14 8·756 LC Alien (indigenous to Europe) 
107 Leucus cephalotes (Roth) Spreng. 63 2·451 2·2 VU A3 + 4; C1; E  
108 Malva neglecta Wallr 669 22·649 38·2 NC LC  
109 Mentha longifolia (L.) Hudson. 81 –2·661 LC  
110 Mentha royleana Benth. in Wall. 10 –4·219 0·8 NC EN A3 + 4; C1; D; E  
111 Minuartia kashmirica (Edgew) Mattf 109 –8·834 5·2 NC LC Native to the Himalaya and Karakorum (Ali et al., 1972–2009
112 Morina longifolia Wall. ex. Dcs 36 –12·381 1·8 NC LC  
113 Nepeta laevigata (D. Done) Hand.-Mazz 114 4·06 5·8 EN A3 + 4cd; B2b(i,ii,iii,iv,v)c(i,ii,iii,iv); D; E Native to the Himalaya and Karakorum (Ali et al., 1972–2009
114 Onopordum acanthium L. 469 –16·071 32·2 LC  
115 Onosma bracteatum Wall. 134 7·01 7·2 NT Endemic to the Himalayas (Shrestha et al., 2006
116 Origanum vulgare L. 163 25·83 11·2 NC LC  
117 Orobanche alba Stephen ex Wallid 24 –1·325 1·4 CR A3cd + 4cd; B2b(i,ii,iii,v,v)c(i,ii,iii); C1 + 2ab  
118 Oxyria digyna L. 383 10·463 18·6 NC LC Alien 
119 Oxytropis cachemiriana Camb. 191 13·656 10 LC  
120 Paeonia emodi Wall. Ex Royle 17 17·737 1·2 CR A3cd + 4; B2b(i,ii,iii,iv,v)c(i,ii,iii,iv); C1 + 2ab; Endemic to the Himalaya and Hindu Kush (Samant and Dhar, 1997)/Vulnerable species of Pakistan 
121 Parnassia nubicola Wall. 100 –5·834 4·4 NC NT Endemic to the Himalayas (Pant and Samant, 2006; Shrestha et al., 2006
122 Pedicularis pictinata Wall. ex. Benth 112 3·147 2·8 CR A3 + 4cd; B2b(i,ii,iii)c(i,iv); C1 + 2; D; E Endemic to the Himalaya (Kumar et al., 2011
123 Pennisetum lanatum Klotzsch 84 3·321 3·4 NT  
124 Phleum alpinum L. 63 9·451 NC LC  
125 Phlomis bracteosa Royle ex Benth. 60 8·47 LC Endemic to the Himalayas, Hindu Kush and Karakorum (Shrestha et al., 2006; Singh and Samant, 2010
126 Picea smithiana (Wall.) Boiss. 287 1·06 6·6 EN A3cd + 4; B2b(i,ii,iii,iv,v)c(i,ii,iii,iv); C1 + 2ab; C1 + 2a; E Endemic to the Himalaya, Hindu Kush and Karakorum (Takhtadzhian and Cronquist, 1986; Singh and Samant, 2010
127 Pimpinella acuminata (Edgew.) C.B. Clarke 20 7·718 2·2 CR A3cd + 4cd; C1 + 2b; D; E Endemic to the Himalaya (Ali et al., 1972–2009; Rana and Samant 2009
128 Pimpinella diversifolia (Wall.) DC 58 8·482 2·4 NT  
129 Pinus wallichiana Jackson 2116 5·698 15·6 VU A3cd + 4; B2b(i,iii,v); C1 + 2ab Endemic to the Himalaya, Hindu Kush and Karakorum (Takhtadzhian and Cronquist, 1986; Singh and Samant, 2010
130 Plantago himalaica Pilger 92 –3·729 CR A3 + 4cd; B2b(i,ii,iii,iv,v)c(i,ii,iii); C1 + 2b Endemic to the Himalayas (Nasir and Ali, 1971–1998; Pant and Samant, 2006
131 Plantago lanceolata L. 406 15·32 28 NC LC  
132 Plantago major L. 287 16·178 19·6 EN A3cd + 4; B2b(i,ii,iii,iv,v)c(i,ii,iii,iv); C1 + 2ab; C1; E Rare species of Pakistan 
133 Poa alpina L. 1593 0·319 40 NC LC  
134 Poa annua L. 61 8·464 4·2 NC LC  
135 Poa stewartiana Bor in Kew Bull. 309 6·817 13·8 LC  
136 Podophyllum hexandrum Royle 72 –3·605 CR A3 + 4cd; B2b(i,ii,iii,iv,v)c(i,ii,iii,iv); C1 + 2a; D; E Critically Endangered/on CITES list; endemic to the Himalayas, Hindu Kush and Karakorum (Shrestha et al., 2006
137 Polygonatum verticillatum (L.) Allioni 386 –15·835 9·4 EN A3cd + 4; B2b(i,ii,iii,iv,v)c(i,ii,iii,iv); C2ab Vulnerable in Pakistan/on CITES list 
138 Polygonum alpinum (All.) Schur 641 17·861 17 NC LC  
139 Polygonum aviculare L. 569 –11·338 14·4 NC LC  
140 Polygonum molle (D.Done) Hara 351 –13·189 10·2 LC  
141 Polygonum plebeium R. Br 166 27·283 19 NC LC  
142 Poplus glauca H. Haines 333 9·774 2·8 NC LC  
143 Potentilla anserina L. 567 3·32 22·2 NC LC  
144 Potentilla atrosanguinea Lodd. 216 6·501 8·4 NC NT Endemic to the Himalayas and Hindu Kush (Rana and Samant, 2009
145 Potentilla nepalensis Hook. f. 549 1·376 20·8 NC LC  
146 Primula calderana Balf. F and cooper 82 –4·667 3·6 VU A3cd + 4; B2b(i,ii,iii,iv,v)c(i,ii,iii,iv); C1; D1  
147 Primula denticulata Smith 145 7·942 8·4 EN A4cd; B2bc(i,ii,iv); C1 + 2ab; D; E  
148 Primula glomerata Pax. 58 –4·387 3·8 VU A3 + 4; C1; E Endemic to the Himalaya (Shrestha et al., 2006
149 Primula rosea Royle 223 –5·543 10·4 VU A3cd + 4; B2b(i,ii,iii,iv,v)c(i,ii,iii); C1 + 2ab; D1; E Endemic to the Himalaya and Hindu Kush (Ali et al., 1972–2009
150 Prunella vulgaris L. 71 16·072 NC LC  
151 Prunus cerosioides D. Don 124 11·402 0·8 NC CR A3 + 4; C1 + 2b; D; E  
152 Pseodomertensia parvifolia (Decne) 37 1·613 3·2 VU A3cd + 4; C1; E  
153 Pseudomertensia moltkioides Royle and Kazmi 85 5·315 4·2 CR A3cd + 4cd; C1 + 2a; E Endemic to Pakistan (Ali et al., 1972–2009
154 Pseudomertensia nemerosa (D. C) R. Stewart and Kazmi 79 4·352 3·6 NT  
155 Pteris vittata L. 47 –12·536 NC  Endemic to the Himalaya (Ali et al., 1972–2009
156 Ranunculus hirtellus Royle ex D. Don 180 –14·276 CR A3cd + 4; C1; E Endemic to the Himalaya (Kumar et al., 2011
157 Ranunculus laetus Wall. Ex Hook.f. and Thoms 80 –13·654 VU A3cd + 4cd; C1 + 2; D; E  
158 Ranunculus muricatus L. 73 –13·611 3·4 NC LC  
159 Rheum australe D.Don 1320 20·406 31·6 NC CR A3cd + 4cd; 2ab; E Endemic species of the Himalayas, Hindu Kush and Karakorum also Vulnerable/Near Threatened (Samant and Dhar, 1997; Shrestha et al., 2006
160 Rhododendron hypenanthum Balf.f 946 1·649 3·8 EN A3cd + 4; B2b(i,ii,iii,iv,v)c(i,ii,iii,iv); C1 + 2ab; Endemic to the Himalayas, Hindu Kush and Karakorum (Shrestha et al., 2006; Rana and Samant, 2009) Vulnerable/Near Threatened 
161 Ribies alpestre Decne 98 6·234 2·2 CR A3 + 4cd; B2b(i,ii,iii,iv,v)c(i,ii,iii,iv); C1 + 2b; D; E  
162 Rosa webbiana Wallich ex Royle 1943 4·648 28 LC  
163 Rubus sanctus Schreber 72 10·395 1·6 NT  
164 Rumex dentatus L. 632 12·885 42·8 LC  
165 Rumex nepalensis Sprenge 147 21·929 NC NT  
166 Salix flabellaris Andersson in Kung 1100 14·506 13·6 EN A3cd + 4; B2b(i,ii,iii,iv,v)c(i,iv); C1 + 2ab; D Endemic to the Himalaya, Hindu Kush and Karakorum (Ali et al., 1972–2009
167 Salvia lanata Roxb. 88 –4·754 3·4 NC NT Alien 
168 Salvia moorcroftiana Wallich ex Benth 103 1·029 NC EN A3 + 4cd; C1 + 2; D; E Endemic to the Himalaya and Hindu Kush (Ali et al., 1972–2009
169 Sambucus weightiana Wall. Ex Wight and Arn 4926 –22·759 34·4 LC  
170 Saussurea albescens Hook. f. and Thoms 59 –12·524 NC NT  
171 Saussurea fastuosa (Decne.) Schultz-Bip 29 –2·337 NT  
172 Saussurea graminifolia Wallich ex DC 85 –12·685 NC NT  
173 Scirpus polygenosa 126 –12·033 5·8 NC LC  
174 Sedum album L. 304 –15·133 17 NC LC  
175 Sedum awersii Ledeb 195 –14·369 10·4 NC LC  
176 Senecio chrysanthemoides DC 94 –12·741 2·6 NC LC  
177 Sibbaldia cuneata O. Kuntze 1162 –8·221 31·2 NC LC  
178 Silene vulgaris Garck 39 –2·4 4·2 NT  
179 Sorbaria tomentosa (Lindl.) Rehder 730 –12·692 EN A3cd + 4; C1; E  
180 Stipa himalaica Rozhev. 72 –12·605 4·8 LC Endemic to the Himalaya and Karakorum (Ali et al., 1972–2009
181 Strobilanthes glutinosus Nees 59 –6·524 2·2 VU A3cd + 4; B2b(i,ii,iii,iv,v)c(i,ii,iii,iv); C1 + 2ab; D1 Endemic to the Himalaya (Ali et al., 1972–2009
182 Swertia ciliata (D. Don ex G. Don) B. L. Burtt 82 11·333 NC NT Endemic to the Himalayas and Hindu Kush (Shrestha et al., 2006
183 Swertia speciosa D. Don 19 –12·275 1·4 NC NT  
184 Sysimbrium irio L. 67 11·426 3·2 LC  
185 Tamarix dioica Roxb. ex Roch 195 –10·369 3·2 NC LC  
186 Taraxacum officinale Weber 689 3·494 52·2 NC LC Alien 
187 Thymus linearis Benth. 2333 4·964 64·2 NC LC  
188 Trifolium refens L. 357 15·625 16·8 LC Alien 
189 Trillidium govanianum (Wall. Ex D. Don) Kunth 48 –6·456 1·8 EN A3 + 4; C1 + 2; D; E Endemic to the Himalaya (Rana and Samant, 2009
190 Tussilago farfara L. 43 6·576 2·2 EN A3 + 4; C1 + 2; D; E  
191 Ulmus wallichiana Planch. 21 5·712 0·6 CR A3cd + 4cd; B2b(i,ii,iii,iv,v)c(i,ii,iii,iv); C1 + 2ab; D Endemic to the Himalaya (Ali et al., 1972–2009
192 Urtica dioica L. 407 9·314 16·4 LC Alien 
193 Valeriana pyrolifolia Decne 185 12·693 10·6 NC LC  
194 Verbascum thapsus L. 434 3·109 33·2 NC LC Alien 
195 Viburnum cotinifolium D. Don 163 12·83 6·2 EN A3 + 4; C1 + 2; D; E Endemic to the Himalaya (Pant and Samant, 2006; Rana and Samant, 2009; Singh and Samant, 2010
196 Viburnum grandiflorum Wall. Ex DC. 79 8·352 1·6 VU A3 + 4; C1; E  
197 Vicia bakeri Ali. 43 –12·424 1·6 CR A3bcd + 4abcd; B2b(i,ii,iii,iv,v)c(i,ii,iii,iv); C1 + 2b; D; E Endemic to the Himalaya/Pakistan (Ali et al., 1972–2009
198 Viola canescens Wall. Ex Roxb. 1656 8·369 68·4 NC VU A3cd + 4; B2b(i,ii,iii,iv,v)c(i,ii,iii,iv); C1 + 2ab Endemic to the Himalayas (Rana and Samant, 2009) and Vulnerable species of Pakistan 

The importance values (IV) and Constancy refer to the quadrat (phytosociological) data set; social perception (trend) refer to the questionnaires (ethnobotanical) data set whilst residual values refer to the combined analyses of both the data sets. Bold text indicates endemic species. These are endemics of the Himalayas, Hindukush and Karakorum.

Comments

0 Comments