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† Background The secondary cell wall is a defining feature of xylem cells and allows them to resist both gravitational
forces and the tension forces associated with the transpirational pull on their internal columns of water. Secondary
walls also constitute the majorityof plant biomass. Formation of secondary walls requires co-ordinated transcription-
al regulation of the genes involved in the biosynthesis of cellulose, hemicellulose and lignin. This co-ordinated
control appears to involve a multifaceted and multilayered transcriptional regulatory programme.
† Scope Transcription factor MYB46 (At5g12870) has been shown to function as a master regulator in secondary
wall formation in Arabidopsis thaliana. Recent studies show that MYB46 not only regulates the transcription
factors but also the biosynthesis genes for all of the three major components (i.e. cellulose, hemicellulose and
lignin) of secondary walls. This review considers our current understanding of the MYB46-mediated transcriptional
regulatory network, including upstream regulators, downstream targets and negative regulators of MYB46.
† Conclusions and Outlook MYB46 is a unique transcription factor in that it directly regulates the biosynthesis
genes for all of the three major components of the secondary wall as well as the transcription factors in the biosyn-
thesis pathway. As such, MYB46 may offer a useful means for pathway-specific manipulation of secondary wall bio-
synthesis. However, realization of this potential requires additional information on the ‘MYB46-mediated
transcriptional regulatory programme’, such as downstream direct targets, upstream regulators and interacting part-
ners of MYB46.

Key words: Plant cell wall, secondary wall biosynthesis, MYB46, transcription factor, At5g12870, transcriptional
regulation, biomass, Arabidopsis thaliana.

INTRODUCTION

Vascular plants have evolved to have secondary cell wall struc-
ture between the plasma membrane and the primary cell wall
in fibres and tracheid/vessel elements, which provide mechanical
support for the growing body and serve as a conduit for long-
distance transport of water and solutes, respectively. The second-
ary walls of these cells allow them to resist gravitational forces
and the forces of the tension associated with the transpirational
pull on their internal columns of water. Economically, secondary
walls constitute the vast majority of plant biomass, which is of
primary importance to humans for fibre, pulp and paper manu-
facture, and as an environmentally cost-effective renewable
source of energy. Formation of secondary walls requires co-
ordinated transcriptional regulation of the genes involved in
the biosynthesis of the major secondary wall components (e.g.
cellulose, hemicellulose and lignin). Complex transcriptional
networks appear to be involved in the co-ordinated regulation
of secondary wall biosynthesis (Demura and Ye, 2010; Ko
et al., 2011, 2012; Wang and Dixon, 2011).

Many transcription factors (TFs) have been identified as
central regulators of secondary wall biosynthesis (for recent
reviews, see Yamaguchi and Demura, 2010; Zhang et al.,
2010; Zhong et al., 2010a; Wang and Dixon, 2011; Zhao

and Dixon, 2011; Ko et al., 2012; Pimrote et al., 2012; Hussey
et al., 2013; Schuetz et al., 2013). Of these, MYB46
(At5g12870) and its paralogue, MYB83 (At3g08500), have
been shown to function as a master switch for the secondary
wall biosynthetic programme in Arabidopsis thaliana (Zhong
et al., 2007a; Ko et al., 2009). Recent studies on this MYB46-
mediated regulation have provided novel insights into the tran-
scriptional control of secondary wall biosynthesis (Kim et al.,
2013a, b, 2014). This review describes the current understanding
of the MYB46-mediated transcriptional regulatory network and
its implication on pathway-specific engineering of the properties
and quantity of plant biomass.

MYB46-MEDIATED TRANSCRIPTIONAL
REGULATION OF SECONDARY WALL

BIOSYNTHESIS

The TF MYB46, a central regulator in secondary wall formation
(Zhong et al., 2007a; Ko et al., 2009), is specifically expressed in
both fibres and xylem cells undergoing secondary wall thicken-
ing (Zhong et al., 2007a). Promoter activity of MYB46 was also
detected in both protoxylem and metaxylem (Nakano et al.,
2010). Constitutive overexpression of either MYB46 or its
close homologue MYB83 upregulates the genes involved in
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secondary wall biosynthesis (e.g. cellulose, hemicellulose and
lignin biosynthesis genes), resulting in ectopic deposition of
secondary walls even in epidermis, cortex and pith cells that
are normally parenchymatous. On the other hand, dominant sup-
pression of MYB46 significantly reduced secondary wall thick-
ening in the fibres and vessels of the transgenic plants (Zhong
et al., 2007a; Ko et al., 2009). Indeed, myb46myb83 double
mutants show lack of secondary wall formation in both the
vessels and fibres, and severe growth arrest in young seedlings
followed by wilting and subsequent death (McCarthy et al.,
2009). These observations clearly suggest that MYB46/
MYB83 function as an essential regulator for secondary cell
wall biosynthesis in arabidopsis. However, single myb46 or
myb83 loss-of-function mutants do not produce any observable
phenotype, while the myb46myb83 double mutant results in a
‘seedling-lethal’ phenotype, suggesting functional redundancy
between the two TFs.

Furthermore, several MYB46 orthologues from other plant
species have also been shown to function as a master switch
for secondary wall biosynthesis, including PtMYB4 from pine,
EgMYB2 from eucalyptus, OsMYB46 from rice, PtrMYB2/3/
20/21 from poplar and ZmMYB46 from maize (Table 1)
(Patzlaff et al., 2003; Goicoechea et al., 2005; Zhong et al.,
2011, 2013).

Upstream regulators of MYB46MYB83

Upstream direct regulators of MYB46 are largely unknown.
Several studies using inducible expression and/or activation
systems coupled with comparative transcriptome analyses
demonstrated that secondary wall NAC (NAM, ATAT1/2 and
CUC2) TFs, such as NST1, NST2, NST3/ANAC012/SND1,
VND6 and VND7, are direct upstream regulators of MYB46/
MYB83 (Demura and Ye, 2010; Ohashi-Ito et al., 2010;
Yamaguchi et al., 2011). The NAC TF family proteins are char-
acterized by a conserved NAC domain located at the N-terminal
region and a highly divergent C-terminal activation domain
(Olsen et al., 2005). These TFs are specific to plants and play
diverse roles in plant defence, growth and development (Olsen
et al., 2005).

Several VASCULAR RELATED NAC DOMAIN (VND1–
VND7) TF genes were isolated by whole-genome microarray
analysis of transdifferentiating tracheary elements (TEs) in ara-
bidopsis cell culture (Kubo et al., 2005). Expression of these
VND genes is spatially and temporally correlated with TE differ-
entiation. Among these, overexpression of VND6 and VND7
induces ectopic metaxylem and protoxylem formation, respect-
ively, even in highly specialized cell types such as epidermis,
stomata, trichomes and root hairs of arabidopsis and poplar
(Kubo et al., 2005; Yamaguchi et al., 2008, 2010a). On the
other hand, dominant suppression of VND6 and VND7 resulted
in defective metaxylem and protoxylem formation, respectively,
in arabidopsis roots (Kubo et al., 2005). However, single VND
loss-of-function mutants are apparently not defective in TE for-
mation, which indicates the functional redundancy with other
members of the VND family (Kubo et al., 2005). These results
indicate that VND6 and VND7 function as key regulators in
xylem vessel differentiation (Fig. 1; Table 1).

Inaddition,otherNACfamilyTFs, suchas,NACSECONDARY
WALL THICKENING PROMOTING FACTOR1 (NST1), NST2

and NST3/ANAC012/SECONDARY WALL-ASSOCIATED
NAC-DOMAIN 1 (SND1), were identified as key regulators of sec-
ondary wall biosynthesis in fibre cells (Mitsuda et al., 2005, 2007;
Zhong et al., 2006; Ko et al., 2006, 2007; Demura and Ye, 2010).
Overexpression of these NAC genes resulted in ectopic deposition
of secondary walls in non-vascular cell types, while their suppres-
sion reduced secondary wall thickness. For example, the nst1nst3
double knockout showed complete loss of secondary wall thicken-
ing in the fibres (Mitsuda et al., 2007; Zhong et al., 2007b).
However, their double knockout or simultaneous RNAi (RNA
interference) inhibition did not affect secondary wall biosynthesis
in the xylem vessels (Mitsuda et al., 2007; Zhong et al., 2007b).
NST3/ANAC012/SND1 is specifically expressed in fibres, while
VND6 and VND7 are expressed in xylem vessels. Overexpression
of anyof the NSTor VND genes is able to activate the entire second-
ary wall biosynthetic programme, indicating that NST1 and NST3/
ANAC012/SND1 are responsible for secondary wall biosynthesis
in fibres, and VND6 and VND7 are responsible in xylem vessels.
NST2was found tobe responsible for thesecondarywall thickening
of endothecium in anther development (Mitsuda et al., 2005).

Members of the ASYMMETRIC LEAVES2-LIKE/
LATERAL ORGAN BOUNDARIES DOMAIN (ASL/LBD)
protein family were identified as a part of a positive feedback
loop regulating VND6 and VND7 in the transcriptional network
of secondary wall biosynthesis (Soyano et al., 2008).
Overexpression of ASL19/LBD30 and ASL20/LBD18 genes
transdifferentiated non-vascular tissues into TE-like cells in ara-
bidopsis, similar to those induced by VND6 or VND7 overexpres-
sion, while their dominant suppression caused aberrant TEs
(Soyano et al., 2008). Both ASL19 and ASL20 were expressed
in immature TEs, and their expression depends on VND6 and
VND7 (Soyano et al., 2008) (Table 2). Moreover, ectopic expres-
sion of VND7 was detected in plants overexpressing ASL20.
Therefore, ASL20/LBD18 and ASL19/LBD30 function in a
positive feedback loop that amplifies the expression of VND6
and VND7 (Soyano et al., 2008).

Taken together, it appears that the transcriptional network acti-
vated by the secondary wall NACs functions through MYB46/
MYB83 (Ko et al., 2012; Schuetz et al., 2013) (Fig. 1).
Yeast-one hybrid (Y1H) analysis using MYB46 as bait might
lead to identification of additional upstream regulators of MYB46.

Downstream targets of MYB46MYB83

In order to study the downstream transcriptional network
leading to secondary wall biosynthesis controlled by MYB46,
a comprehensive time-course transcriptome profiling was per-
formed with an inducible secondary wall thickening system
in arabidopsis plants by overexpressing MYB46 under the
control of a dexamethasone-inducible promoter (Ko et al.,
2009). This study identified a total of 42 TFs whose expression
either coincides with, or precedes, the induction of secondary
wall biosynthetic genes. Subsequent transient transcriptional
activation assays confirmed that MYB46 activates the expres-
sion of MYB4, MYB7, MYB32, KNAT7, MYB52, MYB54,
MYB63 and AtC3H14 (Fig. 1; Tables 1 and 2). Among them,
AtC3H14, MYB52 and MYB63 were shown to activate the
genes involved in secondary wall biosynthesis (Ko et al.,
2009) (Table 2).
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Identification of cis-acting regulatory elements (i.e.
TF-binding motifs) that are recognized by MYB46 may facilitate
the search for direct downstream target genes of MYB46.

Independent studies by Kim et al (2012) and Zhong and Ye
(2012) identified such motifs. Kim et al. (2012) analysed the pro-
moter region of the TF gene AtC3H14, a known direct target of

TABLE 1. Regulators identified in the transcriptional network of secondary wall biosynthesis in plants

Protein name ID Plant Function Regulation References

MYB family transcription factors
MYB46 At5g12870 Arabidopsis thaliana A direct target of SND1 and regulates secondary

wall biosynthesis
Activator Zhong et al. (2007a);

Ko et al. (2009)
MYB83 At3g08500 Arabidopsis thaliana Act redundantly with MYB46 Activator McCarthy et al. (2009)
MYB26/MS35 At3g13890 Arabidopsis thaliana Regulates secondary wall thickening in the

endothecium
Activator Yang et al. (2007)

MYB52 At1g17950 Arabidopsis thaliana Regulates secondary wall biosynthesis Activator Zhong et al. (2008)
MYB54 At1g73410 Arabidopsis thaliana Regulates secondary wall biosynthesis Activator Zhong et al. (2008)
MYB85 At4g22680 Arabidopsis thaliana Regulates lignin biosynthesis Activator Zhong et al. (2008)
MYB103 At1g63910 Arabidopsis thaliana Regulates secondary wall biosynthesis Activator Zhong et al. (2008)
MYB58 At1g16490 Arabidopsis thaliana Activates lignin biosynthetic pathway Activator Zhou et al. (2009)
MYB63 At1g79180 Arabidopsis thaliana Activates lignin biosynthetic pathway Activator Ko et al. (2009);

Zhou et al. (2009)
MYB75/PAP1 At1g56650 Arabidopsis thaliana Represses lignin biosynthetic pathway Repressor Bhargava et al. (2010)
MYB32 At4g34990 Arabidopsis thaliana Represses SND1 and lignin biosynthesis Repressor Wang et al. (2011)
MYB4 At4g38620 Arabidopsis thaliana Probably similar function to MYB32 Repressor Wang et al. (2011)
MYB7 At2g16720 Arabidopsis thaliana Probably similar function to MYB32 Repressor Wang et al. (2011)
PtMYB1 AY356372 Pinus taeda Regulates secondary wall biosynthesis Activator Bomal et al. (2008)
PtMYB4 AY356371 Pinus taeda Regulates lignin biosynthesis Activator Patzlaff et al. (2003)
PtMYB8 DQ399057 Pinus taeda Regulates secondary wall biosynthesis Activator Bomal et al. (2008)
PtrMYB2 Potri.001G258700 Populus trichocarpa Regulates secondary wall biosynthesis Activator Zhong et al. (2013)
PtrMYB3 Potri.001G267300 Populus trichocarpa Regulates secondary wall biosynthesis Activator Zhong et al. (2013)
PtrMYB20 Potri.009G061500 Populus trichocarpa Regulates secondary wall biosynthesis Activator Zhong et al. (2013)
PtrMYB21 Potri.009G053900 Populus trichocarpa Regulates secondary wall biosynthesis Activator Zhong et al. (2013)
PttMYB21a AJ567345 P. tremula × tremuloides Negatively regulates lignin biosynthesis Repressor Karpinska et al. (2004)
EgMYB1 AJ576024 Eucalyptus gunnii Negatively regulates secondary wall formation Repressor Legay et al. (2010)
EgMYB2 AJ576023 Eucalyptus gunnii Positvely regulates secondary wall formation Activator Goicoechea et al. (2005)
OsMYB46 Os12g0515300 Oryza sativa Regulates secondary wall biosynthesis Activator Zhong et al. (2011)
ZmMYB46 JN634085 Zea mays Regulates secondary wall biosynthesis Activator Zhong et al. (2011)
ZmMYB31 NM_001112479 Zea mays Directly represses lignin biosynthesis Repressor Fornale et al. (2006,

2010)
ZmMYB42 NM_001112539 Zea mays Represses lignin biosynthesis Repressor Sonbol et al. (2009)
TaMYB4 JF746995 Triticum aestivum Negatively regulates lignin biosynthesis Repressor Ma et al. (2011)
PvMYB4 JF299185 Panicum virgatum Negatively regulates lignin biosynthesis Repressor Shen et al. (2012)

NAC family transcription factors
NST1 At2g46770 Arabidopsis thaliana Regulates secondary wall thickenings and

required for anther dehiscence
Activator Mitsuda et al. (2005)

NST2 At3g61910 Arabidopsis thaliana Regulates secondary wall thickenings and
required for anther dehiscence

Activator Mitsuda et al. (2005)

NST3/ANAC012/
SND1

At1g32770 Arabidopsis thaliana Regulates secondary wall synthesis in fibres Activator Zhong et al. (2006);
Ko et al. (2007)

SND2 At4g28500 Arabidopsis thaliana Regulates secondary wall biosynthesis Activator Zhong et al. (2008)
SND3 At1g28470 Arabidopsis thaliana Regulates secondary wall biosynthesis Activator Zhong et al. (2008)
VND6 At5g62380 Arabidopsis thaliana Promotes protoxylem differentiation Activator Kubo et al. (2005)
VND7 At1g71930 Arabidopsis thaliana Promotes metaxylem differentiation Activator Kubo et al. (2005)
VNI2 At5g13180 Arabidopsis thaliana Negatively regulates xylem vessel formation Repressor Yamaguchi et al. (2010)
XND1 At5g64530 Arabidopsis thaliana Negatively regulates lignocellulose synthesis and

PCD in xylem.
Repressor Zhao et al. (2008)

MtNST1 Medicago truncatula Regulates secondary wall biosynthesis Activator Zhao et al. (2010b)

Other transcription factors
ASL19/LBD30 At4g00220 Arabidopsis thaliana Positively regulates xylem differentiation Activator Soyano et al. (2008)
ASL20/LBD18 At2g45420 Arabidopsis thaliana Positively regulates xylem differentiation Activator Soyano et al. (2008)
AtC3H14 At1g66810 Arabidopsis thaliana Regulates secondary wall biosynthesis Activator Ko et al. (2009)
KNAT7 At1g62990 Arabidopsis thaliana Negatively regulates secondary wall synthesis Repressor Li et al. (2012)
OFP4 At1g06920 Arabidopsis thaliana Forms a functional complex with KNAT7 to

repress secondary cell wall formation
Repressor Li et al. (2011)

SHN2 At5g25390 Arabidopsis thaliana Co-ordinated activation of cellulose and
repression of lignin biosynthesis

Activator Ambavaram et al. (2011)

WRKY12 At2g44745 Arabidopsis thaliana Represses secondary wall formation in pith Repressor Wang et al. (2010)
MtSTP HM622067 Medicago truncatula Represses secondary wall formation in pith Repressor Wang et al. (2010)
Ntlim1 AB079513 Nicotiana tabacum Regulates lignin biosynthesis Activator Kawaoka et al. (2000)

Ko et al. — MYB46/MYB83-mediated regulation of secondary wall biosynthesis 1101

D
ow

nloaded from
 https://academ

ic.oup.com
/aob/article/114/6/1099/2769192 by guest on 24 April 2024



Downstream
targets

Developmental
process
Direct transcriptional
activation
Indirect transcriptional
activation
Transcriptional
inhibition
Protein–protein
interaction

Upstream
regulators

Protoxylem
identity

Metaxylem
identity

Xylem cell-fate determination

VND6VND7ASL19
ASL20

VNI2

WRKY12

MYB4
MYB7
MYB32

KNAT7

MYB75

NST3

NST2

MYB26

MYB103
SND3

MYB46
MYB83

AtC3H14
MYB43
MYB52
MYB54

MYB58
MYB63

Biosynthesis of secondary cell wall
(cellulose, xylan, lignin)

NST1

Fibre
identity

FI G. 1. MYB46/MYB83 function as a central regulator of secondary wall biosynthesis. Secondary wall biosynthesis is controlled by a complex and multifaceted
transcriptional network including positive and negative feedback/forward regulation. Secondary wall NACs are upstream regulators of MYB46/MYB83, while
several transcription factors are downstream targets. MYB46/MYB83 regulate the secondarywall biosynthesis genes either directlyorco-operatively with downstream

target transcription factors. Negative regulators are highlighted in red.

TABLE 2. Transcriptional regulators of secondary wall biosynthesis and their downstream target genes

Protein name Downstream target genes Cis-acting element References

MYB46/83 MYB4, MYB7, MYB32, MYB52, MYB54,
KNAT7, MYB43, MYB58, MYB63, AtC3H14,
CesA4, CesA7, CesA8

M46RE: (T/C)ACC(A/T)A(A/C) (T/C) Ko et al. (2009)
Zhong et al. (2007a)

PAL, C4H, 4CL, HCT, C3H, CCoAOMT, F5H,
CCR, CAD, FRA8, IRX8, IRX9, IRX14

SMRE: ACC(A/T)A(A/C) (T/C) Kim et al. (2012)
Zhong and Ye (2012)

VND6 MYB46/83, MYB5, MYB63, VND7, MYB103 SNBE: (T/A)NN(C/T) (T/C/G)
TNNNNNNNA(A/C)GN(A/C/T) (A/T)

Demura and Ye (2010)
Ohashi-Ito et al. (2010)
Zhong et al. (2010b)

VND7 MYB46/83, MYB58, MYB63, BFN1, XCP1,
XCP2, XSP1, LBD18, LBD30, MYB103, ASL19,
ASL20, CesA4, CesA8

SNBE: (T/A)NN(C/T) (T/C/G)
TNNNNNNNA(A/C)GN(A/C/T) (A/T)

Yamaguchi et al. (2011)
Soyano et al. (2008)
Zhong et al. (2010b)

NST1 MYB46/83, MYB58, MYB63 SNBE: (T/A)NN(C/T) (T/C/
G)TNNNNNNNA(A/C)GN(A/C/T) (A/T)

Mitsuda et al. (2007)
Zhong et al. (2010b)

SND1/NST3/ANAC012 MYB4, MYB7, MYB20, MYB32, MYB42,
MYB43, MYB52, MYB54, MYB58, MYB69,
MYB85, MYB46/83, SND2, SND3, MYB103,
KNAT7, VND7

SNBE: (T/A)NN(C/T) (T/C/G)
TNNNNNNNA(A/C)GN(A/C/T) (A/T)

Zhong et al. (2006)
Zhong et al. (2007a)
Ko et al. (2007)
McCarthy et al. (2009)
Zhong et al. (2010b)

MYB58/63 LAC4, PAL1, C4H, 4CL1, HCT, C3H1,
CCoAOMT1, CCR1, COMT, CAD6

AC-I: ACCTACC, AC-II: ACCAACC,
AC-III: ACCTAAC

Zhou et al. (2009)
Zhong et al. (2008)

MYB85 4CL1 ND Zhong et al. (2008)

KNAT7 CesA1, CesA3, CesA6, IRX8, IRX9, IRX10,
FRA8, CesA4, CesA7, CesA8, PAL1, C4H,
4CL1, HCT, C3H1, CCoAOMT1, CCR1, F5H1,
COMT1, CAD5

ND Li et al. (2012)

MYB4 C4H ND Jin et al. (2000)

Bold and underlined genes are suggested as direct targets.
ND, not determined.
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MYB46 (Ko et al., 2009), and identified an eight-nucleotide core
motif ([A/G][G/T]T[A/T]GGT[A/G]) named M46RE (MYB46-
responsive cis-regulatory element) that is recognized by
MYB46. Various in vitro and in vivo experimental approaches
[e.g. electrophoretic mobility shift assay (EMSA), transient tran-
scriptional activation assay and chromatin immunoprecipitation
(ChIP) analysis] were used to confirm that M46RE is a ‘neces-
sary and sufficient’ element for MYB46-mediated transcription-
al activation of the target genes. Zhong and Ye (2012) also
reported a cis-acting motif called SMRE (secondary wall MYB-
responsive element, ACC[A/T]A[A/C][T/C]) that is recognized
by MYB46. This motif was identified by MYB46 binding assays
with serial deletions of the promoter of MYB63, another direct
target of MYB46. These two cis-elements (i.e. M46RE and
SMRE) are essentially identical except for the eighth nucleotide
in M46RE that is absent in SMRE (Table 2).

Several TFs identified as putative direct target of MYB46 have
these elements in their promoter region, including AtC3H14,
MYB43, MYB58, MYB63 and KNAT7 (Kim et al., 2012;
Zhong and Ye, 2012) (Table 2). The TFs MYB58 and MYB63,
which are direct targets of MYB46, have been shown to function
as direct transcriptional activators of lignin biosynthesis during sec-
ondary wall formation in arabidopsis (Ko et al., 2009; Zhou et al.,
2009; Demura and Ye, 2010). MYB85 also regulates lignin bio-
synthesis by activating the lignin biosynthetic genes and causes
ectopic lignin deposition when overexpressed (Zhong et al., 2008).

A bioinformatics survey of the arabidopsis genome using the
M46RE motif as bait found that many of the cell wall biosynthesis
genes (e.g. cellulose,xylanand lignin)or the genes involved incell
wall biosynthesis-related cellular processes (e.g. cytoskeletal or-
ganization and signal transduction) have the motif in their pro-
moters (Kim et al., 2012). The list includes three secondary
wall-associated cellulose synthase genes (IRX1/CESA8, IRX3/
CESA7and IRX5/CESA4) (Tayloret al., 2003),xylanbiosynthesis
genes (IRX8, IRX9, IRX14 and IRX15-L) (Peña et al., 2007; Jensen
et al., 2010; Wu et al., 2010; Brown et al., 2011), three laccase
genes (IRX12/LACCASE4, LACCASE10 and LACCASE11)
involved in lignin biosynthesis (Brown et al., 2005), two
cytoskeleton-related genes (MYOSIN5 and microtubule-
associated protein) (Kaneda et al., 2010; Pesquet et al., 2010)
and two DUF579 genes (At1g33800 and At4g09990) (Jensen
et al., 2010; Brown et al., 2011). This result suggests that
MYB46 may directly regulate not only TFs but also structural
genes of secondary wall biosynthesis (Kim et al., 2012).

MYB46 directly regulates secondary wall-associated cellulose
synthases

Cellulose, the most abundant biopolymer on Earth, is a central
component of plant cell walls and highly abundant (up to 50 %)
in the secondary walls (Somerville, 2006). Recently, conversion
of cellulose from energy crops into biofuels (e.g. cellulosic
ethanol) has attracted global attention as an alternative fuel
source. In the secondary cell walls of arabidopsis, three cellulose
synthases (CESA4, CESA7 and CESA8) are necessary for
cellulose production (Turner and Somerville, 1997; Taylor
et al., 1999, 2000, 2003; Doblin et al., 2002; Williamson et al.,
2002). However, little was known about the transcriptional regu-
lation of these CESA genes. Interestingly, all three of the second-
ary wall-associated CESA genes (CESA4, CESA7 and CESA8)

have the M46RE motif in their promoters, suggesting that their
expression may be directly regulated by MYB46. Kim et al.
(2013a) reported several lines of experimental evidence in
support of this hypothesis. First, all three of the CESA genes
were highly upregulated in both constitutive and inducible over-
expression of MYB46 in planta. Secondly, MYB46 directly acti-
vates the transcription of the three CESA genes in a steroid
receptor-based inducible activation system. Thirdly, MYB46
protein directly binds the promoters of the three CESA genes
both in vitro and in vivo, which was confirmed by EMSA and
ChIP analysis, respectively. Fourthly, ectopic upregulation of
MYB46 resulted in a significant increase of crystalline cellulose
content in arabidopsis (Kim et al., 2013a). Taken together, the
evidence is quite convincing that MYB46 is a direct regulator
of all three secondary wall-associated CESA genes.

Since cellulose biosynthesis in the secondary wall is critical to
the plant’s survival, it is prudent to speculate that MYB46 is not
the only direct regulator of the secondary wall cellulose
synthases. Previously, it has been demonstrated that VND6
binds to the TE-specific cis-element TERE (Pyo et al., 2007)
in the promoter of CESA4 (Ohashi-Ito et al., 2010). VND7 was
also suggested as a direct transcriptional regulator of CESA4
and CESA8 (Yamaguchi et al., 2011) (Table 2). In addition,
Y1H screening using the promoter sequences of CESA4,
CESA7 and CESA8 as bait identified multiple TFs that bind to
the promoter sequences (Kim et al., 2013a). The Y1H identified
13 TFs for the CESA4 promoter and one TF for the CESA7 pro-
moter. However, none of them appears to be involved in the
MYB46-mediated regulation pathway because their expression
is not altered by MYB46 nor are they co-expressed with MYB46
(Ko et al., 2009; Kim et al., 2012). Thus, the presence of multiple
regulators, independent of the MYB46-mediated regulatory
pathway, supports the notion that the transcriptional regulation
of cellulose biosynthesis is multifaceted and complex.

MYB46 is required for functional expression of the secondary
wall cellulose synthases

Considering the elaborate nature of transcriptional control of
secondary wall cellulose biosynthesis, one pertinent question
is whether MYB46 is the necessary regulator for functional
expression of the secondary wall CESA genes. To address this
question, Kim et al. (2013b) used a series of genetic complemen-
tation experiments using cesa knockout mutants with the CESA
coding sequence driven by either the native or the mutated pro-
moter of the genes. The mutant promoters have two-nucleotide
point mutations in the M46RE such that MYB46 cannot bind
to the promoter, while the binding of other non-MYB-type sec-
ondary wall TFs is not affected. The results showed that MYB46
binding to the intact M46RE is essential to restore the normal
phenotype of the cesa mutants (Kim et al., 2013b), suggesting
that MYB46 is an obligate component of the transcriptional regu-
latory complex involved in the commitment to secondary wall
cellulose synthesis in arabidopsis.

MYB46 directly regulates hemicellulose and lignin biosynthesis
genes

The genome-wide survey of promoter sequences in arabidop-
sis revealed that many genes involved in hemicellulose and
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lignin biosynthesis have one or more M46RE motifs in their pro-
moter region (Kim et al., 2012), leading to the hypothesis that the
expression of these genes may be directly regulated by MYB46.
For example, cellulose synthase-like A9 (CSLA9) is responsible
for the majority of glucomannan synthesis in both primary and
secondary walls of arabidopsis inflorescence stems (Liepman
et al., 2005; Goubet et al., 2009). Both in vitro (EMSA) and in
vivo (ChIP) binding assays clearly showed that MYB46 binds
to the promoter of CSLA9 (Kim et al., 2014). Overexpression
of MYB46 resulted in a significant increase in mannan content
(Kim et al., 2014). Recently, we obtained experimental evidence
for direct regulation of four xylan biosynthesis genes (FRA8,
IRX8, IRX9 and IRX14) by MYB46 (W.-C. Kim and
K.-H. Han, unpubl. res.). These four genes encode glycosyltrans-
ferases that are required for glucuronoxylan synthesis in second-
ary cell walls (Peña et al., 2007; Keppler and Showalter, 2010).
FRA8 and IRX8 are involved in the reducing end synthesis of
xylan chains (Scheller and Ulvskov, 2010), while IRX9 and
IRX14 are responsible for the xylan backbone synthesis (Lee
et al., 2012). Therefore, it appears that MYB46 directly regulates
the biosynthesis of the xylan backbone. However, it is notable
that the other four known xylan biosynthesis genes (PARVUS,
IRX10, IRX15 and IRX15-L) do not seem to be directly regulated
by MYB46, indicating the multifaceted nature of the regulation
of xylan biosynthesis.

The genes involved in monolignol biosynthesis have been
identified (Boerja et al., 2003). Nine out of ten monolignol bio-
synthesis genes (PAL, C4H, 4CL, HCT, C3H, CCoAOMT, F5H,
CCR and CAD) are directly regulated by MYB46 (W.-C. Kim
and K.-H. Han, unpubl. res.) (Table 2). Previously, two TFs,
MYB58 and MYB63, were identified as master regulators of
lignin biosynthesis (Zhou et al., 2009). These TFs directly
control the expression of seven monolignol biosynthesis genes
(PAL, 4CL, C3H, CCoAOMT, CCR and CAD), but not of F5H,
a key gene in syringyl (S) lignin biosynthesis (Raes et al.,
2003; Zhou et al., 2009). The TF MYB46 directly regulates
F5H as well as MYB58 and MYB63 (W.-C. Kim and
K.-H. Han, unpubl. res.). In Medicago truncatula, a secondary
wall master switch SND1 directly regulates F5H but not the
other monolignol genes (i.e. C4H, COMT, CCoAOMT and
4CL) (Zhao et al., 2010a, b). Whether SND1 regulates F5H in
arabidopsis is not known. Recently, Ohman et al. (2013)
showed that a loss-of-function mutation of MYB103 substantial-
ly reduced F5H expression, resulting in a 70–75 % decrease in
S-lignin, while it did not transactivate F5H expression. Taken to-
gether, these observations further support the hypothesis that a
multifaceted regulatory network exists for the control of lignin
biosynthesis, and MYB46 is a key regulator in the network.

Interacting partners of MYB46/MYB83

In eukaryotes, gene expression is frequently controlled by
multiprotein complexes. The formation of protein complexes
enables the combinatorial action of TFs on the basis of both
specific protein–DNA and protein–protein interactions, which
facilitate the complex regulatory networks found in highereukar-
yotes (Du et al., 2009).

The physical interaction and regulatory synergy between par-
ticular sub-classes of MYB and bHLH (basic helix–loop–helix)
family TFs is well known in plant gene regulation (Du et al.,

2009). In addition, members of the MYB and bHLH families
also interact with a number of other regulatory proteins,
forming complexes that either activate or repress the expression
of sets of target genes (Feller et al., 2011). Examples of such
complexes include the PAP1 (MYB)–GL3/EGL3/TT8
(bHLH)–TTG1 (WD40) complex in anthocyanin production,
WER (MYB)–GL3/EGL3–TTG1 in root hair development,
MYB61–TT8–TTG1 in seed coat mucilage production and
GL1 (MYB)–GL3–TTG1 in trichome development (Petroni
and Tonelli, 2011). To date, no interacting partners of MYB46
have been identified. However, it is probable that MYB46 can
interact with bHLH family TFs. To test this hypothesis, we
carried out yeast two-hybrid (Y2H) screening using MYB46 as
bait and the bHLH TF library as prey. Our preliminary results in-
dicate that two bHLH TFs strongly interact with MYB46 in yeast
(J.-H. Ko and K.-H. Han, unpubl. res.). In planta interaction with
MYB46 and the functional significance of the bHLH TFs remain
to be elucidated.

Negative regulators of secondary wall biosynthesis

In terms of adaptation to the changing environmental and
developmental contexts, negative regulation of secondary wall
biosynthesis may be required for tissue-type fine-tuning of
secondary wall deposition. Two NAC TFs, VNI2 and XND1,
were identified as negative regulators of xylem formation in ara-
bidopsis (Zhao et al., 2008; Yamaguchi et al., 2010b).
VND-INTERACTING2 (VNI2) can bind to VND proteins and
has been shown to function as a transcriptional repressor of
VND7-mediated gene transcription (Yamaguchi et al., 2010b).
During xylem differentiation, VNI2 protein is targeted for deg-
radation to unleash VND7 that is required for xylem differenti-
ation, while VNI2 expression precedes that of VND7 in
procambial cells (Yamaguchi et al., 2010b). However, VNI2 ex-
pression persists in neighbouring xylary parenchyma cells, sug-
gesting that VNI2 functions as a negative regulator of xylem
differentiation (Yamaguchi et al., 2010b). Overexpression of
XYLEM NAC DOMAIN1 (XND1) causes the complete suppres-
sion of xylem vessel secondary wall biosynthesis and pro-
grammed cell death (PCD), but not phloem marker gene
expression, suggesting that XND1 negatively regulates xylem
differentiation (Zhao et al., 2008). Interestingly, both VNI2
and XND1 appear to be targeted for proteasomal degradation
by the 20S proteasome (20SP) (Zhao et al., 2008; Yamaguchi
et al., 2010b; Han et al., 2012). The 20SP is thought to be a
part of the ubiquitin–26SP proteolytic system, possessing
caspase-3-like activity, which is a characteristic of animal cell
apoptosis (Han et al., 2012). This fact suggests that 20SP may
degrade VNI2 and XND1 to induce xylem differentiation in
arabidopsis and Populus (Han et al., 2012).

Mutation of the arabidopsis WRKY12 gene caused secondary
cell wall thickening in pith cells associated with ectopic depos-
ition of lignin, xylan and cellulose by upregulation of down-
stream genes encoding NST2 and AtC3H14 TFs that activate
secondary wall synthesis (Wang et al., 2010). Direct binding of
WRKY12 to the NST2 gene promoter and repression of NST2
and AtC3H14 were confirmed by in vitro assays and in planta
transgenic experiments (Wang et al., 2010). The WRKY12
gene is expressed in both pith and cortex that do not have second-
ary wall thickening. These results suggest that WRKY12
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controls the parenchymatous nature of pith cells by acting as a
negative regulator of secondary wall NACs.

Recently, a homeodomain TF KNAT7 was described as a nega-
tive regulator of secondary wall formation despite being a direct
downstream target of both MYB46 and NST3/ANAC012/SND1
(Zhong et al., 2008; Ko et al., 2009; Li et al., 2012). KNAT7 is spe-
cifically expressed in vascular tissues and shown to function as a
transcriptional repressor. In a transient activation assay using pro-
toplasts, the expression of secondary wall biosynthetic genes was
increased in the absence of KNAT7 function (Li et al., 2012).
Overexpression of KNAT7 resulted in thinner secondary cell
walls in interfascicular fibres, while its loss-of-function mutant
knat7 forms thicker secondary cell walls (Li et al., 2011, 2012).

MYB4, MYB7 and MYB32, further downstream targets of both
SND1 and MYB46/MYB83, were identified as negative regula-
tors in secondary wall biosynthesis (Ko et al., 2009; Zhong et al.,
2010b; Wang et al., 2011). As potent transcriptional repressors,
these MYBs can reduce both their target gene expression and the
expression of the SND1 upstream regulator (Ko et al., 2009;
Zhong et al., 2010b; Wang et al., 2011) (Fig. 1). MYB4 and
MYB32 were shown to regulate general phenylpropanoid bio-
synthesis genes negatively (Preston et al., 2004). MYB4 specif-
ically suppresses the expression of the C4H gene, which encodes
the first committed step in the phenylpropanoid pathway (Jin
et al., 2000).

Taken together, negative regulators identified so far may func-
tion to fine-tune the expression of other TFs or genes involved in
secondary wall biosynthesis. This mechanism provides a poten-
tial negative feedback regulation that may be a critical homeo-
static control within the MYB46-mediated transcriptional
regulation network (Fig. 1; Table 1).

Functional homology between MYB46 and its homologues
in other plant species

The poplar genome has four close homologues of arabidopsis
MYB46: PtrMYB2, PtrMYB3, PtrMYB20 and PtrMYB21
(McCarthy et al., 2010). Both PtrMYB3 and PtrMYB20 have
been shown to function as a master switch for secondary wall bio-
synthesis in poplar (McCarthy et al., 2010). These MYB TFs are
directly activated by PtrWND2, an activator of secondary wall
biosynthesis in the wood tissue of poplar (Zhong et al., 2010a).
Based on these findings and the high degree of collinearity
between arabidopsis and Populus, it is hypothesized that the
MYB46-mediated transcriptional regulatory programme may
control the biosynthesis of secondary walls in poplars. This
hypothesis was supported by the results from our EMSA ana-
lyses, clearly showing that arabidopsis MYB46 binds to the pro-
moters of Populus secondary wall CESA genes and PtrMYB21 to
the promoters of both arabidopsis and poplar secondary wall
CESA genes (W.-C. Kim, J.-Y. Kim and K.-H. Han, unpubl.
res.). In addition, rice and maize MYB TFs, OsMYB46 and
ZmMYB46, were suggested as functional orthologues of
MYB46 (Zhong et al., 2011). Both OsMYB46 and ZmMYB46
were directly regulated by the secondary wall NAC TFs
OsSWNs and ZmSWNs, respectively, and were able to activate
the secondary wall biosynthetic programme when they were
overexpressed in arabidopsis (Zhong et al., 2011). These obser-
vations, along with the reciprocal binding of arabidopsis MYB46
and PtrMYB21 to the promoters of secondary wall CESA genes,

suggest that the MYB46-mediated regulation of secondary wall
biosynthesis may be functionally conserved among plant
species.

PERSPECTIVES

Multiple observations in the literature indicate that a complex
transcriptional regulatory programme appears to be involved in
the control of secondary wall biosynthesis. MYB46 and its func-
tional paralogue MYB83 play a central role in the regulatory
programme, evidenced by the fact that myb46myb83 double
knockout mutants show severe growth arrest in the early seedling
stage. Recent studies have shown that MYB46 regulates not only
the TFs in the secondary wall biosynthesis pathway but also the
biosynthesis genes for all three of the major components (i.e. cel-
lulose, hemicellulose and lignin) of secondary walls. Having the
ability to regulate directly the biosynthesis genes for the major
components, MYB46 may be useful in pathway-specific ma-
nipulation of secondary wall biosynthesis. For example, upregu-
lation of MYB46 can increase the biosynthesis of cellulose and
hemicellulose, while lignin biosynthesis is reduced. In order to
realize this potential fully, additional information on the up-
stream regulators, downstream targets and interacting partners
of MYB46 is critical. Considering the high degree of functional
homology between arabidopsis MYB46 and its homologues in
other plant species, the knowledge gained from the model arabi-
dopsis plant on MYB46-mediated transcriptional regulation can
be applicable in economically important crop species for produc-
tion of biofuel and bioproducts.
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