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† Background and Aims Cell wall changes in ripening grapes (Vitis vinifera) have been shown to involve re-mod-
elling of pectin, xyloglucan and cellulose networks. Newer experimental techniques, such as molecular probes spe-
cific forcell wall epitopes, haveyet to be extensively used in grape studies. Limited general information is available on
the cell wall properties that contribute to texture differences between wine and table grapes. This study evaluates
whether profiling tools can detect cell wall changes in ripening grapes from commercial vineyards.
† Methods Standard sugar analysis and infra-red spectroscopy were used to examine the ripening stages (green,
véraison and ripe) in grapes collected from Cabernet Sauvignon and Crimson Seedless vineyards. Comprehensive
microarray polymer profiling (CoMPP) analysis was performed on cyclohexanediaminetetraacetic acid (CDTA)
and NaOH extracts of alcohol-insoluble residue sourced from each stage using sets of cell wall probes (mAbs and
CBMs), and the datasets were analysed using multivariate software.
† Key Results The datasets obtained confirmed previous studies on cell wall changes known to occur during grape
ripening. Probes for homogalacturonan (e.g. LM19) were enriched in the CDTA fractions of Crimson Seedless rela-
tive to Cabernet Sauvignon grapes. Probes for pectic-b-(1,4)-galactan (mAb LM5), extensin (mAb LM1) and arabi-
nogalactan proteins (AGPs, mAb LM2) were strongly correlated with ripening. From green stage to véraison, a
progressive reduction in pectic-b-(1,4)-galactan epitopes, present in both pectin-rich (CDTA) and hemicellulose-
rich (NaOH) polymers, was observed. Ripening changes in AGP and extensin epitope abundance also were found
during and after véraison.
† Conclusions Combinations of cell wall probes are able to define distinct ripening phases in grapes. Pectic-b-(1,4)-
galactan epitopes decreased in abundance from green stage tovéraison berries. From véraison there was an increase in
abundance of significant extensin and AGPepitopes, which correlates with cell expansion events. This study provides
new ripening biomarkers and changes that can be placed in the context of grape berry development.

Key words: Profiling, berry ripening, plant cell wall, pectic-b-(1,4)-galactan, extensin, arabinogalactan–protein,
AGP, wine grapes, table grapes, Vitis vinifera, Cabernet Sauvignon, Crimson Seedless.

INTRODUCTION

Understanding the processes controlling and influencing the
ripening behaviour of fleshy fruits has been the goal of numerous
investigations over many decades (Seymour et al., 2013a). It has
become increasingly apparent that fruit ripening is much more
complicated than a general uncontrolled degradation (i.e.
melting) of the surrounding flesh as ripening proceeds to
produce soft fruit (Seymour et al., 2013a). Much of our knowl-
edge of fruit ripening has been gained from extensive study of
Solanum lycopersicum, the cultivated tomato, which has resulted
in a draft genome sequence (Zouine et al., 2012) and has sup-
ported the application of various omics technologies (Seymour
et al., 2013b). Cell wall studies on tomato are also far advanced
and so S. lycopersicum is generally considered the model fruit
crop of choice in this regard (Seymour et al., 2013b). However,
tomato is a climacteric fruit crop, and ripening continues even
after detachment from the mother plant; this is not the case
with all fruits (Ruiz-May and Rose, 2013; Seymour et al.,
2013a). An important non-climacteric fruit is Vitis vinifera, the

domesticated grapevine, which does not ripen off the vine
(Creasy and Creasy, 2009; Davies et al., 2012). Grape develop-
ment proceeds through a number of phenological stages; a few
main way-points after flowering are fruit-set, with small green
(pea-size) to larger green (berry touch) berries; véraison, when
re-programming towards ripening starts (and when red grapes
colour); and full ripe, when bunches are harvested (Creasy and
Creasy, 2009). During ripening, grapes undergo distinct tran-
scriptional (Davies and Robinson, 2000; Terrier et al., 2005,
Fasoli et al., 2012), proteomic (Cramer et al., 2013;
Martı́nez-Esteso et al., 2013) and metabolic (Ali et al., 2011;
Dai et al., 2013) changes, the most common metabolite
markers being the accumulation of sugars and organic acids
(Coombe, 1960; Eyéghé-Bickong et al., 2012), anthocyanins
and phenolics (Singleton and Trousdale, 1992; Cohen et al.,
2012) and turnover of chlorophyll/carotenoids with the
concomitant production of aroma volatiles (Martin et al., 2012;
Young et al., 2012; Lashbrooke et al., 2013). It is becoming in-
creasingly evident that the grape berry shows transcriptome
‘plasticity’ and that the expression of some genes is governed

# The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved.

For Permissions, please email: journals.permissions@oup.com

Annals of Botany 114: 1279–1294, 2014

doi:10.1093/aob/mcu053, available online at www.aob.oxfordjournals.org

D
ow

nloaded from
 https://academ

ic.oup.com
/aob/article/114/6/1279/140492 by guest on 25 April 2024

mailto:moorejp@sun.ac.za


by environmental–geographic considerations in addition to de-
velopmental patterning (Santo et al., 2013). Control of ripening
is driven by transcriptional regulation (i.e. transcriptome
changes), and hormones such as ABA, ethylene and gibberellins
are major factors influencing maturation (Chervin et al., 2008;
Davies et al., 2012; Fasoli et al., 2012; Young et al., 2012). A
major challenge is the integration of different transcriptional,
proteomic and metabolite datasets to more accurately model
grape berry ripening dynamics (Fortes et al., 2011;
Martı́nez-Esteso et al., 2013) and to relate this to the ongoing
grapevine genome annotation activities (Jaillon et al., 2007;
Grimplet et al., 2009).

Along with these changes, many grape varieties undergo
turgor-related softening (Thomas et al., 2008). This is commonly
observed with wine grapes; however, table grape varieties are
known to remain firm and crisp (Creasy and Creasy, 2009). An
obvious factor to consider is the contribution of cell wall
changes during ripening (Ruiz-May and Rose, 2013); although
grapes have been studied from this perspective in the past
(Nunan et al., 1997, 1998; Vidal et al., 2001; Yakushiji et al.,
2001; Doco et al., 2003a, b) many of these approaches are
dated and knowledge gaps exist. Recent developments in the
cell wall field have led to novel high-throughput methods to char-
acterize large numbers of samples to support omics studies
linked to biofuels research, plant–pathogen interactions and
evolution studies (Albersheim et al., 2011; Persson et al.,
2011). In this study we applied cell wall profiling tools (Moller
et al., 2007; Moore et al., 2014) to characterize the compositional
changes that occurred in a wine grape (Cabernet Sauvignon)
versus a table grape (Crimson Seedless) cultivar as ripening pro-
ceeded. The study highlighted that certain cell wall probes
(Hervé et al., 2011) show promise as ripening markers in
grapes and appear to define key stages in both cultivars. Pectic-
b-(1,4)-galactan epitopes associated with both cyclohexanedia-
minetetraacetic acid (CDTA) and NaOH fractions decreased in
abundance in pre-véraison grapes. In contrast, extensin and ara-
binogalactan protein (AGP) epitopes increased at véraison.
These changes appear to correlate with a transcriptional shift in
berry metabolism linked to the onset of cell expansion. This
pattern of epitope abundance also occurred in table grapes,
except that higher relative abundance of homogalacturonan
epitopes was noted. Berry ripening appears to fit into a conserved
developmental framework in which genetic regulation probably
plays a major role in cell wall events.

MATERIALS AND METHODS

Plant material and sampling

Samples of wine grapes were obtained from a Vitis vinifera
Cabernet Sauvignon vineyard; the source clone CS 388C was
grafted onto 101-14 Mgt (Vitis riparia × V. rupestris). The vine-
yard is situated (33856′42′′S, 18851′44′′E), close to the Eerste
River on the Welgevallen experimental farm of Stellenbosch
University. The vineyard is composed of alluvial soils with
light to medium texture and is arranged in north–south row
orientation. Vines are trained on a seven-wire vertical trellis
system and are drip-irrigated. Samples of table grapes were
obtained from a 5-year-old commercial vineyard (V. vinifera
Crimson Seedless) located in the Paarl region (33808′138′′S,

18859′138′′E); the source clone C102-26 was grafted onto
‘Richter 110’ (V. berlandieri × V. rupestris ‘Martin’) root-
stocks. Vine spacing was in an east–west orientation and trel-
lised on a gable system with split cordons. Phenological stages
and berry ripening were monitored experimentally (data not
shown) by sampling and weighing berries for total soluble
solids, expressed as degrees Brix (8Bx), using a refractometer,
as well as pH and titratable acidity using a Metrohm 785 auto-
mated titrator (Metrohm AG, Switzerland) in order to determine
the respective maturity index (data not shown). The Crimson
Seedless vineyard received commercial hormone treatments
[gibberellins and ethephon; Chervin et al. (2008)] during the
season. Grapes are dipped in a gibberellic acid-rich solution to
promote berry elongation and size, whereas ethylene (ethephon)
is sprayed to promote colour development in red varieties.
Sampling consisted of obtaining eight biological samples corre-
sponding to eight individual vines over two vine rows at each
stage; from two bunches per vine 16 berries were pooled to
produce one sample; technical repeats were included in each ana-
lysis. Sampling occurred at green stage (berry touch, code L),
then again at véraison (code M) and finally ripe (maturity, code
N) just prior to harvest, according to the system proposed by
Baillod and Baggiolini (1993).

Preparation of cell wall material from grape berries

Berries collected from the three developmental stages (green,
véraison and ripe) were flash-frozen in liquid nitrogen in the field
and stored at –80 8C prior to analysis. Pre-cooled (at liquid nitro-
gen temperature) samples were de-seeded manually (mainly

Cabernet Sauvignon Crimson Seedless

A B

C

E F

D

FI G. 1. Representative images of grape berries sourced from Cabernet
Sauvignon (A, C, E) and Crimson Seedless (B, D, F) vineyards. Ripening
stages green (berry touch) (A, B), véraison (C, D) and ripe (E, F), are shown.
Scale bars ¼ 1.5 cm. Stages correspond to K, M and N according to Baillod

and Baggiolini (1993).
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wine grapes; Cabernet Sauvignon) and skins and pulp were
ground together to a fine powder using a mortar and pestle.
Powdered samples (under liquid nitrogen) were transferred dir-
ectly to boiling 80 % aqueous (v/v) absolute ethanol and boiled
for 25 min to deactivate endogenous enzyme activity. Samples

were transferred through a series of solvent washes in methanol,
chloroform and acetone as outlined in Moore et al. (2014).
After lyophilization, powdered samples (i.e. alcohol-insoluble
residue, AIR) were stored at room temperature until further
analysis.
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FI G. 2. Monosaccharide composition analysis of total AIR (A, B), CDTA extracts (C, D) and NaOH extracts (E, F) prepared from Cabernet Sauvignon (A, C, E) and
Crimson Seedless (B, D, F) grape berries at different ripening stages. Ara, arabinose; Rha, rhamnose; Fuc, fucose; Xyl, xylose; Man, mannose; Gal, galactose;
Glc, glucose, GalA, galacturonic acid; GlcA, glucuronic acid. Error bars represent the standard deviation of the mean for eight biological samples with two technical

repeats per analysis. *Significant difference (P , 0.05) between sample sets.
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Sugar composition analysis using gas chromatography

Todetermine thecompositionand quantityof monosaccharides
present in the non-cellulosic portion of AIR, a standard sugar ana-
lysis procedure was followed (Moore et al., 2014). Samples were
hydrolysed in 2 M trifluoroacetic acid at 110 8C for 2 h before
centrifugation and the supernatants were dried under vacuum.
Hydrolysed material was derivatized first using methanolic HCl
to produce methoxy sugars followed by silylation to produce tri-
methylsilyl glycosides (for the complete protocol see Nguema-
Ona et al., 2012; Moore et al., 2014). A gas chromatography
method first described by York et al. (1985), performed on a
Hewlett Packard 5890 series II instrument, was used to separate
and quantify the sugar derivatives obtained from the samples.

Vibrational reflectance spectroscopy of cell wall samples

A complete wavelength absorbance spectrum in the infra-red
region from each sample was obtained directly from AIR.
Powdered samples were placed directly (in contact mode) onto
the diamond window and clamped in position to obtain reflect-
ance spectra. A NEXUS 670 (Thermo, USA) instrument
equipped with a Golden Gate Diamond ATR (attenuated total re-
flectance) accessory was used to record spectra (128 co-added
scans per analysis) between 4000 and 650 cm– 1 using a
Geon-KBr beamsplitter and DTGS/Csl detector.

Comprehensive microarray polymer profiling analysis of cell wall
fractions

Comprehensive microarray polymer profiling (CoMPP) was
performed on AIR samples using a procedure outlined and
described in Moller et al. (2007). Each analysis used approxi-
mately 10 mg of AIR, which was extracted sequentially with
CDTA and then NaOH solutions to obtained pectin-rich and
hemicellulose-rich extracts. Samples were sequentially extracted
following 30 ml for each 1 mg of AIR for 2 h for both CDTA
and NaOH. This involved a tissue-lyser, first at 27 shakes s–1 for
2 min and then down to 6 shakes s–1 for 120 min. A 50 mM

CDTA solution was followed by 4 M NaOH with 0.1 % NaBH4
to obtain an insoluble residue. These extracts were spotted onto
membranes and then probed with monoclonal antibodies
(mAbs) and carbohydrate-binding modules (CBMs) (Knox,
1997; Hervé et al., 2011) that recognize specific cell wall epitopes
(detailed in Moller et al., 2007). Data were reported as a heat map,
in which mean spot signals were displayed and the range was
normalized to the highest signal (set as 100) in the dataset.

Multivariate and univariate statistics

Univariatedescriptive statistics and one-wayANOVAwere per-
formed (with P ¼ 0.05) under the guidance of the Centre for
Statistical Consultation (CSC) at Stellenbosch University
(Professor Martin Kidd). Software packages used include
Statistica 10 (Statsoft) and Excel 2010 (Microsoft). Multivariate
methods, including principal component analysis (PCA), were
performed using SIMCA (MSK Inc., U-metrics) software.
Spectral [Fourier transform infra-red spectroscopy (FTIR)] and
CoMPP datasets were imported into SIMCA (MSK Inc.,
U-metrics) using conversion algorithms. Spectral data were

averaged after baseline correction, smoothing (Savitsky–Golay)
and multiplicative scatter correction.

RESULTS

Ripening in grapes is a sequential process marked by defined
stages according to traditional viticultural perspectives and prac-
tices (Baillod and Baggiolini, 1993; Creasy and Creasy, 2009).
Initially berries develop from green (berry touch) stage (code
L), when they are acidic and have a firm texture (Baillod and
Baggiolini, 1993). Green berries undergo photosynthesis, are
actively metabolizing (especially biosynthesis) and show high
cell division rates. Once berries reach their developmentally pro-
grammed cell number they pass through a stage termed ‘vérai-
son’ (code M); in red grapes this is accompanied by berry
colouring caused by anthocyanin biosynthesis (Baillod and
Baggiolini, 1993; Creasy and Creasy, 2009). Véraison is often
asynchronous, individual berries in a bunch often being at differ-
ent degrees of colour change; thus, a statistical bell-shaped popu-
lation distribution is probably a good analogy, and so in
viticulture the term has been difficult to define accurately
(Lund et al., 2008). After véraison the berries enlarge, accumu-
late sugar (glucose and fructose) and soften (more so in wine
grapes), producing ripe, sweet berries (stage code N) at harvest
(Baillod and Baggiolini, 1993; Creasy and Creasy, 2009).
Inspection of representative images of green (berry touch, code
L), véraison (véraison, code M) and ripe (maturity, code N)
berries of Cabernet Sauvignon (Fig. 1A, C, E) and Crimson
Seedless (Fig 1B, D, F) berries revealed the typical ripening se-
quence. However, wine grapes are small and spherical, whereas
table grapes are larger and elongated in shape. Moreover, table
grapes are harvested physiologically earlier and are much
firmer (with a crunchy texture) compared with wine grapes,
which become substantially softer after véraison. Defining
texture and grape quality is a complex field (Rolle et al., 2012)
and it has been shown that numerous factors, including hormones
(Peppi et al., 2006) and harvesting timing/treatments (Zouid
et al., 2013), contribute to berry firmness. In the context of this
study, cell wall composition is only one factor that contributes
to texture and so any conclusions drawn need to be cautious
and circumspect.

TABLE 1. Gravimetric analysis of CDTA and NaOH extracts of
alcohol-insoluble residue (AIR) from wine (Cabernet Sauvignon)

and table (Crimson Seedless) grape berries

Cabernet Sauvignon Crimson Seedless

CDTA
Green 21.5+1.8a 34.4+8.0d

Véraison 30.8+6.3b 33.9+5.1d

Ripe 30.1+5.2b 24.0+6.6e

NaOH
Green 38.7+4.2c 21.8+5.4e

Véraison 41.5+3.6c 20.1+3.1e

Ripe 45.9+7.0cd 28.7+4.1f

Data (mg per 100 mg AIR) represent mean and s.d. of the mean for n ¼ 8
samples per cultivar per stage.

Different letters represent significant differences (P , 0.05) between extract
yields within each extraction set.
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To determine if bulk cell wall yields and composition differ
between the two cultivars, and thus may playa role in the observed
texture differences, total (non-cellulosic) monosaccharide com-
position at each developmental stage was measured from total
AIR, as well as CDTA and NaOH fractions (as performed in the
CoMPP procedure). Total AIR was found to range between 5

and 10 % of total fresh hydrated berry weight in all stages.
Monosaccharide composition of total AIR showed that berry
cell walls from both cultivars and all developmental stages were
marked by a large proportion of galacturonic acid (between �40
and 50 mol %) (Fig. 2A, B), confirming the pectin-rich nature of
the samples. Furthermore, the other monosaccharides assayed
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FI G. 3. Representative ATR FTIR spectral traces (from 1800 to 700 cm– 1) of AIR sourced from Cabernet Sauvignon (A) and Crimson Seedless (B) berries at green,
véraison and ripe phases. Assignments are based on the literature, specifically Kacurakova et al. (2000), Stephen et al. (2006) and Szymanska-Chargot and Zdunek
(2013). (C) Combined PCA score plot for discrimination of ripening stages in Cabernet Sauvignon and Crimson Seedless (in this case three samples per stage per

cultivar are shown). Cabernet Sauvignon samples are represented as circles and Crimson Seedless samples as squares.
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ranged between �10 mol % (arabinose, xylose, mannose, galact-
ose and glucose) and �5 mol % (rhamnose and fucose). In both
wine and table grapes, galacturonic acid was found to decrease
slightly, by �5 mol %, between green and ripe stages. In contrast,
galactoseunderwent a markeddecreasewitha difference of�10–
12 mol % from green to véraison to ripe walls. Slight increases, of
�5–6 mol %, were found for xylose, glucose and arabinose,
whereas rhamnose, mannose and fucose did not show any
change. The high galacturonic acid contents and the presence of
rhamnose, arabinose and galactose suggest homogalacturonan
and rhamnogalacturonan 1 (RG-I), probably mainly of pulp
origin, as significant components of berry cell walls. The presence
of xylose, glucose and fucose suggests xyloglucan is also present,
probably from the berry skins co-extracted with the pulp tissue.
Comparisons of gravimetric yields of CDTA-extractable material
showed similar amounts of material extracted from Crimson
Seedless and Cabernet Sauvignon at all ripening stages
(Table 1). Interestingly, when comparing NaOH treatment it was
found that almost twice the amount of material was extracted
from Cabernet Sauvignon as from Crimson Seedless (Table 1).
When comparing the monosaccharide composition analysis of
both CDTA and NaOH extracts from both cultivars, very similar
profiles emerged (Table 1, Fig. 2C–F). CDTA-extractable mater-
ial consisted mainly of galacturonic acid (�80–90 mol %), with
lower amounts of arabinose and galactose (�10–20 mol %)
(Fig. 2C, D) in both cultivars. The NaOH extracts showed some
differences between Cabernet Sauvignon and Crimson Seedless,
particularly in mannose levels (Fig. 2E, F) but the overall compos-
itionwas similar,withxyloseat�20–25mol %,glucose at�15–
20 mol %, arabinose at �10 mol %, galactose at �5–10 mol %
and galacturonic acid at �10 mol % levels. Glucuronic acid was
not detected in total AIR hydrosylates (Fig. 2A, B) but was
detected in the CDTA and NaOH fractions (Fig. 2C–F).
Developmental trends were preserved in both cultivars and no sig-
nificant differences in the overall profile were evident from the
analysis. However, this targeted analysis may have missed
changes in bulk chemistry not measurable using degradative and
chromatographic procedures; hence an alternative approach was
sought.

Spectroscopic methods, using contact probes, offera number of
advantages over more precise analysis techniques. Fourier-

transform infra-red (FTIR) spectroscopy is non-invasive, non-
degradative and, importantly, is able to assess bulk chemistry,
based on resonance overtones of chemical bonds from functional
groups present in alcohol-insoluble polymers (Mouille et al.,
2003). Thus, in addition to carbohydrates, also detectable are pro-
teins, phenolics and lipids if present in significant quantity.
Inspection of wavelength scans from green, véraison and ripe
AIR from both cultivars revealed a common sequence of bands
in all fingerprints (Fig. 3A, B). Assignments of bands were
based on the literature, specifically Kacurakova et al. (2000),
Stephen et al. (2006) and Szymanska-Chargot and Zdunek
(2013). Bands at 1720 and 1600–1550 cm–1 suggested the pres-
ence of carbonyls, amides and carboxyl groups associated with
proteins and pectins. A number of sharp peaks were associated
with pectin, including 1400 cm–1 for carboxyls, 1330 cm–1 for
ring vibrations and 1260 cm–1 for carbonyls. Bands at 1310
cm–1 correspond to cellulose and those at 1206 cm–1 to xyloglu-
can and/or cellulose. All spectra also have a sharp peak with a
broad shoulder around the region from 1080 to 1010 cm–1,
which correlates to a number of cell wall components, including
pectic-b-(1,4)-galactan, arabinans, cellulose, xyloglucan and
homogalacturonan, which makes interpretation incredibly diffi-
cult. The sharp peak in this region at 1064 cm–1 tends to correlate
with xyloglucan and cellulose, while the shoulder around 1025–
1017 cm–1 corresponds to xyloglucan and homogalacturonan
resonances. Visual inspection of spectra from both cultivars and
all stages show that discrimination is complicated, with differ-
ences mainly due to peak shapes and relative differences in the ab-
sorbance maxima in relation to other peaks in the same profile.
Using an unsupervised approach, such as PCA, allows pattern rec-
ognition and the identification of variables (wavenumbers) that
contribute to the separation achieved. FTIR spectra processed
using PCA (Szymanska-Chargot and Zdunek, 2013) permitted
separation of each stage (green, véraison and ripe) in a sequential
fashion; however, identification of functional chemistry was less
successful (Fig. 3C). It is clear, though, that FTIR coupled with
PCA of grape AIR shows promise as a means to evaluate the
stage of ripeness but does not provide significant insight into
the subtle cell wall re-modelling events that associate with the
various phases of grape ripening. A much more extensive model-
ling analysis is needed when reference methods are included to
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develop partial least squares (PLS) models using a greater number
of samples than currently assayed. In order to assess the subtle
changes occurring in cell walls sourced from the various stages
of ripening therefore requires additional, more sophisticated wall-
specific techniques.

Comprehensive microarray polymer profiling is a relatively
new technique in the plant cell wall field and offers the ability
to provide information on polysaccharide occurrence rather
than the inferred approach commonly used, based on monosac-
charide ratios obtained from acidic hydrolysates of AIR.
CoMPP involves the application of sets of mAbs and CBMs to
detect characterized glycan epitopes known to be found on one
or more cell wall polymers and/or proteins (Moller et al.,
2007). Furthermore, because CoMPP makes use of immuno-
logical probes (detected using fluorescent labelling), the tech-
nique has higher sensitivity for subtle shifts in epitope
abundance compared with the previous techniques reported on
in this study. The technique involves the sequential treatment
of AIR with CDTA and NaOH; the resulting solubilized material
is applied to special microarray slides and probed with sets of
mAbs and CBMs. The technique has been used previously to
characterize tobacco (Nguema-Ona et al., 2012) and grapevine
(Moore et al., 2014) leaves. Furthermore, in tobacco studies it
has been shown to reveal developmental stages related to leaf
age and to identify cell wall re-modelling due to grapevine
polygalacturonase inhibiting protein 1 (PGIP1) expression in
leaves (Nguema-Ona et al., 2013). Hence, the technique is
well suited to the evaluation of ripening-related wall changes
in various fruits, including grapes.

Firstly, CDTA extraction was performed to effectively solubil-
ize pectin-rich material from the grape AIR. Inspection of a PCA
analysis (score plot and loading plot) and the associated heat map
confirmed the pectin-enriched nature of the fraction (Fig. 4A–C),
as probes for homogalacturonan in various esterification states
(JIM5, JIM7, LM18, LM19 and LM20), pectic-b-(1,4)-galactan
(LM5), arabinans (LM6) and various AGP epitopes (JIM8,
JIM13 and LM2) were found with high signal intensities
(Fig. 4C). A PCA was performed on the dataset (Fig. 4A) to
provide an overview of sample group separation based on ripening
stage and to link this with a loading plot (Fig. 4B) to identify vari-
ables (probe IDs) that correlate with the separation. The PCA plot
shows samples (both wine and table grapes) with a ripening

direction from top left to(bottom right (Fig. 4A); this appeared
to correspond with a gradual decrease in cellulose (CBM3a) and
xyloglucan (LM15), while ripe samples showed an enrichment
in wall proteins (probes for extensins and AGPs; e.g. LM1 and
JIM13) (Fig. 4B, C). Interestingly, many of the homogalacturonan
epitopes (e.g. JIM5, JIM7 and LM19) did not distinguish between
ripening phases but rather appear to discriminate between wine
and table grapes, whereas table grape samples showed a relative
enrichment in these epitopes, i.e. middle to(top right of the plot
(Fig. 4B). Inspection of the epitope mean values in the CDTA
heat map allowed identification of ripening trends in the dataset
that correlated with specific probes for homogalacturonan, RG-I
and wall proteins (Fig. 4C). Probes for homogalacturonan, includ-
ing JIM5, JIM7 and LM19, did not appear to change consistently
between ripening stages and many increased and then decreased,
remaining within ten signal values of each other;we therefore con-
clude that homogalacturonan levels relative to other components
remain reasonably constant (Fig. 4C). Similarly, arabinans
appeared to follow a constant trend (LM6) and certain AGP epi-
topes (JIM8 and JIM13) also decreased and then increased
between stages, remaining relatively unchanged (Fig. 4C). In con-
trast, b-(1,4)-galactan presumably associated with pectin as in
RG-I (LM5) showed a marked decrease in signal intensity from
green to véraison stage and thereafter remained constant until
ripe (Fig. 4C). The inverse trend was found for the extensin
marker LM1, which increased at véraison and then appeared to
remain constant in ripe grapes (Fig. 4c). The other interesting
ripening trend was observed with the AGP probe LM2; this
probe showed an increase after véraison to ripeness (Fig. 4c) and
is an ideal candidate as a biomarker for ripening in grapes. We
wished to further highlight (Fig. 5) the potential biomarker mAb
epitopes identified in Fig. 4 by using the sizing function in the
SIMCA software. Here it is possible to size each of the samples
in the score plot (presented in Fig. 4A) such that each sample is
assigned a symbol size proportional to its value in the non-
averaged heat map dataset (not shown) (i.e. the heat map in
Fig. 4C represents the average of eight biological samples). In
Fig. 5 (with arrows showing the direction of ripening), three
useful biomarkers in the CDTA dataset are identified: these are
mAb LM5, which decreased in epitope abundance at véraison
(Fig. 5A), extensin mAb LM1, which increased in epitope
signal values after véraison (Fig. 5B), and mAb LM2, which

Cabernet Sauvignon green

C

62 47 26 44 55 38 36
33
37
27
40
41

0 0
9
15
0
15
14

0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
19

0
0
12

10
10
19

0 20 40 60 80 100

0
5
12

0
6
8
5
13
23

16

C
D

TA

22
42
15
21
39

43
25
38
22
28
38

69
49
67
51
58
77

0
0
17
0
14
29

11
5
0
11
0
0

7
0
0
7
0
0

7
8
11
20
11
14

0
7
0
0
0
0

19
19
50
11
22

58
52
49
66
62

54
60
78
70
73

33
34
59
45
41

55
52
51
70
67

75
72
82
88
77

HG p
ar

tia
lly

/d
e-

es
te

rif
ied

 (m
Ab 

JIM
5)

HG p
ar

tia
lly

/d
e-

es
te

rif
ied

 (m
Ab 

LM
18

)

HG p
ar

tia
lly

/d
e-

es
te

rif
ied

 (m
Ab 

LM
19

)

HG p
ar

tia
lly

 e
ste

rif
ied

 (m
Ab 

LM
20

)

(1 (1 (1 (1 (1 (1 (1 (1 Cell
ulo

se
 (C

BM
3a

)

Exte
ns

in 
(m

Ab 
LM

1)

Exte
ns

in 
(m

Ab 
JIM

19
)

Exte
ns

in 
(m

Ab 
JIM

20
)

AGP (m
Ab 

JIM
4)

AGP (m
Ab 

JIM
8)

AGP (m
Ab 

JIM
13

)

AGP (m
Ab 

LM
14

)

AGP (m
Ab 

LM
2)

4)
-β-

D-x
yla

n 
(m

Ab 
LM

10
)

4)
-β-

D-x
yla

n/
ar

ab
ino

xy
lan

 (m
Ab 

LM
11

)

(1
3)

Fe
ru

loy
lat

ed
 (1

lin
ea

ris
ed

 (1
Fe

ru
loy

lat
ed

 a
ra

bin
an

 (m
Ab 

LM
12

)

4)
-β-

D-g
ala

cta
n 

(m
Ab 

LM
S)

4)
-β-

D-g
ala

cta
n 

(m
Ab 

LM
9)

5)
-α

-L
-a

ra
bin

an
 (m

Ab 
LM

13
)

HG p
ar

tia
lly

 e
ste

rif
ied

 (m
Ab 

JIM
7)

Cabernet Sauvignon véraison
Cabernet Sauvignon ripe
Crimson Seedless green
Crimson Seedless véraison
Crimson Seedless ripe

5)
-α

-L
-a

ra
bin

an
 (m

Ab 
LM

6)

4)
-β-

D-(g
ala

cto
)(g

luc
o)

m
an

na
n 

(m
Ab 

LM
21

)

4)
-β-

D-(g
luc

o)
m

an
na

n 
(m

Ab 
LM

22
)

3)
-β-

D-g
luc

an
 (m

Ab 
BS-4

00
-2

)

4)
-β-

D-g
luc

an
 (m

Ab 
BS-4

00
-3

)

Xylo
glu

ca
n 

(X
XXG m

ot
if)

 (m
Ab 

LM
15

)

Xylo
glu

ca
n/

un
su

bs
titu

te
d 
β-g

luc
an

 (m
Ab 

LM
25

)

Fig. 4 Continued

Moore et al. — Cell wall profiling of wine and table grapes1286

D
ow

nloaded from
 https://academ

ic.oup.com
/aob/article/114/6/1279/140492 by guest on 25 April 2024



recognized an AGP moiety that showed the highest signal in ripe
samples (Fig. 5C). However, CDTA datasets and CoMPP trends
only explore half the picture; further explorations of the hemicel-
lulose components are also necessary.

After CDTA extraction, the residual pelleted material was sub-
jected to NaOH treatment to liberate hemicellulose polymers,
which are known to bind tightly by hydrogen bonding and
strong associative linkages to the cellulose microfibrils. To ascer-
tain the broad trends (Fig. 6) present in the data, PCA was per-
formed (as done for the CDTA values) which provides sample
grouping (scores) (Fig. 6A) and impact variables (loading
values) (Fig. 6B); a heat map of averaged values for all probes
and samples is also provided (Fig. 6C). The NaOH application
was found to extract pectic-b-(1,4)-galactan (LM5), arabinans
(LM6), mannans (LM21 and LM22), xyloglucan (LM15 and
LM25), cellulose (CBM3a), extensins (LM1 and JIM20) and
some AGPs (JIM8, JIM13 and LM14), confirming that hemicel-
luloses were mainly present (Fig. 6C). Although xylans (LM10)
and arabinoxylans (LM11) appeared in the extract, the values
appeared highly irregular, showing no consistent trends
(Fig. 6C). It is thought that these signals come from the vascular
strands present in the berries forming the ‘brush’ (Keller, 2010);
during berry picking these strands might remain in the pulp acci-
dentally. The PCA plot of the NaOH probe values shows clear
sample grouping from right to left in alignment with the direction
of ripening (Fig. 6A). Comparing the score plot (Fig. 6A) with
the loading plot (Fig. 6B) shows that green berries had a predom-
inance of xyloglucan (LM15 and LM25), cellulose (CBM3a),
galactans (LM5), mannans (LM21 and LM22) and tightly
bound AGPs (JIM8 and JIM13), whereas ripe berries were
enriched for extensins (LM1 and JIM20). Again homogalactur-
onan epitopes had no impact on sample grouping, whereas
AGP markers (JIM8, JIM13 and LM14) appeared to account
for the separation of wine grapes from table grapes (where they
were proportionally more abundant) (Fig. 6A, B). The heat
map values (Fig. 6C) show that pectic-b-(1,4)-galactan (LM5),
mannans (LM21 and LM22), xyloglucans (LM15 and LM25)
and cellulose (CBM3a) decreased significantly as ripening pro-
gressed; in comparison, the LM1 extensin epitope showed a
high signal from véraison onwards (similar to that found in the
CDTA fraction) while the JIM20 epitope increased slightly.
The AGP epitope recognized by JIM13 showed a significant
decrease from green to véraison and thereafter appeared to
remain unchanged in ripe samples (Fig. 6C). The LM14 AGP
epitope appeared in the NaOH dataset while generally absent
in CDTA extracts, but did not appear to change during ripening
(Fig. 6C). As in the pectin-enriched CDTA material, the arabinan
epitope (LM6) did not show a ripening response and remained
constant (Fig. 6C). As for the CDTA dataset we wished to
further highlight and confirm potential biomarkers of ripening
trends by using the sizing function in the SIMCA software
(Fig. 7A–C). Here it is possible to size each of the samples in
the score plot (presented in Fig. 6A) such that each sample is
assigned a symbol size proportionate to its value in the non-
averaged heatmap dataset (not shown) (i.e. the heat map in
Fig. 6C represents the average of eight biological samples).
Again, the mAb LM5 is highlighted, showing a strong decrease
in abundance of pectic-b(1,4)-galactan epitopes from green
stage to véraison (Fig. 7A). The mAb LM15, which recognizes
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the backbone of xyloglucan was found to show a step-wise de-
crease in abundance from green through véraison to ripe
samples (Figs 6C and 7B). The mAb LM1 is a good candidate
biomarker that recognizes an extensin moiety that accumulated
at véraison and thereafter remained high in ripe berries
(Figs 6C and 7C).

DISCUSSION

This study has confirmed most of the observations recorded pre-
viously regarding developmental patterns related to cell wall
changes in ripening grapes. Figure 8 summarizes the key
changes observed. Indeed, Saulnier and Thibault (1987a, b),
Saulnier et al. (1988) and Vidal et al. (2001) showed that
grapes are rich in pectin substances (composed of smooth and
hairy regions) and the pulp tissue is richer in homogalacturonan,
RG-I, RG-II and AGPs (Saulnier and Brioullet, 1989; Saulnier
et al., 1992) compared with the skins. Similarly, skin cells are
rich in xyloglucans (Lecas and Brillouet, 1994) and the subunit
composition has been characterized as mainly XXXG, XXFG
and XLFG (Doco et al., 2003a, b). Furthermore, the cell wall
changes in this report correlate with those reported by Nunan
et al. (1998), who described decreases in arabinogalactan 1
[AG1, probably pectic-b-(1,4)-galactan moieties] and xyloglu-
can, and slight reductions in galacturonic acid and cellulose as
ripening proceeds. A similar pattern was found in a later study
by Yakushiji et al. (2001) in which the pectin, xyloglucan and
cellulose content of mesocarp tissue decreased from the green
to the ripe stage.

This study has extended our knowledge of grape berry cell
walls in a number of areas. Firstly, significant changes in the
pectin-associated components were observed in this study, par-
ticularly the homogalacturonan and pectic-b(1,4)-galactan epi-
topes (Fig. 8). Interestingly, although no major differences in
cell wall changes were observed between cultivars, the
Crimson Seedless samples were enriched in epitopes detected
by homogalacturonan-specific mAbs (Verhertbruggen et al.,
2009) in the CDTA fraction. Further approaches are needed,
such as measuring pectin de-esterification and degradation
levels between cultivars (Barnavon et al., 2001), to confirm the
significance of these differences. The main change appeared to
be linked to pectic-b(1,4)-galactan reduction, which has been

repeatedly observed in ripening fruit such as tomatoes (Lackey
et al., 1980) but also in many other fruits, such as blueberries
(Vicente et al., 2007a, b) and date palm fruit (Gribaa et al.,
2013). Pectic-b(1,4)-galactan reduction is also associated with
growing regions such as pea stem segments (Labavitch and
Ray, 1974) and azuki bean epicotyls (Nishitani and Masuda,
1979). We reported recently that tobacco leaves undergoing
maturation show a staggered age-related reduction in pectic-
b-(1,4)-galactan (Nguema-Ona et al., 2013). The overall
changes in epitope abundance of cell wall polymers in grape
berries bears a strong resemblance to the composition of grape
leaves (Moore et al., 2014). This matches a number of studies
showing pre-véraison berries performing active photosynthesis
(source metabolism) until onset of ripening (véraison) and there-
after switching to become a sink (e.g. for sugars). The pectic-
b(1,4)-galactan components are usually believed to associate
with pectin (e.g. RG-I) but our data show mAb LM5 epitopes
present in both CDTA and NaOH fractions at significant levels.
Furthermore, as grape cell walls are mainly composed of
pectin (homogalacturonan, RG-I and RG-II) and xyloglucan
(Deng et al., 2005; Yakushiji et al., 2001) and it is known that
pectin and xyloglucan biosynthesis co-occurs in the Golgi
body (Driouich et al., 2012; Atmodjo et al., 2013), the relation-
ship between these two networks in berry ripening requires
further consideration.

Xyloglucan depolymerization has been observed previously
(Vicente et al., 2007a, b) in many fruits, including grapes
(Nunan et al., 1998), and we find the same pattern in our analyses
(this study, Fig. 8). Significant evidence has accumulated over
the past two decades concerning pectin–xyloglucan cross-links
(and/or co-assembly); a useful summary of available evidence is
presented in Brett et al. (2005). Although this is not known to
occur in grapes, it is highly likely given that the occurrence of
pectin–xyloglucan covalent linkages appears widespread in
angiosperms (including Arabidopsis thaliana) (Popper and
Fry, 2005). Evidence for co-assembly between pectin and xylo-
glucan was initially presented in maturing cauliflower stems
(Waldron and Selvendran, 1992; Femenia et al., 1999), but a
direct covalent interaction was argued based on a number of sub-
sequent studies (Thompson and Fry, 2000; Abdel-Missah et al.,
2003; Cumming et al., 2005). A recent study in Arabidopsis has
indicated that 50 % of all xyloglucan is assembled using an
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anionic primer (presumably pectin-related) and that this is ne-
cessary for positioning the oligomers in a three-dimensional
network (Popper and Fry, 2008). Electrostatic bonding may be
necessary to prevent neutral xyloglucan molecules from
moving through the wall and dispersing into the apoplast
(Abdel-Missah et al., 2007; Popper and Fry, 2008). Our study
has also indicated that pectic-b(1,4)-galactan epitopes co-extract
with the hemicellulose fraction (mainly xyloglucan) in grapes
and that this is degraded/metabolized during ripening. Pectic-
b(1,4)-galactan chains have not been conclusively shown to be
present on xyloglucan polymers [this is suggested in Brett
et al. (2005)], and it is known that galactose residues occur in
grapevine hemicellulose (i.e. XXFG, XLFG) (Doco et al.,
2003a, b). There is also no evidence that b-(1-2)-galactose
bonds (present in galactosylated xyloglucan) are detected by
mAb LM5 in addition to pectic-b(1,4)-galactan epitopes
(Jones et al., 1997). The significance of pectic-b(1,4)-galactan
present in the alkali fraction, which appears pectin-poor, is at
present unclear but of considerable interest. The reduction in
pectic-b(1,4)-galactan epitopes (in both CDTA and NaOH
extracts) is also supported by evidence for b-galactanases (for
pectin RG-I) (Buckeridge et al., 2005) and b-glycosidases
(Buckeridge and Reid, 1994; Barnavon et al., 2000) being acti-
vated during seed and fruit ripening (concomitant with galactose
degradation) in a number of species (Ruiz-May and Rose, 2013).
b-Glycosidases have also been shown to prime xyloglucan for
xyloglucan endo-transglycosylase (XET) binding/action in
seeds (Buckeridge, 2010) and this correlates well with xylo-
glucan trans-hydrolase (XTH)/XET upregulation after véraison
in grapes (when galactose levels stabilize) (Ishimaru and
Kobayashi, 2002; Nunan et al., 2001). A recent study of
tobacco seed endosperm cell walls showed that distinct layers
of pectic-b(1,4)-galactan epitopes [revealed byenzyme unmask-
ing (Marcus et al., 2008)] define its architectural complexity (Lee
et al., 2013). This also highlights a shortcoming of the current
study, in which we did not perform immunomicroscopy (Lee
et al., 2011), a technique that provides an important spatial di-
mension to the datasets not available by using high-throughput
approaches alone (Persson et al., 2011).

The major finding of this study concerns the changes at vérai-
son, when extensin epitopes, specifically the mAbs LM1
(Table 1) and JIM20, significantly increased in abundance
(Smallwood et al., 1994, 1995). This fits nicely with the observa-
tion by Nunan et al. (1997) that protein components rich in argin-
ine and hydroxyproline accumulate in grapes at this stage. The
JIM20 mAb (prepared from carrot cortex) is present at the same
levels in all stages [in a manner analogous to Arabidopsis thaliana
extensin 3 (AtEXT3) (Albersheim et al., 2011)], while the LM1
mAb shows a ripening response. The LM1 mAb was obtained
from a glycoprotein of rice (Oryza sativa), where it is present in
the cell wall and plasma membrane. This extensin deposition cor-
relates with an oxidative burst at véraison which is believed to ini-
tiate a genetic re-programming of grapes in preparation for
ripening (Pilati et al., 2007). Indeed, oxidative enzymes [e.g. en-
dogenous extensin peroxidase (GvEP1)] have been shown to
cross-link extensin precursors [such as monomeric extensin
(Gvp1)] in grapevine callus tissue to produce an epitope recog-
nized by JIM11 [detects carrot extensin, as shown in Smallwood
et al. (1994)] (Jackson et al., 2001; Pereira et al., 2011). These
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FI G. 7. A set of three PCA score plots of CoMPP data from NaOH-extracted ma-
terial as detailed in Fig. 6. Cabernet Sauvignon samples are represented as circles
and Crimson Seedless samples as squares. Each plot is sized according to the
value of the variable: (A) mAb LM5 for pectic-b(1,4)-galactan;((B) mAb
LM15 for xyloglucan; and (C) mAb LM1 for extension epitopes. Arrows show

direction of ripening.
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wound extensins are also known to enhance disease resistance
against fungal enzymes (Ribeiro et al., 2006), modulate pectin
properties (MacDougall et al., 2001) and control primary wall hy-
dration (Pereira et al., 2011). Clearly, further work is necessary to
confirm that such an enzyme–extensin (mAb LM1) relationship
occurs in grape berries at véraison; this has only been shown in
callus cultures with mAb JIM11 (Jackson et al., 2001; Pereira
et al., 2011). Recently a novel protein transcription factor,
VvCEB1, has been shown to control berry cell size after véraison,
when rapid cell expansion occurs during sugar loading (Nicolas
et al., 2013); it is possible, therefore, that extensins could also func-
tion to regulate thewall-related events in a related manner. Another
common group of cell wall proteins are expansins; unlike exten-
sins, these function in wall loosening rather than cross-linking,
and although they are believed to be involved in grape ripening
they were not evaluated in this study (Dal Santo et al., 2013).

AGPs constitute a major class of proteins known to accumulate
in grape berries, which have received considerable attention,
mostly because they accumulate in red wine during fermentation
(Saulnier et al., 1992; Vidal et al., 2003; Moore and Divol,
2011); the first detailed study of AGP distribution in ripening
grapes was performed by Nunan et al. (1998). In our data, mAbs
JIM8 and JIM13 appear to show a ripening response; however,
the patterns are inconsistent and probably the decreasing signal
seen in ripe NaOH AIR may represent release of these glycopro-
teins into the apoplast. Similarly, the fact that mAbs JIM8 and
JIM13 are present in high abundance in both the CDTA and the
alkali fraction could mean that these AGP populations represent
different locations in the cell wall, in the apoplast, and perhaps
bound to and between the plasma membrane and the cell wall,
and so more inaccessible, requiring covalent bond-breaking
reagents for liberation (for a useful review on AGPs, see Tan

et al., 2012). Classical AGPs are of course membrane-bound
and so could require harsh reagents for liberation (Tan et al.,
2012). Recent evidence identifying a proteoglycan in
Arabidopsis thaliana that consists of a covalent link between an
AGP, pectin and arabinoxylan (Tan et al., 2013) supports the
idea that grape AGPs may covalently attach to other networks
(e.g. xyloglucans, mannans and/or arabinoxylans), which would
explain the data presented in this study. Of all the probes, the
mAb LM2 shows a strong ripening response from véraison to
ripe stage and detects an epitope present in rice (Smallwood
et al., 1996); the actual moiety isanacidic trisaccharide containing
glucuronic acid (Yates et al., 1996). The significance of this
requires further investigation.

Indeed, the CoMPP analysis (Moller et al., 2007) performed in
this study identified three excellent biomarkers for grape ripening
(Fig.8): (1) the decrease in the pectic-b(1,4)-galactan epitope from
green to véraison shown by mAb LM5; (2) the increase in extensin
epitopes at véraison detected by mAb LM1; and (3) the increase in
AGP epitope abundance from véraison to ripe stage, seemingly
specific to the mAb LM2. The combination of mAbs LM5, LM1
and LM2 appears to provide a useful means to ‘type’ green, vérai-
son and ripe AIR samples; however, further confirmation of this is
neededbyperformingamoredetailedandextensive ripeningstudy
in characterized vineyards. Although we have not shown that these
findings extend to other wine and table grape cultivars, these data
certainly hint that this cell wall epitope distribution pattern is prob-
ably common to grapes in general. Grape ripening is a complex
process involving growth not just at apical meristems, but also at
lateral meristems to produce either inflorescences (flower clusters)
that will develop into grape bunches or tendrils to support the liana
climbing habit of the vine (Keller, 2010). How the grapevine con-
trols the development of inflorescences and the production of berry

Developmental stage Wine grapes
Green Véraison Ripe 

Table grapes
Green Véraison Ripe

Pectin HG (LM18 and LM19)

Pectin HG (LM20)

Pectic 1,4-β-galactan (LM5)

Xyloglucan (LM15 and LM25)

Extensin (LM1)

AGP (LM2)

FI G. 8. Summary of selected major cell wall changes detected by specified monoclonal antibodies that occur in both wine and table grapes at green,
véraison and ripe stages.
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flesh is only just starting to be understood, with recent break-
through molecular studies in these areas (Chaib et al., 2010;
Fernandez et al., 2013), and the cell wall changes accompanying
these events will undoubtedly contribute significantly to this
understanding. In the context of grape ripening, the framework
of the changingberrycellwall,characterized in this initialprofiling
study, needs to be integrated with genomic and transcriptomic
studies (Goulao et al., 2012) (focusing on cell wall genes and
enzymes) to provide a more complete model of fruit maturation
in Vitis vinifera.
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