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Abstract. Climate change over the past �50 years has resulted in earlier occurrence of plant life-cycle events
for many species. Across temperate, boreal and polar latitudes, earlier seasonal warming is considered the key mech-
anism leading to earlier leaf expansion and growth. Yet, in seasonally snow-covered ecosystems, the timing of spring
plant growth may also be cued by snowmelt, which may occur earlier in a warmer climate. Multiple environmental cues
protect plants from growing too early, but to understand how climate change will alter the timing and magnitude of
plant growth, experiments need to independently manipulate temperature and snowmelt. Here, we demonstrate
that altered seasonality through experimental warming and earlier snowmelt led to earlier plant growth, but the
aboveground production response varied among plant functional groups. Earlier snowmelt without warming led to
early leaf emergence, but often slowed the rate of leaf expansion and had limited effects on aboveground production.
Experimental warming alone had small and inconsistent effects on aboveground phenology, while the effect of the
combined treatment resembled that of early snowmelt alone. Experimental warming led to greater aboveground
production among the graminoids, limited changes among deciduous shrubs and decreased production in one of
the dominant evergreen shrubs. As a result, we predict that early onset of the growing season may favour early
growing plant species, even those that do not shift the timing of leaf expansion.
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Introduction
Seasonality in temperate to polar ecosystems is shifting
through earlier seasonal warming and changes in precipi-
tation regimes that lead to earlier snowmelt (Schwartz
et al. 2006; Hayhoe et al. 2007; Ernakovich et al. 2014).
Plant communities are responding through changes in
timing of life-cycle events such as leaf expansion and

flowering (i.e. phenology) (Fitter and Fitter 2002; Thomp-
son and Clark 2008), shifts in species relative abundance
(Harte and Shaw 1995; Willis et al. 2008), species’ range
shifts (Walther et al. 2005; Gottfried et al. 2012) and
greater aboveground plant production (Knapp and
Smith 2001; Wang et al. 2012). These observations
of altered seasonality and plant community changes
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correspond to a period of increasing global temperatures,
but experiments are still needed to determine mechan-
isms and develop predictive models as climate change
continues (Pau et al. 2011; Richardson et al. 2012).

Temperature and photoperiod are known plant pheno-
logical cues that determine the timing of spring events,
such as bud burst, leaf emergence and canopy develop-
ment, and flowering (Cleland et al. 2007; Körner and
Basler 2010; Polgar and Primack 2011). Experimental
warming studies using different techniques, such as
active warming through overhead infrared heaters or
passive warming with open-top chambers (OTCs), dem-
onstrate that many species begin growth and flowering
earlier in warmed versus control plots (Cleland et al.
2006; Sherry et al. 2007; Reyes-Fox et al. 2014). However,
responses can vary with some species not shifting or
delaying the timing of spring events under warmed con-
ditions (Hollister et al. 2005a; Reyes-Fox et al. 2014;
Marchin et al. 2015). Similarly, long-term observations
of phenological response to climate warming over time
show an overall advance in timing of spring of an esti-
mated 5–6 days 8C21 (Wolkovich et al. 2012), but with
interspecific variation (Fitter and Fitter 2002; Menzel
et al. 2006). The variation in response suggests that phen-
ology is cued by other environmental variables (e.g.
photoperiod) for species within and across diverse plant
communities from tundra, grassland and forest biomes.

The influence of snow cover on plant phenology is less
well understood, in part because temperature change
due to climate change and experimental warming influ-
ence when an area becomes snow-free. Development of
early emerging species may be closely synchronized with
timing of snowmelt in Arctic and alpine ecosystems
(Galen and Stanton 1995; Høye et al. 2007), and indeed,
later snowmelt due to increased snow depth has been
shown to delay bud break of deciduous shrubs (Borner
et al. 2008; Sweet et al. 2014). However, few experiments
have examined the isolated effects of early snowmelt and
summer warming in the Arctic or alpine, and often these
effects are confounded either by the use of warming
treatments such as OTCs to accelerate snowmelt or by
the snow removal that reduces water inputs (Wipf and
Rixen 2010).

Multifactor global change experiments have shown
that plant production is sensitive to manipulations of
abiotic factors, including air and soil warming, nutrients,
CO2 and precipitation (Fay et al. 2003; Zavaleta et al. 2003;
Dukes et al. 2005; Dawes et al. 2011). Response to these
factors is complex, with variation across plant communi-
ties due to differences in limiting factors (Smith et al.
2015), and variation within communities due to differ-
ences in functional group responses (Zavaleta et al.
2003; Wahren et al. 2005; Muldavin et al. 2008). In the

Arctic, production is strongly limited by nutrient availabil-
ity, which in turn is sensitive to temperature and ongoing
changes in the timing of seasonal climatic events such as
snowmelt, soil thaw, the onset of freezing and snowfall
(Billings and Mooney 1968; Weintraub and Schimel
2005). In recent years, both observational and experi-
mental studies have linked increased production, specif-
ically that of deciduous shrubs and graminoids, to
warmer temperatures (Tape et al. 2006; Walker et al.
2006; Forbes et al. 2010; Elmendorf et al. 2012b; Sistla
et al. 2013). However, a number of experiments that
have manipulated summer temperature in both Arctic
and alpine regions did not find a consistent increase in
community-level aboveground net primary production
(ANPP); rather, individual species or functional groups
varied in their response (Chapin et al. 1995; Harte and
Shaw 1995; Hollister et al. 2005b). Evergreen shrubs
have responded to warming with positive, negative or
no changes in production (Hollister et al. 2005b; Walker
et al. 2006; Campioli et al. 2012), and they may be less
likely to show short-term growth responses due to their
conservative growth strategy (Chapin and Shaver 1996;
Starr et al. 2008).

Changes in plant production may also be expected to
vary in relation to changes in the timing of growth; for
example, earlier leaf expansion may lead to greater prod-
uctivity (Richardson et al. 2010). There is evidence that
phenological ‘tracking’ of climate change across biomes
can result in positive growth responses, through
increased abundance, production or flowering effort
(Cleland et al. 2012). However, physiological constraints
and interactions of the affected species may prevent
some plants from taking advantage of an earlier start
to the growing season (Schwartz 1998; Richardson et al.
2010; Polgar and Primack 2011). One such constraint
could be negative impacts of exposure to cold tempera-
tures and freezing damage if snow melts early (Inouye
2008; Wipf et al. 2009). Differences in the onset and dur-
ation of plant growth can also vary due to differences in
plant community composition; for example, deciduous
shrub-dominated communities in Arctic tundra were
shown to have longer peak growing seasons and greater
carbon uptake than evergreen/graminoid communities in
the same region (Sweet et al. 2015).

In the Arctic, climate is changing at a faster rate than in
other regions, a trend that is expected to continue
(Christensen et al. 2013). Rapidly increasing air tempera-
ture (�1 8C decade21) (Christensen et al. 2013), earlier
snowmelt (3–5 days decade21) and later snowfall are
changing the seasonality of this ecosystem (Serreze
et al. 2000; Ernakovich et al. 2014). Landscape-scale
observations via remote sensing suggest that vegetation
phenology in the Arctic is indeed advancing and plant
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production is increasing (Myneni et al. 1997; Jia et al.
2003, 2009; Fraser et al. 2011; Zeng et al. 2011). Earlier
snowmelt, especially in combination with warmer
temperatures in early spring, should benefit plant
growth, since it is the time of year with the greatest
light and nutrient availability (Weintraub and Schimel
2005; Edwards and Jefferies 2013). However, experi-
ments are needed to determine how shifts in seasonality
will affect phenology of Arctic species, and how changes
in phenology affect plant productivity and future commu-
nity composition.

In Arctic tussock tundra, we established a 3-year study
in which we altered seasonality through the independent
and combined manipulation of air temperature and tim-
ing of snowmelt. We examined the response of spring
phenology and plant production for key tundra species
and hypothesized that:

(1) The timing of snowmelt and temperature are cues for
initiating plant growth. We predicted that leaf
appearance and expansion would advance due to
early snowmelt and air warming for all species.

(2) The timing of snowmelt and temperature affect
plant production. We predicted that early snowmelt
and warmer temperatures would increase production
of deciduous shrub, graminoid and forb species,
but would not change production of evergreen
shrubs.

(3) The timing of plant growth affects plant production.
We predicted that earlier leaf expansion would lead
to greater aboveground biomass at peak season.

Methods

Site description

The experiment was conducted near Imnavait Creek on
the North Slope of Alaska, close to the Arctic Long-Term
Ecological Research (LTER) site at Toolik Field Station.
The plant community at Imnavait is moist acidic tussock
tundra, characterized by the tussock forming sedge
Eriophorum vaginatum and a high moss cover, including
Hylocomium spp., Aulacomnuim spp. and Dicranum spp.
Associated species include another sedge, Carex bigelo-
wii, the deciduous shrubs Betula nana and Salix pulchra,
the evergreen shrubs Ledum palustre, Vaccinium
vitis-idaea and Cassiope tetragonum, and a variety of
forbs [see Supporting Information—Table S1]. The old
(�120 000–600 000 years; Whittinghill and Hobbie
2011), acidic soil (mean pH of 4.5) at this site is underlain
by continuous permafrost, with an uneven surface layer
of organic material 0–20 cm thick (Walker et al. 1994)
and variable soil moisture.

Altered seasonality

For 3 years (2010–12), snowmelt was accelerated in five
8 × 12 m plots using radiation-absorbing black 50 %
shade cloth that was placed over the snowpack in late
April–early May. The dark fabric accelerated melt and
allowed for minimal disturbance of the snowpack. The
fabric was removed when plots became 80 % snow-free
(determined by daily visual estimates). In 2012, we
achieved a 10-day acceleration in the timing of snowmelt
with early snowmelt plots becoming snow-free on May 16
and control plots snow-free on May 26. Snow was melted
4 and 15 days earlier in 2010 and 2011, respectively. As
plots became snow-free, (OTCs were deployed on sub-
plots within the accelerated snowmelt and control
areas. The OTCs are hexagonal chambers with sloping
sides, constructed of Plexiglas material that allows trans-
mittance of wavelengths of light in the visible spectrum,
enabling passive warming primarily through trapping
solar radiation (Marion et al. 1997). Open-top chambers
warmed air temperatures by an average of 1.4 8C in
2012. Further details of treatment effects on air tempera-
ture, soil temperature and soil moisture are available in
Supporting Information—Table S2. The approximate
area of both control and warming subplots was 1 m2.
Treatments were replicated five times in a full factorial,
randomized split-plot design. Treatment abbreviations
are as follows throughout the article: control (C), warming
(W), early snowmelt (ES) and combined (W × ES).

Phenology

Five individuals of seven species were marked in each
subplot and phenology events were monitored every
2–3 days from snowmelt through mid-August. Observa-
tions of ‘leaf appearance’ and ‘leaf expansion’ were
recorded for each individual. Although definitions of
events varied between functional groups, we generally
considered leaf appearance to be the first observation
of new green leaves and leaf expansion to be when an
individual had a leaf that was fully expanded or had
reached a previously determined size. For deciduous
shrubs (B. nana and S. pulchra), leaf appearance was
recorded at the first observed leaf bud burst, and leaf
expansion when an individual had at least one fully
unfurled leaf anywhere on the plant. Similarly, evergreen
shrub (L. palustre and V. vitis-idaea) leaf appearance was
recorded when the first leaf bud was visible, and full leaf
expansion occurred when at least one leaf bud was fully
open and leaves unfurled. Eriophorum vaginatum retains
green leaf material over winter and often begins growth
of new leaves and re-greening of old leaves before snow is
completely melted (Chapin et al. 1979). Therefore, we
recorded leaf appearance (new leaves .1 cm length)
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for E. vaginatum on the day of snowmelt, but did not con-
sider this as a treatment effect. Rather than continuously
measuring leaf length to record full leaf expansion, we
determined leaf expansion for E. vaginatum to have
occurred when a new leaf reached .4 cm length. We
only considered growth of new leaves, which were identi-
fied as those with no senescent material at the leaf tip.
We followed similar protocol for C. bigelowii leaf appear-
ance (new leaf .1 cm length) and leaf expansion (new
leaf .4 cm length), but leaf appearance was considered
a treatment effect. First leaf appearance for the forb
P. bistorta was marked when leaves were visible (gener-
ally .1 cm length) and leaf expansion when leaves
were fully unrolled and .5 cm length.

Plant production

A destructive harvest to measure plant production, as
characterized by growth of individuals in the current
year, was carried out on the same species for which phen-
ology was observed. The seven species chosen repre-
sented four functional groups and comprised the
majority of vascular plant cover at our site [see Support-
ing Information—Table S1]. The harvest took place in the
third year of treatments at peak growing season, which
was determined by phenology observations and analysis
of daily normalized difference vegetation index measure-
ments showing that peak greenness (i.e. full canopy
development) had occurred in each treatment (C. Liven-
sperger and H. Steltzer, unpublished data). Randomly
selected individuals were clipped in the field, and then
taken back to the laboratory where old and new growth
was separated and biomass measured. Eight individuals
each of B. nana, S. pulchra and L. palustre, and 16 indivi-
duals each of V. vitis-idea, E. vaginatum, C. bigelowii and
P. bistorta were collected from each subplot and pooled
by species. Plant material was separated by tissue type,
dried at 60 8C for 48 h and weighed.

Mean individual production for each species was calcu-
lated as the sum of current years’ biomass divided by the
number of individuals collected. Current years’ biomass
included leaves, new stems and secondary growth for
shrub species. For graminoids and a forb, all live above-
ground plant tissue was used, which may have included
some growth from previous years for E. vaginatum and
C. bigelowii. We calculated current annual secondary
stem growth for B. nana, S. pulchra and L. palustre as a
proportion of standing stem biomass, using previously
determined annual growth rates of woody stems from
the nearby Toolik Lake LTER site (Bret-Harte et al. 2002).
For these species, leaves contributed more to total bio-
mass than the calculated secondary growth. Secondary
growth for the remaining shrub species, V. vitis-idaea, is
negligible and, therefore, was left out of production

calculation for this species (Shaver 1986). Standing
stem biomass, excluding current seasonal growth, for
individual shrub stems varied among plots and likely is
a result of variation prior to when the experiment was
established. To control for this variation and better detect
treatment effects, individual production data are pre-
sented in relation to standing stem biomass excluding
current annual growth (i.e. g new production/g standing
stem biomass).

Statistical analyses

For all analyses, the experiment was treated as a blocked
split-plot design, where a large early snowmelt plot
paired with an equally sized control plot comprise a single
block. Plant responses and environmental variables were
analysed using a mixed-model analysis of variance
(ANOVA; SAS v 9.2, SAS Institute, Inc., Cary, NC, USA),
with early snowmelt (ES) as the main plot factor and
warming (W) as the within plot factor. A random effect
of block was included to control for inherent variation
between the five replicates. All data were checked for
normality and were found to meet the assumptions
of ANOVA. Linear regression was used to analyse the
relationship between phenology and plant growth.

Results

Plant phenology

Early snowmelt was a strong driver of change in both the
timing and rate of leaf appearance and expansion. These
events advanced due to early snowmelt alone for all spe-
cies except the forb, P. bistorta (Fig. 1), and the amount
of change in timing varied between events, species
and functional groups. The largest change in timing was
a 10-day advance in leaf expansion for E. vaginatum
(Fig. 1), corresponding to the 10-day advance in snow-
melt through our snow manipulation. Leaf appearance
and expansion of evergreen and deciduous shrubs were
significantly earlier due to early snowmelt alone, advan-
cing by 1–8 days for B. nana, S. pulchra, L. palustre and
V. vitis-idaea (Fig. 1, Table 1). The advancement of leaf
appearance versus leaf expansion differed in magnitude
for S. pulchra, V. vitis-idaea and C. bigelowii, by increasing
the number of days between leaf appearance and leaf
expansion by 2–5 days. For example, in the early snow-
melt treatment, leaf appearance for S. pulchra occurred
8 days earlier than the control, while leaf expansion
advanced by only 3 days. For deciduous shrubs, evergreen
shrubs and the forb, the shift in phenology was less than
the 10-day advance in snowmelt, increasing the number
of days after snowmelt to when canopy development
(i.e. leaf expansion) began; this effectively slowed the
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rate of plant production (Fig. 2, Table 2). The sedges,
E. vaginatum and C. bigelowii, did not follow this pattern,
with no evidence of a change in the number of days
between leaf appearance and expansion (Fig. 2).

Warming also advanced the timing of leaf appearance
and expansion for most species, but to a lesser extent
than early snowmelt (Fig. 1, Table 1). All of the deciduous
shrub and graminoid species advanced leaf phenology
with warming alone, but only by 1 or 2 days (Fig. 1,
Table 1). Evergreen shrubs showed contrasting responses
to warming: leaf appearance for V. vitis-idaea advanced

by 3 days, while L. palustre leaf expansion was delayed
for 2 days (Fig. 1, Table 1). Warming generally did not
alter phenology in relation to the timing of snowmelt
(Fig. 2, Table 2). One exception is that warming led to sig-
nificantly faster leaf expansion following snowmelt for
B. nana, effectively speeding plant production.

Phenological responses to the combination of early
snowmelt and warming were generally comparable
with the response to early snowmelt alone (Figs 1 and
2), and the interactive effect of warming × early snow-
melt on phenology was never significant (Table 1). For

Figure 1. Dates of early-season phenology events, where open circles represent leaf appearance and filled circles represent leaf expansion.
Points are the mean date of event+1 SEM. Vertical dashed lines denote mean event date for control plots. 1E. vaginatum initiates growth under-
neath the snowpack so we did not consider leaf appearance to be a treatment effect; however, the event date is shown to signify the presence of
new leaves at the time of snowmelt.
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evergreen shrubs, leaf appearance occurred earliest with
the combined treatment, which was 1–3 days earlier
than in snowmelt and warming alone (Fig. 1).

Plant production

Although phenological events often occurred earlier in
the year due to earlier snowmelt and warming, an
increase in individual production was rarely observed.
Rather, responses to early snowmelt and warming varied
within and among functional groups. Differences were
rarely significant (Table 3), in part due to the challenge
of quantifying plant production in an ecosystem with
high spatial variation.

However, the magnitude of change often represented a
high proportion of production in this low productivity sys-
tem. Deciduous shrub species differed in their response,
with S. pulchra decreasing individual production by 6–
11 % and B. nana showing little change across the three
treatments (Table 3). Evergreen shrub species increased
individual production by 28 and 8 % for L. palustre and
V. vitis-idaea, respectively, due to early snowmelt
(Table 3). Individual production of P. bistorta, the forb,
was highly variable within treatments; for example, con-
trol plants ranged from 36 to 297 mg biomass. The most
evident response for this species was a large, but non-
significant, decrease (36 %) in production due to early
snowmelt (Table 3).

The effect of warming on production was statistically
significant for two species and led to the largest propor-
tional changes (Fig. 3, Table 3). Both graminoid species
responded positively to warming. Mean individual pro-
duction for E. vaginatum increased by 36 %, which was
the greatest proportional increase of any species (Fig. 3,
Table 3). When early snowmelt and warming were com-
bined, E. vaginatum increased individual production by
27 % relative to the control (Fig. 3, Table 3). The other
graminoid, C. bigelowii, increased individual production
by 17 % with warming and 24 % with warming and
early snowmelt, although these increases were not
significant (Fig. 3, Table 3). An evergreen shrub,
V. vitis-idaea, had relatively large decreases relative to
the control with warming (21 %) and the combined
treatment (42 %), and the main effect of warming was
significant (Table 3).

Phenology and production relationship

Across all species and for all treatments, earlier leaf
expansion was associated with increased production
(Fig. 4, y¼ 135.52–0.81x, R2¼ 0.09, P¼ 0.0021). This rela-
tionship reflects differences in the timing of leaf expansion
among growth forms and the response of individual plant
production to early snowmelt and warming. Species varied
in the timing of leaf expansion by 40 days, a range that was
expanded by 14 days due to altered seasonality. Early

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1. Results of mixed-model ANOVA on timing of early-season phenology events. Leaf appearance for E. vaginatum was not considered a
treatment effect and was excluded from the analysis. Bold values indicate a significant main effect of the treatment at P ≤ 0.05.

Warming Early snowmelt Warming 3 Early snowmelt

df F P df F P df F P

Leaf appearance

B. nana 1, 85 0.88 0.3503 1, 4 9.46 0.0373 1, 85 1.49 0.2253

S. pulchra 1, 71 0.21 0.6501 1, 8 20.24 0.0019 1, 71 0.15 0.7045

L. palustre 1, 86 5.75 0.0186 1, 4 21.53 0.0099 1, 86 0.00 0.9775

V. vitis-idaea 1, 83 15.08 0.0002 1, 4 8.92 0.0405 1, 83 0.01 0.9241

C. bigelowii 1, 83 0.16 0.6910 1, 4 65.58 0.0012 1, 83 0.20 0.6533

P. bistorta 1, 65 0.13 0.7212 1, 7 1.34 0.2829 1, 65 0.25 0.6184

Leaf expansion

B. nana 1, 86 55.71 <0.0001 1, 4 79.28 0.0008 1, 86 2.33 0.1308

S. pulchra 1, 77 1.86 0.1766 1, 77 42.81 <0.0001 1, 77 0.04 0.8329

L. palustre 1, 86 3.26 0.0743 1, 8 30.97 0.0006 1, 86 3.95 0.0501

V. vitis-idaea 1, 88 1.59 0.2108 1, 88 19.73 <0.0001 1, 88 1.04 0.3100

E. vaginatum 1, 86 3.36 0.0702 1, 4 37.14 0.0033 1, 86 1.38 0.2436

C. bigelowii 1, 84 1.64 0.2037 1, 4 31.25 0.0053 1, 84 0.55 0.4599

P. bistorta 1, 70 0.13 0.7182 1, 70 0.30 0.5882 1, 70 1.33 0.2525
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expanding species (E. vaginatum and C. bigelowii) had
increases in production, while later expanding species
(L. palustre and V. vitis-idaea) had some increases
and also large decreases in production as a result of
warming. Across functional groups, warming drove the
relationship between timing of leaf expansion and
individual production, as shown by significantly negative
regression slopes within the warming and combined
treatments (Fig. 5; C: y ¼ 262.7 + 0.41x, R2 ¼ 0.01,

P ¼ 0.53; ES: y ¼ 43.16–0.24x, R2 ¼ 0.01, P ¼ 0.547;
W: y ¼ 188.66–1.11x, R2 ¼ 0.13, P ¼ 0.03; W × ES:
y ¼ 200.26–1.23x, R2 ¼ 0.24, P ¼ 0.005). Within func-
tional groups, there was no relationship between the
timing of leaf expansion and individual production,
despite earlier leaf expansion due to early snowmelt
and warming (Fig. 6; deciduous shrubs: y ¼ 216.43–1.37x,
R2 ¼ 0.06, P ¼ 0.202; evergreen shrubs: y ¼ 2606.13 +
3.37x, R2¼ 0.08, P ¼ 0.129; graminoids: y ¼ 50.74–0.18x,

Figure 2. Number of days since snowmelt for early-season phenology events. Points are average number of days since snowmelt+1 SEM. A
greater number of days until full leaf expansion are interpreted as a slower growth rate. Note different scales on x-axes. 1As noted in Fig. 1, leaf
appearance of E. vaginatum is not considered a treatment effect but is shown for clarity.
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R2 ¼ 0.002, P ¼ 0.7; forb: y ¼ 276.82–1.72x, R2 ¼ 0.03,
P¼ 0.582).

Discussion
Our results showed consistent advancement of leaf
appearance and expansion, indicating that spring phen-
ology of moist acidic tundra species is sensitive to early
snowmelt and warming, which is consistent with our

first hypothesis. Warmer temperatures have been
shown to advance spring phenology in other systems,
particularly for deciduous shrubs where budburst is well
predicted by growing degree-days (Polgar and Primack
2011). However, we found that species were more
responsive to early snowmelt, by advancing timing of
events to a greater extent than with warming alone. Tim-
ing of snowmelt has been shown to be a cue for spring
phenology in Arctic and alpine ecosystems (Arft et al.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2. Results of mixed-model ANOVA on duration of time since snowmelt for early-season phenology events. Leaf appearance for
E. vaginatum was not considered a treatment effect and was excluded from the analysis. Bold values indicate a significant main effect of
the treatment at P ≤ 0.05.

Warming Early snowmelt Warming 3 Early snowmelt

df F P df F P df F P

Leaf appearance

B. nana 1, 86 1.00 0.3210 1, 8 22.56 0.0015 1, 86 1.35 0.2479

S. pulchra 1, 74 0.14 0.7070 1, 7 1.25 0.2975 1, 74 0.26 0.6112

L. palustre 1, 86 5.73 0.0188 1, 4 33.32 0.0047 1, 86 0.00 0.9889

V. vitis-idaea 1, 83 15.03 0.0002 1, 4 30.73 0.0057 1, 83 0.01 0.9179

C. bigelowii 1, 87 0.16 0.6933 1, 87 1.81 0.1823 1, 87 0.19 0.6639

P. bistorta 1, 65 0.10 0.7576 1, 65 36.75 <0.0001 1, 65 0.49 0.4859

Leaf expansion

B. nana 1, 85 55.48 <0.0001 1, 4 40.62 0.0030 1, 85 2.36 0.1281

S. pulchra 1, 75 0.89 0.3475 1, 4 45.21 0.0028 1, 75 0.35 0.5537

L. palustre 1, 90 3.44 0.0669 1, 90 59.34 <0.0001 1, 90 4.16 0.0444

V. vitis-idaea 1, 85 1.50 0.2234 1, 4 173.94 0.0002 1, 85 0.95 0.3323

E. vaginatum 1, 87 3.51 0.0645 1, 4 0.00 0.9497 1, 87 1.33 0.2526

C. bigelowii 1, 84 1.71 0.1951 1, 4 4.42 0.1025 1, 84 0.54 0.4635

P. bistorta 1, 70 0.26 0.6115 1, 70 51.99 <0.0001 1, 73 1.66 0.2013

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Table 3. Results of mixed-model ANOVA on individual biomass. Bold values indicate a significant main effect of the treatment at P ≤ 0.05.

Warming Early snowmelt Warming 3 Early snowmelt

df F P df F P df F P

Individual biomass

B. nana 1, 16 0 0.9859 1, 16 0.22 0.6466 1, 16 1.02 0.3287

S. pulchra 1, 12 0.17 0.6900 1, 12 0.18 0.6783 1, 12 1.18 0.2990

L. palustre 1, 8 0.73 0.4185 1, 8 1.35 0.2782 1, 8 0.43 0.5283

V. vitis-idaea 1, 16 5.39 0.0338 1, 16 0.19 0.6686 1, 16 0.95 0.3454

E. vaginatum 1, 8 7.48 0.0256 1, 4 0.20 0.6757 1, 8 2.35 0.1635

C. bigelowii 1, 12 1.51 0.2425 1, 12 1.04 0.3277 1, 12 0.16 0.6926

P. bistorta 1, 16 0.85 0.3831 1, 16 0.08 0.7808 1, 16 0.28 0.6106

8 AoB PLANTS www.aobplants.oxfordjournals.org & The Authors 2016

Livensperger et al. — Altered seasonality influences phenology, production

D
ow

nloaded from
 https://academ

ic.oup.com
/aobpla/article/doi/10.1093/aobpla/plw

021/2609549 by guest on 23 April 2024



1999; Steltzer et al. 2009), but experiments often con-
found the effects of warming and timing of snowmelt.
Arctic species generally have a wide range of physio-
logical tolerance, allowing spring growth to occur despite
temperatures at or near freezing (Billings and Mooney
1968), and our experiment shows that early snowmelt
can advance phenology independent of warming.

Along with clear advances in spring phenology, we also
observed slower rates of leaf expansion for many species
in response to early snowmelt, supporting the conserva-
tive growth strategy demonstrated by many Arctic and
alpine species to compensate for interannual variation
in snowmelt timing (Billings and Mooney 1968). Surpris-
ingly, only one species, B. nana, expanded its leaves at a
faster rate with warming. It may be that soil temperature,
which warmed to a lesser extent than air temperature
[see Supporting Information—Table S2], is an additional
cue for rate of leaf expansion for most species. Plants that
expand leaves early may be susceptible to frost damage if

Figure 3. Biomass of individual species harvested in the third year of altered seasonality. For deciduous and evergreen shrubs, bars represent
means of proportion of current annual growth to standing stem biomass of the individual, +1 SEM. For graminoids and a forb, bars represent
means of aboveground biomass, +1 SEM. Letters (a and b) represent groupings based on least squares means of the ANOVA mixed model,
where bars with the same letter are not statistically different at P ≤ 0.05.

Figure 4. Relationship between phenology and production, with pro-
duction (y-axis) represented as the per cent difference from the con-
trol mean ANPP for each species (100 × treatment 2 control mean/
control). Each point represents one species, treatment and plot. The
solid line is the linear regression (see Results for details).
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temperatures remain cold or freezing events occur
(Inouye 2008; Wipf et al. 2009).

Production responses to warming and early snowmelt
were dependent on growth form and individual species.
One functional group (graminoids) matched our pre-
dicted direction of response, while others did not (forbs

and deciduous and evergreen shrubs). Previous warming
experiments have also shown interspecific variation
within tundra communities, with graminoids and decidu-
ous shrubs showing rapid change relative to evergreen
shrubs and forbs (Chapin and Shaver 1985; Chapin et al.
1995; Hollister et al. 2005b). The response of graminoids

Figure 5. Relationship between phenology and production by treatment type. Data follow Fig. 4. Solid lines are linear regressions for each func-
tional group (see Results for details).

Figure 6. Relationship between phenology and production by functional group. Data follow Fig. 4. Solid lines are linear regressions for each
functional group (see Results for details).
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in our study was consistent with these experiments, with
both E. vaginatum and C. bigelowii increasing production
in response to warming and early snowmelt. Although we
measured biomass of individual tillers, new tiller recruit-
ment is another likely mechanism by which either grami-
noid species could have increased biomass (Chapin and
Shaver 1985). Graminoids were the only functional
group that maintained their growth rates when snow
was melted early, which may confer an advantage in
accessing early-season nutrient pulses, and conse-
quently increasing production in the same year (Shaver
et al. 1986). Our results are generally consistent with
past work on E. vaginatum, which showed that early-
season air warming leads to accelerated leaf growth
and earlier arrival at peak biomass (Sullivan and Welker
2005). Our observation that graminoids were also able
to advance timing of early-season phenology to a greater
extent than the other functional groups may be due to
their ability to initiate growth underneath the snowpack
and therefore have new leaves present at snowmelt in
addition to green leaves that have overwintered (Chapin
et al. 1979).

Warming resulted in a large decrease in production for
the evergreen shrub, V. vitis-idaea, a species that has
shown much variability in response to warming in previ-
ous experiments (Chapin et al. 1995; Arft et al. 1999;
Zamin et al. 2014). A meta-analysis of warming experi-
ments across the Arctic suggests that evergreen shrub
response to warming depends on soil moisture regime,
with plants in moist soils more often decreasing in abun-
dance (Elmendorf et al. 2012a). Regardless, the large
change in production that we observed was unexpected
because evergreen shrubs have a conservative growth
strategy, demonstrated by slower growth rates, lower
specific leaf area and lower photosynthetic capacity
than other species in the tundra community (Chapin
and Shaver 1996; Starr et al. 2008). A decrease in new
leaf biomass by V. vitis-idaea could be related to conditions
in previous years, because evergreen shrub growth relies in
part on nutrients stored in old leaves (Billings and Mooney
1968). Alternatively, V. vitis-idaea may be a poorer com-
petitor than deciduous species (e.g. B. nana) for increased
nutrients under warmed conditions (Shaver et al. 2001).
Evergreen shrubs have the ability to access early-season
nutrient pulses (McKane et al. 2002; Larsen et al. 2012)
and photosynthesize under the snowpack (Starr and
Oberbauer 2003), which may explain why both species
increased production in response to early snowmelt,
similar to graminoids. However, this does not explain
why V. vitis-idaea would show the opposite response
when early snowmelt was combined with warming.

Production of deciduous shrubs and a forb did not show
clear responses to warming or early snowmelt. It may be

that the 3-year duration of our study did not allow enough
time for B. nana or S. pulchra to show significant changes
in production. Short- and long-term responses to warm-
ing in the moist acidic tundra have been shown to vary,
in part because of slow recruitment and establishment
of new individuals (Hollister et al. 2005b). For example,
observations from the ITEX experiments showed that
community changes in deciduous shrubs did not become
significant until after 4 years of warming (Walker et al.
2006). However, since we measured growth at an individ-
ual (rather than community) level in order to detect
within-season changes of biomass accumulation, the
response of deciduous shrubs may be more likely attribu-
ted to nutrient availability in that year. If evergreen
shrubs were able to access nutrient pulses early in the
season before deciduous shrubs, it may help explain
why the latter showed little response, specifically when
snow was melted early. The one forb tested in this experi-
ment, P. bistorta, had highly variable results which may
have obscured any treatment effects.

While the magnitude of temporal shifts is often a focus
of phenological studies, our results suggest that evolved
strategies within the plant community also play an
important role in determining responses to altered sea-
sonality. We predicted that earlier leaf expansion would
lead to greater production, and we found that this was
true for early expanding species but not later expanding
species. This demonstrates that temporal niche partition-
ing influences species’ responses to environmental
change. A previous study (Cleland et al. 2012) examined
plant responses to warming and found that phenologi-
cally flexible species (able to ‘track’ climate change) had
positive performance responses (e.g. increased abun-
dance and production). Our results are only partially
consistent with this result. In our study, changes in phen-
ology alone did not always result in a change in produc-
tion. Rather, community patterns of leaf expansion, along
with warming-driven increases and decreases in ANPP
(Fig. 5), contributed to a negative relationship between
spring phenology and production (Fig. 4). If this relation-
ship was representative of differences in functional
groups alone, we would expect the relationship to hold
among control plots, which was not the observed result
(Fig. 5). Differences in the ability of species to shift the
timing and rate of leaf expansion may affect competitive
interactions and subsequently influence future plant
community composition (Richardson et al. 2010; Cleland
et al. 2012). Specifically, E. vaginatum, which was able to
green rapidly and maintain its growth rate, may have a
competitive advantage. Further, we predict that species
that occupy early-season temporal niches across diverse
ecosystems may increase in abundance under altered
climate conditions.
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Conclusions
Changes in vegetative phenology, regardless of changes
in production, have important implications for function-
ing of Arctic ecosystems. Phenological shifts can affect
competition among species, and differential responses
of individual species may determine future plant commu-
nity structure. Changes in Arctic plant communities have
the potential to affect multiple aspects of ecosystem
function, including (i) carbon cycling, by altering the
balance between ecosystem-scale photosynthesis and
respiration (Shaver et al. 1992; Hobbie et al. 2000); (ii) sur-
face energy balance and feedbacks to the climate system,
through change in albedo and seasonal changes in leaf
area (Peñuelas et al. 2009; Richardson et al. 2013); and
(iii) trophic relationships that may become decoupled
if plant phenology responds to a changing climate
differently than vertebrate and invertebrate herbivores
(Post and Forchhammer 2008; Høye et al. 2013). Our
study suggests that an earlier spring as indicated by
satellite data may be driven by early greening species
such as E. vaginatum and C. bigelowii. These species
have the advantage of being able to respond rapidly
and positively to changes in seasonality, and may
increase in abundance in tundra ecosystems as earlier
snowmelt and warmer springs continue.
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Magnússon B, May JL, Mercado-Dı́az JA, Michelsen A, Molau U,
Myers-Smith IH, Oberbauer SF, Onipchenko VG, Rixen C, Martin
Schmidt N, Shaver GR, Spasojevic MJ, Þórhallsdóttir ÞE,
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