-
PDF
- Split View
-
Views
-
Cite
Cite
Toshio Tomita, Yoshiyuki Kamio, Molecular Biology of the Pore-forming Cytolysins from Staphylococcus aureus, α- and γ-Hemolysins and Leukocidin, Bioscience, Biotechnology, and Biochemistry, Volume 61, Issue 4, 1 January 1997, Pages 565–572, https://doi.org/10.1271/bbb.61.565
Close - Share Icon Share
Abstract
Staphylococcus aureus is an important opportunistic pathogen. It produces a variety of extracellular proteins, which may play important roles in infections by this bacterium. Staphyloccal α-toxin is a pore-forming 33-kDa polypeptide. In the first part of this article, we will refer to the roles of cell membranes in the pore formation by α-toxin as well as the molecular dissection of α-toxin for understanding its pore-forming nature. Staphylococcal γ-hemolysin and leukocidin are bi-component cytolysins, which have different cell specificities towards erythrocytes and leukocytes, respectively. We have found that these bi-component cytolysins share a common component. In the second part of this article, we will refer to the current status of knowledge of molecular cloning of the genes coding for γ-hemolysin and leukocidin, molecular domains of the toxins which decide the cell specificities, and mode of action of these bi-component toxins.
References
A. C. MacCartney and J. P. Arbuthnott, in “Bacterial Toxins and Cell Membranes,” ed. by J. Jeljaszewicz and T. Wadstroem, Academic Press, London, 1978, pp. 89–127.
P. Recsei, B. Kreiswirth, M. O’Reilly, P. Schlievert, A. Gruss, and R. Novick, Mol. Gen. Genet., 202, 58–61 (1985).
M. Kehoe, I. Duncan, T. Foster, N. Fairweather, and G. Dougan, Infect, Immun., 41, 1105–1111 (1983).
R. Fussle, S. Bhakdi, A. Sziegoleit, J. Tranum-Jensen, T. Kranz, and H. L. Wellensiek, J. Cell Biol., 91, 83–94 (1981).
J. E. Gouaux, O. Braha, M. Hobaugh, L. Song, S. Cheley, C. Shustak, and H. Bayley, Proc. Natl. Acad. Sci. U.S.A., 91, 12828–12831 (1994).
M. Palmer, R. Jursch, U. Weller, A. Valeva, K. Hilgert, M. Kehoe, and S. Bhakdi, J. Biol. Chem., 268, 11959–11962 (1993).
A. Valeva, A. Weisser, B. Walker, M. Kehoe, H. Bayley, S. Bhakdi, and M. Palmer, EMBO J., 15, 1857–1864 (1996).
G. Prevost, G. Cribier, P. Couppie, P. Petiau, G. Supersac, V. Finck-barbancor, H. Monteil, and Y. Peimont, Infect. Immun., 63, 4121–4129 (1995).
A. Rahman, H. Nariya, K. Izaki, I. Kato, and Y. Kamio, Biochem. Biophys. Res. Commun., 184, 640–646 (1992).
H. Soboll, A. Ito, W. Schaeg, and H. Blobel, Zentralbl. Bakteriol. Hyg. Abt. Orig., 224, 184–193 (1973).
K. Sudo, W. Choorit, I. Asami, J. Kaneko, K. Muramoto, and Y. Kamio, Biosci. Biotech. Biochem., 59, 1786–1789 (1995).
G. Prevost, G. Supersac, D. A. Colin, P. Couppie, S. Sire, T. Hensier, P. Patiau, O. Meunier, B. Cribier, W. Konig, and Y. Piemont, in “Bacterial Protein Toxins,” Zbl. Bakt. Suppl. 24, ed. by Free et al., Gustav Fischer, New York, 1994, pp. 284–293.
H. Nariya, I. Asami, T. Ozawa, Y. Beppu, K. Izaki, and Y. Kamio, Biosci. Biotech. Biochem., 57, 2198–2199 (1993).
G. Prevost, P. Couppie, P. Prevost, S. Gayet, P. Petiau, B. Cribier, H. Monteil, and Y. Piemont, J. Med. Microbiol, 42, 237–245 (1995).
T. Ozawa, J. Kaneko, H. Nariya, K. Izaki, and Y. Kamio, Biosci. Biotech. Biochem., 58, 602–605 (1994).
V. Finck-Barbancon, G. Duportail, O. Meunier, and D. A. Colin, Biochim. Biophys. Acta, 1182, 275–282 (1993).