-
PDF
- Split View
-
Views
-
Cite
Cite
Masayuki KUSANO, Yasuyoshi SAKAI, Nobuo KATO, Hiroyuki YOSHIMOTO, Hidetaka SONE, Yukio TAMAI, Hemiacetal Dehydrogenation Activity of Alcohol Dehydrogenases in Saccharomyces cerevisiae, Bioscience, Biotechnology, and Biochemistry, Volume 62, Issue 10, 1 January 1998, Pages 1956–1961, https://doi.org/10.1271/bbb.62.1956
Close - Share Icon Share
Abstract
Some methylotrophic yeasts produce methyl formate from methanol and formaldehyde via hemiacetal formation. We investigated Saccharomyces cerevisiae to find whether this yeast has a carboxylate ester producing pathway that proceeds via hemiacetal dehydrogenation. We confirmed that the purified alcohol dehydrogenase (Adh) protein from S. cerevisiae can catalyze the production of esters. High specific activities were observed toward the hemiacetals corresponding to the primary alcohols when ether groups were substituted for methylene groups, resulting in the formation of formate esters. Both ADH and methyl formate synthesizing activities were sharply reduced in the Δadh1 Δadh2 mutant. The ADH1 and ADH2 genes encode the major Adh proteins in S. cerevisiae. Thus, it was concluded that the S. cerevisiae Adh protein catalyzes activities for the production of certain carboxylate esters.
References
1) Alvarez, P., Malcorps, P., Sa Almeida, A., Ferreira, A., Meyer, A. M., and Dufour, J. P., Analysis of free fatty acids, fusel alcohols, and esters in beer: an alternative to CS2 extraction. J. Am. Soc. Brew. Chem., 52, 127-134 (1994).
2) Kuriyama, K., Ashida, S., Saito, Y., Hata, Y., Suginami, K., and Imayasu, S., Ethyl caproate synthesis and hydrolysis activity of saké yeast. Hakko Kogaku (in Japanese), 64, 175-180 (1986).
3) Yoshioka, K. and Hashimoto, N., Ester formation by alcohol acetyltransferase from brewers’ yeast. Agric. Biol. Chem., 45, 2183-2190 (1981).
4) Minetoki, T. Bogaki, T., Iwamatsu, A., Fujii, T., and Hamachi, M., The purification, properties and internal peptide sequences of alcohol acetyltransferase from Saccharomyces cerevisiae. Biosci. Biotech., Biochem., 57, 2094-2098 (1993).
6) Fujii, T., Nagasawa, N., Iwamatsu, A., Bogaki, T., Tamai, Y., and Hamachi, M., Molecular cloning, sequence analysis, and expression of the yeast alcohol acetyltransferase gene. Appl. Environ. Microbiol., 60, 2786-2792 (1994).
7) Schermers, F. H., Duffus, J. H., and MacLeod, A. M., Studies on yeast esterase. J. Inst. Brew., 82, 170-174 (1976).
8) Sakai, Y., Murdanoto, A. P., Sembiring, L., Tani, Y., and Kato, N., A novel formaldehyde oxidation pathway in methylotrophic yeasts: Methylformate as a possible intermediate. FEMS Microbiol. Lett., 127, 229-234 (1995).
9) Murdanoto, A. P., Sakai, Y., Konishi, T., Yasuda, F., Tani, Y., and Kato, N., Purification and properties of methyl formate synthase, a mitochondrial alcohol dehydrogenase, participating in formaldehyde oxidation in methylotrophic yeasts. Appl. Environ. Microbiol., 63, 1715-1720 (1997).
10) Amberg, D. C., Botstein, D., and Beasley, E. M., Precise gene disruption in Saccharomyces cerevisiae by double fusion polymerase chain reaction. Yeast, 11, 1275-1280 (1995).
11) Bradford, M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal., Biochem., 72, 248-254 (1976).
12) Williamson, V. M. and Paquin, C. E., Homology of Saccharomyces cerevisiaeADH4 to an iron-activated alcohol dehydrogenase from Zymomonas mobilis. Mol., Gen., Genet., 209, 374-381 (1987).
13) Denis, C. L. , Ferguson, J., and Young, E. T., mRNA levels for the fermentative alcohol dehydrogenase of Saccharomyces cerevisiae decrease upon growth on a nonfermentable carbon source. J. Biol. Chem., 258, 1165-1171 (1983).
14) Ciriacy, M., Genetics of alcohol dehydrogenase in Saccharomyces cerevisiae. II. Two loci controlling synthesis of the glucose-repressible ADH II. Mol. Gen. Genet., 138, 157-164 (1975).
15) Young, E. T. and Pilgrim, D., Isolation and DNA sequence of ADH3, A nuclear gene encoding the mitochondrial isozyme of alcohol dehydrogenase in Saccharomyces cerevisiae. Mol. Cell. Biol., 5, 3024-2034 (1985).
16) Feldmann, H., Aigle, M., Aljinovic, G., André, B., Baclet, M. C., Barthe, C., Baur, A., Bécam, A.-M., Biteau, N., Boles, E., Brandt, T., Brendel, M., Brückner, M., Bussereau, F., Christiansen, C., Contreras, R., Crouzet, M., Czieplunch, C., Démolis, N., Delaveau, Th., Doignon, F., Domdey, H., Düsterhus, S., Dubois, E., Dujon, B., El Bakkoury, M., Entian, K.-D., Feuermann, M., Fiers, W., Fobo, G. M., Frits, C., Gassenhuber, H., Glansdorff, N., Goffeau, A., Grivell, L. A., de Hann, M., Hein, C., Herbert, C. J., Hollenberg, C. P., Holmstrøm, K., Jacq, C., Jacquet, M., Jauniaux, J. C., Jonniaux, J.-L., Kallesøe, T., Kiesau, P., Kirchrath, L., Kötter, P., Korol, S., Liebl, S., Logghe, M., Lohan, A. J. E., Louis, E. J., Li, Z. Y., Maat, M. J., Mallet, L., Mannhaupt, G., Messenguy, F., Miosga, T., Molemans, F., Müller, S., Nasr, F., Obermaier, B., Perea, J., Piérard, A., Piravandi, E., Pohl, F. M., Pohl, T. M., Potier, S., Proft, M., Purnelle, B., Ramezani Rad, M., Rieger, M., Rose, M., Schaaff-Gerstenschläger, I., Scherens, B., Schwarzlose, C., Skala, J., Slonimski, P. P., Smits, P. H. M., Souciet, J. L., Steensma, H. Y., Stucka, R., Urrestarazu, A., van der Aart, Q. J. M., van Dyck, L., Vassarotti, A., Vetter, I., Vierendeels, F., Vissers, S., Wagner, G., de Wergifosse, P., Wolfe, K. H., Zagulski, M., Zimmermann, F. K., Mewes, H. W., and Kleine, K., Complete DNA sequence of yeast chromosome II. EMBO J., 13, 5795-5809 (1994).
17) Wehner, E. P, Rao, E., and Brendel, M., Molecular structure and genetic regulation of SFA, a gene responsible for resistance to formaldehyde in Saccharomyces cerevisiae, and characterization of its protein product. Mol. Gen. Genet., 237, 351-358 (1993).